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Genome-scale metabolic models are powerful tools for understanding cellular physiology. Flux
balance analysis (FBA), in particular, is an optimization-based approach widely employed for
predicting metabolic phenotypes. In model microbes such as Escherichia coli, FBA has been
successful at predicting essential genes, i.e. those genes that impair survival when deleted. A central
assumption in this approach is that both wild type and deletion strains optimize the same fitness
objective. Although the optimality assumption may hold for the wild type metabolic network, deletion
strains are not subject to the same evolutionary pressures and knock-out mutants may steer their
metabolism to meet other objectives for survival. Here, we present FlowGAT, a hybrid FBA-machine
learning strategy for predicting essentiality directly from wild type metabolic phenotypes. The
approach is based on graph-structured representation of metabolic fluxes predicted by FBA, where
nodes correspond to enzymatic reactions andedgesquantify the propagation ofmetabolitemass flow
between a reaction and its neighbours. We integrate this information into a graph neural network that
can be trained on knock-out fitness assay data. Comparisons across different model architectures
reveal that FlowGATpredictions forE. coli are close to those of FBA for several growth conditions. This
suggests that essentiality of enzymatic genes can be predicted by exploiting the inherent network
structure of metabolism. Our approach demonstrates the benefits of combining the mechanistic
insights afforded by genome-scale models with the ability of deep learning to infer patterns from
complex datasets.

The identificationof essential genes is crucial forunderstanding theminimal
functional modules required for cell survival1, and has key applications in
biomedicine and biotechnology2–4. For example, essential genes are com-
monly prioritized as targets for cancer therapy5 or as targets for anti-
microbial therapies that circumvent resistance mechanisms and improve
treatment of severe infections6. In industrial biotechnology and metabolic
engineering, non-essential genes are normally targeted for knock-down so
as to direct metabolic flux away from native processes toward synthesis of
high-value products, without compromising cell viability7. In general, the
identification of essential genes requires screening assays where multiple
knock-outmutants are phenotypedwith a suitable fitness selection strategy.
Such screens have been performed on many organisms, including model
microbes such asEscherichia coli8–10, Saccharomyces cerevisiae11 andBacillus
subtilis12, as well as pathogens such as Candida albicans13 and Aspergillus

fumigatus14. In human cells, recent work has produced high-resolution
deletion assays2, leveraging progress in high-throughput technologies such
as RNA interference and CRISPR-based screens1 to produce detailed maps
of gene essentiality in different conditions.

As a result of the cost and complexity of knock-out fitness assays, there
is a growing interest in computational methods that can complement the
experimental work with in silico prediction of fitness effects. These com-
putational approaches often employ machine learning combined with
information from protein sequence, gene homologies, gene-function
ontologies, and protein interaction networks15–19. In the case of metabolic
genes, i.e. those that code for catalytic enzymes inmetabolic pathways, Flux
Balance Analysis (FBA) is a widely employed method for predicting
essentiality20. There are numerous variants of FBA and its related
algorithms21, but at its core FBA computes genome-scale flux distributions
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that optimize a cellular fitness objective. Such objective is typically taken to
be the cellular growth ratemodeledas a linear combinationof synthesis rates
of amino acids, lipids and other biomass components. By imposing con-
straints on each metabolic flux, FBA problems can be solved with efficient
linearprogrammingalgorithms,whichallows to rapidly simulate the impact
of gene deletions on the predicted growth rate and draw predictions on the
essentiality of metabolic genes.

Flux Balance Analysis has shown good prediction accuracy for gene
essentiality in the E. coli bacterium10 and other model microbes, but pre-
dictions for eukaryotes and higher-order organisms have produced mixed
results22,23. Moreover, the quality of FBA predictions have been shown to
vary strongly across different metabolic models and organisms. This caveat
is normally ascribed to the quality of the metabolic models themselves,
which may contain gaps or errors in the stoichiometry as well as the
mapping between enzymatic genes andmetabolic reaction24. Another often
overlooked limitation, however, is the optimality assumption employed by
FBA. While there is mounting evidence for optimality of various wild type
microbial strains25,26, FBA approaches additionally assume that deletion
strains optimize the sameobjective as thewild type. Inmany cases, however,
deletion strains display suboptimal growth phenotypes and are not subject
to the same long-term evolutionary pressures as the wild type. It has also
been postulated that gene deletions can alter cell physiology to meet other
objectives for survival; for example, an early work hypothesized that
knockout strains may minimize their phenotypic deviation from the wild
type27, while various works have explored the impact of alternative objective
functions28,29 andmultiobjective optimization principles30 in the classic FBA
formulation.

Here, we sought to determine if gene essentiality can be predicted
directly from wild type metabolic phenotypes. We developed a hybrid
algorithm to predict gene essentiality using a combination of FBA and deep
graph neural networks trained on knock-out fitness data. This approach
does not require the assumption of optimality of deletion strains and takes
maximal advantage of the inherent graph structure of metabolism through
the use of a graph neural network as a backbone predictivemodel. A graph-
based model allows including local dependencies between metabolic reac-
tions and its neighbor pathways, and thus improve the ability to predict
essentiality of specific metabolic genes. Early attempts to augment the
predictive power of FBA with machine learning explored the use of flux
features for improved prediction of gene essentiality31,32, and other works
have attempted to predict essentiality from the metabolic graph topology33.
Most recently, several authors have developed integrated pipelines aimed at
improving FBA predictions for biomedical34,35 and biotechnology tasks36–38.

