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Medical digital twins are computational models of human biology relevant to a given medical
condition, which are tailored to an individual patient, thereby predicting the course of disease and

individualized treatments, an important goal of personalized medicine. The immune system, which has
a central role in many diseases, is highly heterogeneous between individuals, and thus poses a major
challenge for this technology. In February 2023, an international group of experts convened for two
days to discuss these challenges related to immune digital twins. The group consisted of clinicians,
immunologists, biologists, and mathematical modelers, representative of the interdisciplinary nature
of medical digital twin development. A video recording of the entire event is available. This paper
presents a synopsis of the discussions, brief descriptions of ongoing digital twin projects at different
stages of progress. It also proposes a 5-year action plan for further developing this technology. The
main recommendations are to identify and pursue a small number of promising use cases, to develop
stimulation-specific assays of immune function in a clinical setting, and to develop a database of
existing computational immune models, as well as advanced modeling technology and infrastructure.

The concept of a medical digital twin (MDT) represents a pivotal technology
envisioned to make personalized medicine a reality. This entails using
predictive computational models to harness diverse patient data over time,
allowing for identification of optimal interventions and corresponding
predictions of their effectiveness for an individual patient; see ref. 1-4.
Scaling up this concept into a widely used medical technology necessitates
substantial coordinated advancements across several fields, including
human biology, medicine, biochemistry, bioinformatics, and mathematical
and computational modeling. A sign of increasing interest in this technology
was evident in the workshop “Opportunities and Challenges for Digital
Twins in Medicine,” organized by the National Academies of Science,
Engineering, and Medicine in January 2023*°. One possible long-term
vision is a virtual replica of an entire patient that evolves with the patient
over the course of their lives, as articulated by the Virtual Physiological
Human Institute’ and the European Virtual Human Twin Project’. The
foundations for MDT technology, however, are yet to be developed. The
Forum described here, and other efforts™'’ have focused on digital twins for
medical conditions related to the immune system. This provides a narrower
focus, but at the same time addresses a wide range of diseases that involve the

immune system in an essential way, such as infectious diseases, autoimmune
diseases, and cancer, among many others. The immune system in many
ways serves as a benchmark for the kind of complexity that we need to be
able to represent with computational models. High-fidelity models might be
needed to account for differences in an individual’s immune response to,
say, a vaccine. One desired outcome is a broad-based community effort to
advance modeling of the immune system in different disease contexts.
We adopted a broad definition ofa MDT that happens to align with that
in a recently released report by the National Academies of Science, Engi-
neering and Medicine on “Foundational Research Gaps and Future
Opportunities for Digital Twins™"': “The key elements that comprise a digital
twin include (1) modeling and simulation to create a virtual representation of
a physical counterpart, and (2) a bidirectional interaction between the virtual
and the physical. This bidirectional interaction forms a feedback loop that
comprises dynamic data-driven model updating (e.g., sensor fusion, inversion,
data assimilation) and optimal decision-making (e.g., control, sensor steet-
ing). A key point is that there is an ongoing exchange between the patientand
the digital twin, with data from the patient used to dynamically recalibrate
the digital twin, and predictions from the digital twin informing patient
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Fig. 1 | MDT Development. The development of
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treatments. While there are many computational models of human biology
in the literature that could be further developed into MDTs, specifying, and
incorporating the ongoing bidirectional data links between individual
patients and personalized computational models has not been fully explored
in most cases, so that extensive further development is required. The Forum,
the subject of this report, was primarily focused on such early-stage MDT's
and what is needed to progress to clinical applications.

An international group of experts convened in Lake Nona, FL, Feb-
ruary 23-24, 2023, for the “Forum on Precision Immunology: Immune
Digital Twins”"?, supported by a grant from the Biomathematics Program at
the U.S. Army Research Office. The aim was to discuss these questions and
assess examples of ongoing modeling projects that are part of MDT
development related to immunity. This report encapsulates a synthesis of
these discussions and an outline of challenges to be addressed over the next
five years. The development of MDTs takes place at the interface of medi-
cine, experimental biology, and mathematical modeling (see Fig. 1). The
Forum participants are all authors of this article, and represent a cross-
section of these fields, including immunologists, clinicians, experimental
biologists, and mathematical modelers. The Forum served as a venue to
discuss the different perspectives each of these communities has on the
prospect of using personalized computational models in the clinic. To
facilitate an exchange of ideas across these fields, the program consisted of a
collection of 45-minute blocks, with a 15-minute presentation by a parti-
cipant, followed by 30 min of discussion. The only audio-visual aid available
to presenters was a whiteboard, favoring discussion over formal presenta-
tions. High-quality audio-visual recordings of the individual sessions are
available through links at'"”. A preliminary version of this manuscript is part
of the preprint “Forum on Immune Digital Twins: A Meeting Report,” by
the same group of authors". The reader is encouraged to view the pre-
sentations, as they contain many valuable ideas, viewpoints, and informa-
tion not contained in this synopsis. In fact, we believe that the true value of
the workshop lies in the extended discussions between participants of dif-
ferent backgrounds that explored a wide range of complexities not easily
done in more conventional formats. This was the motivation for the

recordings capturing all participants and the whiteboard, with high-quality
audio. This report does not do justice to the depth of the discussions. On the
other hand, the recordings also reveal the limitations of the Forum. Given
the small number of participants, the content is necessarily limited in its
breadth and comprehensiveness, even though it was already narrowed to
issues related to immunology.