In our approach, starting from wild type FBA solutions we first
represent genome-scalefluxdistributions as aweighteddigraph in a space of
reactionnodes, and employ aflow-based representation for eachnode based
on the redistribution of chemical mass flows between various paths in the
graph. To integrate the graph structure and node features into a single
predictive model, we employ a Graph Neural Network (GNN) with an
attention mechanism39 termed FlowGAT. We show that FlowGAT can be
trained on a small amount of labelled data from knock-out screens. We
demonstrate the effectiveness of our approach using the latest metabolic
model of E. coli, which achieved a prediction accuracy near the FBA gold
standard. Moreover, model predictions appear to generalize well across
various growth conditions without the need for further training data. The
results highlight the advantages of integrating FBA pipelines with state-of-
the-art machine learning algorithms for improved phenotypic predictions.

The structure of our paper is as follows: in Section we detail the core
components of the FlowGAT architecture, the graph construction, and our
strategy for node featurization. Section presents the various performance
evaluation of FlowGATusing data fromE. coli growing in glucose as carbon
source. In Section we explore the ability of FlowGAT to generalize predic-
tions to ten other carbon sources, and we conclude with a discussion on the
advantages and caveats of our approach, outlining ideas for futurework that
could improve FlowGAT and extend its applicability to eukaryotic and
higher-order organisms.

Results
Model architecture and training
In this paper, we propose FlowGAT, a graph neural network (GNN)model
to predict gene essentiality fromgraphs constructedusingFBA solutions.As
shown in Fig. 1A, each node in the graph corresponds to a metabolic
reaction, andwe pair each node with a set of flow-based features and binary
essentiality labels obtained from knock-out fitness assays. The graph
structure and node features are integrated into a GNN for binary classifi-
cation, so as to use a message passing scheme to propagate node features
through the structure of the graph; this allows learning a rich embedding of
the input that contains information from the k-hop neighbourhood of each
node. According to the message passing algorithm, at each layer of a GNN,
each node receives a set of vectors (messages) from its neighbouring nodes
and updates its embedding by combining the neighbourhood message set
with its embedding vector from previous layer through an aggregation
function40. The update rule typically contains a combination ofmessage and
aggregation functions that can vary depending on the given task and
hyperparameters chosen. In our setting, this step is calculated using the
attention mechanism, a technique made popular by Transformer
architectures41. In attention-based message passing, a node learns to focus
on the messages that are more informative, and the aggregation function is
calculated in away to highlight the correspondingmessage effect in the final
embedding vector;more details canbe found in theMethods.Wenext detail
the different components of the model and our training strategy.

Graph construction. We consider metabolic networks with m meta-
bolites and n enzymatic reactions described by the following differential
equation model

dX
d t

¼ Sv; ð1Þ

where X is anm-dimensional vector of metabolite concentrations, v is a n-
dimensional vector of reactionfluxes, andS is an ×m stoichiometricmatrix.
In steady state, the relation Sv = 0 describes all flux vectors that can sustain a
specific metabolic state. A common strategy to estimate v at the genome-
scale is to employ FBA to compute a flux vector v⋆ that optimizes a
meaningful biological objective; details onFBAcanbe found in theMethods
section. To convert such FBA solution vectors v⋆ into a graph, we used the
Mass Flow Graph (MFG) construction proposed by Beguerisse-Díaz et al.42

and illustrated inFig. 1B.There are numerousways to convert genome-scale
metabolic networks into a graph; for example, some approaches consider
nodes as metabolites as nodes and reactions as edges, others consider the
opposite and assign reactions as nodes and shared metabolites as edges, or
bipartite graphswithbothmetabolites and reactions asnodes4.Among these
methods, the MFG construction is well suited for essentiality prediction,
because it considers reactions as nodes and therefore the task can be recast a
node classification problem using off-the-shelf GNN architectures.
Additionally, MFGs account for the directionality of metabolite flow from
source to target reactions, as well as the relative weight or contributions of
multiple paths for such flows, both of which can improve the predictive
power of the models.

Starting from the stoichiometric matrix S, we first build a directed
graph with reactions as nodes, where two nodes are connected if and only if
the source reaction produces a metabolite that is consumed by the target
reaction. Each edge in the graph has a weight wi,j that represents the nor-
malized mass flow from node i to node j. We first compute the flow of
metabolite Xk from reaction i to j according to:

Flowi!jðXkÞ ¼ Flowþ
Ri
ðXkÞ×

Flow�
Rj
ðXkÞP

‘2Ck
Flow �

R‘
ðXkÞ

; ð2Þ

where Flow þ
Ri
ðXkÞ and Flow �

Rj
ðXkÞ are the production and consumption

flows ofmetaboliteXkby reactionRi andRj, respectively. The setCk contains
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the indices of all reactions that consumemetaboliteXk. The edge weightwi,j

is thus defined as the totalmass flow between two nodes, aggregated over all
metabolites Xk that are produced by node i and consumed by node j:

wi;j ¼
Xp
k¼1

Flowi!jðXkÞ: ð3Þ

Mass flow graphs allow converting FBA solutions into a directed graph, and
thus can be used to represent the network structure of metabolism in dif-
ferent growth conditions or genetic perturbations. In Fig. 1C, we show
MFGs built from genome-scale metabolicmodels for threemodelmicrobes
available in the BiGG model database43 (Escherichia coli, Saccharomyces
cerevisiae and Bacillus subtilis). Further details on the construction of the
mass flow graphs can be found in the Methods section.

Design of node features. Besides the graph topology, we ascribe a
feature vector to each reaction node that can be exploited for improved
performance by the representation learning approach. This approach is
analogous to the structural and positional encoding schemes employed in
graph Transformer architectures to feed models with extra information
about the local connectivity of nodes44. Since the edgeweights in (3) relate
to the directional mass flow between reactions, we opted for features that
aggregate information on incoming and outgoing flows from each node.
To this end, we employ the Flow Profile Encoding (FPE) first defined by
Cooper and Barahona for general directed graphs45. Given a directed
graph with n nodes and weighted adjacency matrixA, for each node i we

define the inflow profile of length k as:

inflow k
i ¼ ½Ak1n× 1�i; ð4Þ

where Ak is the matrix k-th power, 1n×1 is an n-dimensional vector of ones,
and [ ⋅ ]i is the i-th element of a vector. The inflowof node i is thus defined as
the weighted sum across all incoming paths of length k. We similarly define
the outflow of node i as:

outflow k
i ¼ ½ðA0Þk1n× 1�i; ð5Þ

where A0 is the matrix transpose. We note that in the case k = 1, the defi-
nitionof inflowsandoutflows correspond to the in-degree andout-degreeof
each node, respectively. But when considering longer paths (k > 1) the flow
profiles describe the pattern of directional flows at longer scales and hence
capture higher-order dependencies. We concatenate inflows and outflows
up to maximal length km for each node:

FPEi ¼ β1 × inflow 1
i ; � � � ; βkm × inflow km

i ; β1
h

× outflow 1
i ; � � � ; βkm × outflow km

i

i
;

ð6Þ

where km is a hyperparameter that defines themaximumpath length, β = α/
λ1 is a scaling factor, λ1 is the largest eigenvalue of the adjacency matrix A,
and α is a hyperparameter that controls for the variable weights of the short
and long paths; normalization by the largest eigenvalue λ1 ensures con-
vergence for large k, in the sense that limk!1 jjAkþ1jj=jjAkjj ¼ λ1. The
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Fig. 1 | Elements of the FlowGAT model for gene essentiality prediction.
A Schematic of the FlowGAT architecture proposed in this paper. The model
integrates a digraph representation of FBA solutions (Mass Flow Graphs, MFG),
where nodes are reactions and edges encode the metabolite mass flows between
reactions. We featurize each node with flow-based scores and label them as essential
or non-essential using data from gene knock-out assays. Using a graph neural
network with an attention layer, FlowGAT predicts essentiality for unlabelled
reactions.BConstruction ofmass flow graphs from FBA solutions. The top network
is an exemplar metabolic network, and the bottom digraph is the corresponding
MFG constructed; nodes are reactions and two nodes are connected if they share

metabolites as reactants or products. The edge weights are computed from the
metabolitemass flows as described in (3); more details on theMFG construction can
be found in Beguerisse-Díaz et al.42. C Exemplar MFGs for several microbes com-
puted from their genome-scale metabolic models using standard FBA63 with the
default growth condition in each case; density plots show the distribution of edge
weights in each case.D Formodel training and validation, labeled nodes in theMFG
are separated into training, validation and test sets. The validation set is used for early
stopping and performance metrics are computed on the test set. We explored two
training frameworks for FlowGAT: as a binary classifier and as a regressor of growth
rate that can be binarized to produce essentiality predictions.
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definition in (6) allows computing a feature vector of length 2km for each
node in the graph.

Representation learning. Graph representation learning is concerned
withmapping the nodes into a lowdimensional vectorwhich is optimized
for downstream tasks such as classification or regression46. GNNs are a
family of deep learning methods on graphs which obtain the embedding
vector by incorporating the features of the node and its local neigh-
bourhood according to a customized message passing scheme called
Message Passing Neural Network (MPNN)40. Doing so helps the model
capture local and global structural information about the graph and
results in a more expressive embedding space. For more information
about MPNNs refer to the Methods section. In this study, we employ a
MPNN architecture named Graph Attention (GAT) to compute the
neighbourhood information importance in finding the representation of
the node39. Each layer l of GAT updates the representation of node i
according to:

hli ¼
X

j2N ðiÞ∪ i

ajiΘ
lhl�1

j ; ð7Þ

where hli is the representation vector,N ðiÞ is the set of neighbouring nodes
for node i, Θ is a set of differentiable weights, and aij is an attention coef-
ficient that is dynamically calculated for each node j 2 N ðiÞ∪ i as

aji ¼
expðϕðhl�1

i ; hl�1
j ÞÞP

v2N ðiÞ∪ i expðϕðhl�1
i ; hl�1

v ÞÞ ;
ð8Þ

where ϕ is a differentiable function optimized through gradient descent
optimization algorithms47. Details on the message passing and attention
schemes can be found in the Methods section.

Data pre-processing. FlowGAT can be trained on knock-out growth
assay data, where each gene is labelled as non-essential (0) or essential (1)
depending on whether a fitness score is above or below prescribed
threshold. For model training, the binary gene labels must be converted
into their corresponding reaction node labels in theMFG. To this end, we
use the Gene-Protein-Reaction (GPR) map included in genome-scale
metabolic models. The GPR is a Boolean function that specifies which
gene codes for which proteins, and conversely how each protein affects a
metabolic reaction. The GPR can account for reactions that are catalyzed
by multiple enzymes or by enzymatic complexes encoded in multiple
genes. For those genes that map one-to-one into a single reaction, we
transferred the gene label directly into a reaction label. For those genes
that map into multiple reactions (many-to-one), we transferred the gene
label to all reactions deactivated by the gene deletion. When multiple
genes map to multiple reactions (many-to-many), the structure of the
GPRdoes not allow to infer reaction labels fromgene labels, and therefore
we considered such reactions as unlabelled. Note that the data also
contains nodes that lack essentiality labels because their corresponding
genes have not been measured in the growth assay. The unlabeled nodes
are made available for model training to make sure that the graph
representation learning can take advantage of the full graph structure
without limiting the representation power of the GAT; the classification
loss for training and evaluation of the model is only calculated on the
labeled nodes. We also note that the reaction labels are typically imbal-
anced because the MFG is enriched for essential reaction nodes. By
definition in (3), those reactions with zero flux in the wild type FBA
solution will have nil edge weights and thus are disconnected from the
graph. During training, the model has access to the features of all nodes
(labeled andunlabeled) through themessage passing, but the training loss
is calculated on the labels of the training nodes in semi-supervised fashion
(Fig. 1D). Details onmodel training can be found in theMethods section.

Performance evaluation
To evaluate the performance of FlowGAT, we employed the growth knock-
out data for the Escherichia coli bacterium reported by Monk and
colleagues10, and the iML1515 genome-scale model reported in the same
work. We chose the E. colimodel because it is the most complete and best
curated metabolic reconstruction in the literature, and thus allows us to
mitigate the impact ofmisclassification errors caused by poormodel quality
and focus on the predictive power of FlowGAT itself. The dataset contains
growth rate data for 3892 E. coli genes in various carbon sources.

We built the MFG for E. coli using the wild type FBA solution with
glucose as the sole carbon source and the default objective function included
in the iML1515model (growth rate). The resultingMFGhas 444 nodes and
after converting the gene labels to reaction labels with the GPR map we
obtained 255 labeled nodes (191 essential, 64 nonessential). We first com-
pared FlowGAT trained on cross-entropy loss with classical binary classi-
fiers including Support Vector Classifier (SVC), Multi Layer Preceptron
(MLP), and random forest (RF) using the flow profile embeddings in (6) as
feature vectors; details onmodel training and hyperparameter selection can
be found in Methods. The results in Fig. 2A show precision-recall curves,
averaged acrossN = 50 rounds of training and testing (5 test folds with 20%
ofnodes resampled10 times formodel retraining); details onour strategy for
model evaluation can be found in the Methods. Among the considered
classifiers, FlowGAT achieves the best Area Under the Precision-Recall
Curve (PRAUC) across all test folds and performs above the no-skill clas-
sifier while the classic models significantly underperform; we note that due
to the class imbalance the baselineprecisionof theno-skill classifier is 74.9%.
The precision-recall curve quantifies the trade off between the false positive
and false negative rates, two metrics in binary classification that are parti-
cularly important for imbalanced datasets. In the context of gene essentiality
prediction, a suitable balance between true positives and true negatives
depends on the application at hand. For example, if the aim is to find
essential genes that can be targeted to cause cell death3, the model should
prioritize true positives (high precision). But if the goal is to knockout non-
essential pathways to improve production of specific metabolites48, the
classifier should prioritize true negatives (high recall). The PRAUC score is
normally used tofindmodels with a good balance between true positive and
truenegative predictions, and then the decision threshold is chosen from the
curve to achieve a desired performance.

We also compared FlowGAT trained on two other popular node
embedding techniques (Local Degree Profile (LDP)49 and Random Walk
Embedding (RWE)50) that have shown good performance in a number of
tasks on molecular graphs, as well as two other message passing schemes
(Graph Convolutional Network51 and GraphSAGE, see Supplementary Fig.
1). Details on these additional node embeddings and message passing
strategies can be found in the Methods section. The results (Fig. 2A) show
that graph attention delivers the best performance, and models trained on
LDP and RWE node features are outperformed by the flow profile encod-
ings, possibly because the former do not take account for directionality and
weight of the edges of the MFG.

We further investigated the sensitivity of FlowGAT to the randomseed
employed for weight initialization; the distributions in Fig. 2B show the
PRAUC scores for all models across the 50 runs. The results suggest that
FlowGAT performance is relatively robust; only the RF classifier delivers
tighter predictions, but at the cost of an average performance below the no-
skill baseline.

We finally sought to explore an alternative training scheme using a
regression approach. Since the gene essentiality labels are based on a
binarization of continuous measurements of growth rate, we reasoned that
recasting the prediction problem as a regression task could improve per-
formance. To this end, we employed the non-binarized fitness measure-
ments of growth rate inMonk et al.10 and re-trainedFlowGATas a regressor
usingMean Squared Error (MSE) loss on predicting the growth rate values;
all model hyperparameters were left unchanged. Following the same eva-
luation scheme as the above, we used the FlowGAT regressor to predict
growth rates for the reaction nodes in each test fold. We then used the
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predicted growth rate as classification scores and computed the precision-
recall curve on the test fold. Upon comparison with the classification
approach in Fig. 2A, B, the regression results in Fig. 2C led to a performance
increase in terms of average PRAUC, as well as tighter predictions that are
less sensitive to weight initialization.

After finding the best setting for FlowGAT in terms of architectural
design choices, we fixed the cut-off threshold for the output prediction of
FlowGAT trained as a regressor in Fig. 2C to produce binary essentiality
predictions for all 50 evaluations by classifying the nodes that score above
the threshold as essential and others as non-essential. We measure the
performance of FlowGAT in terms of threemetrics of Precision, Recall, and
F1 for the binary predictions (Fig. 2D). The predictions of the FlowGAT
regressor manage to keep both precision and recall above 75% and 90%,
respectively.

To better understand the performance of our model, we compared the
output of FlowGAT trained as a regressor (Fig. 2C) with those from FBA
applied to the genes that appear in theMFG. First, wemapped each reaction
node back to its corresponding into gene labels using theGPRmap. In total,
240 labeled genes appear in the constructed MFG (180 essentials and 60
non-essential). This number is lower than the number of reaction nodes
(255) because some reactions correspond to the same gene based onmany-
to-one mapping that was used to assign labels to nodes earlier; for such
genes, we aggregated reactions by maximum prediction value of corre-
sponding reactions.We collected predictions across all genes and compared

these results with the essentiality prediction of FBA for each gene in Fig. 2E.
The results suggest that both FlowGAT and FBA find most of the essential
genes, but FlowGAT finds on average 19 essential genes that are mis-
classified by FBA. In the case of non-essential genes, however, we found that
FlowGATunderperforms andmissesmore genes thanFBA, likely as a result
of non-essential genes being the minority class.

Essentiality prediction in different growth conditions
The essentiality of metabolic genes can be highly dependent on environ-
mental conditions. Different carbon sources produce important changes in
metabolic phenotypes and, as a result, some genes that are essential in one
condition source may be non-essential in another one.

To test the predictive power of FlowGAT in other carbon sources
beyond glucose, we trained themodel using E. coli knock-out fitness data in
tenother carbon sources that coverdifferent entry points into central carbon
metabolism10.We built the correspondingmass flow graphs fromwild type
FBA solutions of the iML1515 model instanced to each carbon source. To
build condition-dependent graphs, we constrained the flux of each nutrient
exchange reaction to a fixed value (Supplementary Table 2). This resulted in
10 different MFGs that differ on their nodes and their edge weights.
Inspection of the reaction nodes per graph (Fig. 3A) reveals differences
across graphs for reactions that become active for specific carbon sources, as
well as a large number of reactions that are shared across conditions. We
then evaluated the performance of FlowGAT trained in each of the tenmass
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trained using the Flow Profile Embeddings (FPE) defined in Eq. (6) computed from
wild type FBA solutions. The graph neural networks were trained using the mass
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RWE50). Results show PR curves averaged across 50 model evaluations consisting of
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different random seeds; the dashed line represented the precision (74.9%) of the no-
skill classifier given the class imbalance of the data. BDistribution of PRAUC scores
across the 50 evaluations. The graph attention models outperform classic binary
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FlowGAT provides statistically significant increase in performance as compared to
traditional models. SVC (p = 6.12 × 10−8), MLP (p = 2.49 × 10−5), and RF
(p = 1.61 × 10−8) using a Mann–Whitney U test with Bonferroni correction.
C Retraining FlowGAT as a regressor provides slight gains in performance; inset
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seeds. Details on model training can be found in the Methods.
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flow graphs, using the growth knock-out fitness data and the regression
strategy of Fig. 2C; model hyperparameters were left unchanged. In each
graph, the number of essential and non-essential nodes varies and thus, the
no-skill baseline varies depending on the class imbalance in that graph. As
seen in Fig. 3B, we found that while the PRAUC scores vary across growth
conditions, in all cases FlowGAT outperformed the no-skill classifier by at
least 6%. These encouraging results can likely still be improved by intro-
ducing condition-specific hyperparameters for the FlowGAT architecture.

We finally aimed to determine the ability of FlowGAT to generalize
predictions across growth conditions. We conducted a cross-training eva-
luation, where the model was trained on a mass flow graph and fitness data
from a single carbon source, and tested on the reaction nodes in a different
growth condition. To this end, we also included the FlowGAT model for
glucose discussed in the previous section. As shown in Fig. 3C, all 90 cross-
tests show an improvement in PRAUC with respect to each MFG no-skill
classifier. Although each FlowGATmodel was trained on a different graph
and fitness data, these results suggest that the model captures a well-
performing representation of the data. To test if this is a result of the

similarity between the nodes present in each graph (Fig. 3A), we quantified
the graph-to-graph similarity using the distance between the distribution of
node features. We estimated the probability density function of the flow
profile encodings for each graph using kernel density estimation and
computed the Jensen-Shannondivergence between all pairs of distributions.
The results (Fig. 3C) donot showa correlation between graph similarity and
the PRAUC scores. For example, the maltose graph embedding is nearly
equidistant from both the acetate and galactose graphs, but FlowGAT
trained on maltose has a performance of approximately 5% better when
tested on galactose than in acetate. Likewise, FlowGAT trained onmannitol
performs better when tested in galactose than glycerol, despite the galactose
graph being more dissimilar to the mannitol graph. These observations
suggest that the generalization performance of FlowGAT results from its
representation power rather than the similarity between the input graphs.

Discussion
Essential genes often encode proteins that play critical roles in cellular
processes needed for growth. Since the quantification of gene essentiality

Fig. 3 | Essentiality predictions of FlowGAT for Escherichia coli growing in
different carbon sources. A Heatmap of reactions present in mass flow graphs
(MFG) computed from wild type FBA solutions computed for ten carbon sources.
Each MFG is obtained through changing the carbon source; the color bar denotes
the different metabolic subsystems as annotated in the latest genome-scale
metabolic model iML151510. B Prediction performance of FlowGAT trained and
tested on the different condition-dependent MFGs. Bars show the average
improvement of PRAUC scores across the 50 evaluations with respect to the no-
skill classifier; error bars denote one standard deviation of the PRAUC. Full

precision-recall curves for each case can be found in Supplementary Fig. 2.
C Performance of FlowGAT in cross-testing across different carbon sources; in
each case, the model was trained on one graph and tested on the nodes of all other
graphs, totalling 90 cross-test evaluations. The color bar indicates the improve-
ment in PRAUC over the no-skill classifier; the bubble radius denotes the graph-
to-graph distance computed as the Jansen-Shannon divergence between the
distribution of node features. In panels (B, C), the performance improvement was
computed as 100× PRAUCFlowGAT � PRAUCno-skill

� �
=PRAUCno-skill .
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requires knock-out fitness assays across a large number of genes and growth
conditions, there is substantial interest in computational methods that can
aid the identification of genes from a reduced number of measurements. In
this paper, we presented FlowGAT, a graph neural network that can be
trained on knock-out fitness data to predict the essentiality of metabolic
genes. The architecture exploits the inherent graph structure of metabolic
fluxes predicted by Flux Balance Analysis through a combination of mass
flow graphs and node features that describe local connectivity.

Using data fromE. coli and its latest genome-scalemetabolicmodel, we
show that FlowGAT can identify most of the genes that are correctly called
as essential by Flux Balance Analysis, and even correct some of its mis-
classified essential genes. Our approach is based solely on the wild type
phenotype predicted by FBA; since it does not require the assumption of
optimality of deletion strains, FlowGATmay be suitable for other microbes
where gene deletions lead to suboptimal growth. In the case of higher-order
organisms and cell types, FlowGAT holds promise for cases in which
optimality of the wild type optimality can be assumed, such as some cancer
types that are amenable to FBA analyses23. We also note that the con-
struction ofmass flow graphs does not require the flux vector to be optimal.
This opens the possibility of extending FlowGAT to cases in which the
optimality assumption fails even for thewild type. For example by replacing
the FBA step with other descriptions of the flux space, such as elementary
flux modes, extreme pathways or flux sampling21.

Additionally, we observed an encouraging generalization power of
FlowGAT across growth conditions, even in cases where the underlying
graphs and node features differ substantially. This suggests that the pro-
posed architecture and feature extraction method can learn internal
representations that are useful predictors of gene essentiality. Accurate
prediction of essentiality across conditions can potentially reduce cost and
efforts in experimental essentiality screens, and lead to testable hypotheses
on genetic liabilities that emerge in specific cellular environments. While
this approach holds great promise, we recognize the inherent challenge of
predicting gene essentiality in different contexts due to its variable nature
across cell types and growth conditions5. Future approaches will likely
require training data the combine fitness data across multiple cellular
contexts, so as to improve the quality of predictions.

We also found that FlowGAT struggled to predict non-essential genes
and can be outperformed by traditional FBA. This phenomenon could
result from non-essential genes being intrinsically more challenging to
predict, or from the strong class imbalance that is implicit in the FlowGAT
approach. By construction, mass flow graphs are enriched for essential
reaction nodes, because zero flux reactions led to disconnected nodes. As a
result, the class imbalance favors essential labels at the detriment of poor
predictions for non-essential genes. The implications of this poor perfor-
mance depend on the end application; for example, if the aim is to discover
druggable targets against pathogens3, the focus is on accurately detecting
essential genes that can be inhibited and cause cell death. Conversely, in
metabolic engineering applications, the focus is on detecting non-essential
genes that canbe safely knockeddownand alleviate their competitionwith a
target production pathway48. Further extensions to our work could address
the class imbalance with data augmentation techniques or using class-
specific penalization in the loss function employed for training.

The integration of artificial intelligence and machine learning algo-
rithms intovariousbiological disciplines is advancing at a rapidpace andhas
found applications in many domains such as strain design52,53, drug
discovery54 and metabolic engineering55. Our approach illustrates the
potential of combining well-adopted tools such as Flux Balance Analysis
with modern data-driven approaches, and adds to the growing body of
literature36,56–58 at the interface of metabolic modelling and machine
learning.

Methods
Flux balance analysis
Flux Balance Analysis (FBA) is one of the popular methods for the analysis
of cellular metabolism. In a steady state, a metabolic network can be

described by

Sv ¼ 0: ð9Þ

The aim of FBA is to obtain the solution vector v* that satisfies the
above condition and at the same time solves the following optimization
problem:

v� ¼ argmax
v

c0v

subject to
Sv ¼ 0;

vlb < v < vub;

� ð10Þ

in which, c is a vector of flux weights, and (vlb, vub) are lower and upper
bounds on reaction fluxes, respectively.

Mass flow graphs
Originally introduced by Beguerisse-Díaz et al.42, Mass Flow Graphs
(MFGs) are designed to reflect the directional flow ofmetabolites produced
or consumed through enzymatic reactions. In these graphs, reactions are
considered as vertices, and two reactions are connected through a directed
edge if they share a metabolite (either as reactants or products). The con-
struction pipeline of these graphs can incorporate different experimental
conditions through varying flux distributions.

To construct an MFG from a metabolite network consisting of m
reactions andnmetabolites,first we obtain the solution vector v* fromFBA.
Then, we unfold the v* into two-fold forward and reverse reaction fluxes
through

v�2m ¼ 1
2

abs ðv�Þ þ v�

abs ðv�Þ � v�

� �
: ð11Þ

Next, the corresponding stoichiometric matrix of v�2m is defined as

S2m ¼ S �S
� � Im 0

0 diag ðrÞ

� �
; ð12Þ

in which, S in the n ×m stoichiometric matrix corresponds to n reactions
and m metabolites of the original network, and r is an m dimensional
Boolean vector indicatingwhether a reaction is reversible or not. Finally, the
adjacency matrix of the MFG can be calculated as

Aðv�Þ ¼ ðSþ2mV�Þ0JyvðS�2mV�Þ; ð13Þ

where † is the matrix pseudoinverse operator, and V� ¼ diag ðv�2mÞ,
J ¼ diag ðSþ2mv�2mÞ with

Sþ2m ¼ 1
2
ð abs ðS2mÞ þ S2mÞ; ð14Þ

S�2m ¼ 1
2
ð abs ðS2mÞ � S2mÞ: ð15Þ

Node feature generation
Mass FlowGraphs do not include features for each node (reactions). As
a result, it is necessary to design a feature generation pipeline that
considers the structure of the graph as well as the edge weights that
appear in the adjacency of the graph. For this task, we propose a node
encoding algorithm analogous to positional encoding of Transformer
architectures.

Apart from the proposed FPE features in Eq. (6), a second approach to
node encoding is to gather local neighborhood structural statistics based on
the degree of each node and its neighboring nodes49. In this approach, the
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local degree profile of each node is defined as

LDPi ¼ ½ degðiÞ;minðDNðiÞÞ;maxðDNðiÞÞ; avgðDNðiÞÞ; stdðDN ðiÞÞ�;
ð16Þ

in which DN(i) is the set of out-degree values for all the neighboring
nodes of node i. The minimum, maximum, average, and standard
deviation of the out-degree are calculated and used as node features of
node i. Additionally, a third encoding method relies on randomwalks
from each node. In this method, a random walk encoding for each
node i is calculated as:

RWEi ¼ ½RW2
ii;RW

3
ii; . . . ;RW

Kmax
ii �; ð17Þ

whereKmax is a hyperparameter formaximum length of the randomwalks,
and RW =AD−1 is the random walk operator and only the random walks
that end in node i are considered for encoding (RWii is this the i-th element
of the diagonal).

Message-passing neural networks (MPNN)
For representation learning of the graph features, we employed the
Graph Attention (GAT) architecture39 which is an instance of a
MPNN scheme. In a typical graph representation learning task, the
representation of each node is updated through a message passing
scheme in which the information from neighboring nodes is gathered
using message formula and aggregated with the features of the node
itself. Thus, a message passing formula for each message from node j
to node i can be written as

mðlÞ
ji ¼ MSGðlÞ hðl�1Þ

j2fN ðiÞ∪ ig; ej;i
	 


ð18Þ

where hðlÞi is the representation vector of node i in layer (l) of the
MPNN, ej,i are the features of the edge between node i and node j, and
N ðiÞ is the set of neighbouring nodes to node i. The operator MSGl is
the custom message function which is different in each layer design.
One typical example of such a function is anMLP applied on the input
values. Moreover, the messages for each node are aggregated to obtain
the representation of node i in layer l using

hðlÞi ¼ AGGðlÞ mðlÞ
ji ; u 2 N ðiÞ

n o
; hðl�1Þ

v

	 

; ð19Þ

in which, AGG is a custom permutation invariant operator with regards to
messages for each node.

Graph Attention formulates the message equation in (18) as the
multiplication of the attention as the learnable importance factor of each
message by the representation of neighbors. Thus, the formula in (18)
becomes:

mðlÞ
ji ¼ ajiΘ

lhl�1
j ; ð20Þ

in which, aji is the attention coefficient and is usually calculated through
feeding the features of both neighboring nodes i and j through a learnable
function and calculating the importance through the softmax function.
Other popular examples of MPNN framework are Graph Convolution
Network (GCN)51 and GraphSAGE59 which change the message function
and use different aggregation functions. In GCN, the message function in
(18) is calculated as:

ml
ji ¼

Θlhl�1
jffiffiffiffiffiffiffiffiffiffiffiffi

degðiÞ
p ffiffiffiffiffiffiffiffiffiffiffiffi

deg ðjÞ
p ; ð21Þ

with the sum pooling operator as the aggregator function. In GraphSAGE,
the message function MSG is the identity function and the aggregation

function AGG is calculated as:

hli ¼ Θlhl�1
i þΘ0lMEANj2N ðiÞh

l�1
j : ð22Þ

where MEAN is the mean pooling operator. The comparison between the
performanceof differentMPNNschemes is presented in the Supplementary
Figure 1.

Graph construction
To build the MFGs, we employed the iML1515 model of E. coli MG1655
introduced by Monk et al.10. To label the reaction nodes in the graph, we
employed the growth assay data from the same work on strain BW25113.
Since BW25113 lacks several genes from MG1655, we produced FBA
solutions by setting their reaction bounds to zero and assuming aerobic
growth. The reaction bounds can be found in Supplementary Table 1. To
simulate E. coli growth in specific carbon sources, we set the corresponding
exchange flux to a fixed value and deactivated all other carbon exchange
fluxes. The list of all carbon sources and their corresponding exchange
reactions can be found in SupplementaryTable 2.All calculationsweredone
with the COBRApy toolbox v0.26.3 using the glpk solver and the default
objective function included in the iML1515 model.

Performance evaluation of binary classifiers
Training and evaluation in a single carbon source. We started our
evaluations of FlowGAT from the MFG computed with glucose as the
sole carbon source in Fig. 2A. After mapping reactions to genes based on
GPR rule set, growth rate values were converted to essentiality labels
based on the threshold of 0.5 and were assigned to corresponding nodes
in the MFG. The labeled nodes in the MFG are imbalanced with a higher
number of essentials compared to non-essential nodes. Therefore, for
model training, we employed stratified sampling into 5 folds using built-
in scikit-learn60 functions with 1 fold for testing and 4 folds for training
with the labeled nodes and 25% of the training set is set chosen as vali-
dation set (Fig. 1D). For the initial tuning of hyperparameters, we
employed grid search for each model and chose the best model settings
based on the performance on the validation set. We performed a grid
search and trained themodel usingmany hyperparameter combinations.
The trainedmodel was then evaluated on the validation set and a negative
log likelihood loss value was computed. After collecting the loss value for
all possible combinations, the hyperparameters set that achieved the
minimal loss were chosen as the final configuration; these hyperpara-
meters were kept constant for all other evaluations in the paper. All GNN
models were implemented in the PyG package61, while training and
hyperparameter tuning were done with GraphGym; classic models
(SVC, MLP, RF) were implemented using scikit-learn. The space
for the grid search and final hyperparameters for each model can be
found in Supplementary Tables S3, S4.

Due to the small number of labeled genes available in our dataset (255
in case of glucose MFG), to compare the performance of different models
(Fig. 2) we trained the GNNmodels on the training folds and evaluated the
performance on the test fold 5 times, each time changing the train and test
fold to ensure that the results are not caused by split bias. In the case ofGNN
based models, for each evaluation step, 25% of the training fold was con-
sidered as the early stopping set.Wekept track of the bestmodel on the early
stopping set, in terms of the loss value after each training epoch, until the
maximumnumber of epochs was reached. The weights of the best model at
the end of trainingwere then saved and employed to predict for the nodes of
the test fold. Additionally, each training and evaluation step on a test fold
was repeated 10 times with the model retrained with a different initial
random seed to make sure the predictions were not a result of random seed
selection forweight initialization. In total, 50 evaluation steps (5 folds and10
times for each fold) were gathered for each model. For the classic models
(SVC, RF, MLP), we employed the same process except for the use early
stopping set.We followed the same procedure formodel evaluation in other
carbon sources (Fig. 3B).
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Training and evaluations across carbon sources. To produce the
evaluations in Fig. 3C, for eachMFG the training and early stopping folds
were chosen with a 4:1 ratio; in all cases we tested eachmodel on all nodes
of the otherMFGs. Following the same scheme as in the previous section,
the best performing model on the early stopping set was chosen for the
evaluation of the test set; the training set was resampled 5 times and each
model was retrained 10 times with different initial weights.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
Gene essentiality predictions for FBA and FlowGAT using the iML1515
model for Escherichia coli can be found in the Supplementary Data file,
alongside the ground truth labels from Monk et al.10.

Code availability
Python code for model training and evaluation is available in Zenodo62 at
https://doi.org/10.5281/zenodo.10551318.
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