We now outline the general themes of the Forum discussions for each
of the three pillars of MDTs: human immune system biology, the clinic, and
mathematical and computational modeling. And we extract a collection of
action items for a 5-year plan to further MDT development.

Human immune system biology

The human immune system is highly specialized and has evolved to have
exquisite specificity for defending its host from injury and infection. During
health, the immune response is tightly orchestrated to respond to threats
without inducing significant tissue damage, but dysregulation can occur,
contributing to cancer or autoimmunity'*. The complexity of the immune
system is such that attempting to explain it is the subject of a highly-
circulated joke'". However, we believe that our goal creating MDTs invol-
ving the immune system provides some guidance as to how to practically
address this complexity: specifically, since the transition from one data
collection point to another is intrinsic to the concept of an MDT (e.g.,
dynamics) this allows for an explicit focus on characterizing function(s) of
the system versus merely descriptive system state characterizations. Con-
sider the following sources of complexity and associated challenges at
multiple scales for obtaining predictive functional immune assessment from
more classical immune state descriptions:

Genetic and molecular interactions

A classical way of characterizing the adaptive immune response in any
individual is to describe the ability of the host cell to display peptides derived
from foreign threats (e.g., microbes) in the context of human leukocyte
antigens (HLA). Every person inherits 6 major HLA alleles from each parent
(HLA- A, B, C, DP,DQ and DR for 12 total) and there are over 37,000 HLA

npj Systems Biology and Applications| (2024)10:19



https://doi.org/10.1038/s41540-024-00345-5

Perspective

and related alleles characterized to date'®. However, while there are good
computational tools to predict what peptide will fit into the groove of the
appropriate HLA molecule of each person'” we do not yet have good
methods to predict which of the many possibilities is likely to be the pre-
dominant driver of an individual’s immune response, e.g., the immuno-
dominance of the response to exposure across a set of antigens.
Immunodominance is related to the cadre of T and B cell receptors that are
present in each individual, where it is estimated that 10"*~10"* different T
and B cell immune receptors are generated through genetic rearrangements,
reassortments and editing, with many of the cells carrying autoreactive
receptors (or those that don’t recognize self at all) deleted during develop-
ment, leaving approximately 10''-10" different specificities in circulation'”.
However, while there has been considerable progress in the development of
machine learning and artificial intelligence algorithms that can predict
peptide binding to HLA, T cell binding to peptide-HLA and T helper cell
differentiation programs'**, the means of predicting the manifestation of
immunodominance in response to a specific antigen remain insufficient.
This is due, in great part, to the multiscale nature of the immune system,
which is a recurrent theme regarding the challenges we face.

Cellular interactions

The molecular events previously described are distributed across cellular
populations, and this encapsulation of the data regarding binding affinities
and their subsequent consequences represents the next scale of immune
complexity. The ability of a particular T cell to encounter a particular
antigen-presenting cell with the correct HLA and the correct peptide for
activation is stochastic in nature, involving the probability of the two cells
encountering one another and the strength of the interactions and co-
receptor signaling to activate the cells. Furthermore, once activated, how
individual cells respond to differential mediator milieus adds a further level
of complexity regarding how T cells differentiate into particular subsets with
unique attributes™.

Tissue/Systemic factors

At the next scale, all the above factors are subject to differences in the relative
concentrations and types of immune cells and respective target antigens in
the specific tissue of engagement, the effect of a particular tissue milieu on
motility factors, and the pre-existing systemic immune milieu of an indi-
vidual patient (i.e., affected by drugs, prior infections, co-morbidities, age,
etc.). Systemic metrics take on extra importance because currently blood/
plasma represents the most readily accessible sample source by which
patient state is measured. This situation presents two distinct challenges.
The first is obtaining sufficiently broad and rapid assays to reflect the multi-
parameter complexity of the immune mediator milieu; current methods
such as Ella™ provide a starting point for further development. The second is
the realization that very often there is a discrepancy in the immune
dynamics in a specific tissue and that reflected by circulating mediators/cells.
This latter issue will require developing novel approaches to interrogate, in a
non-destructive fashion, the cellular and molecular processes within specific
tissue/organ compartments.

In addition to the inherent structural complexity of the immune
response there needs to be a recognition of the importance of stochasticity in
biological systems operating at multiple scales. While patient heterogeneity
can be invoked in clinical settings, even in the research laboratory where
experiments can be conducted in genetically identical individuals (e.g.,
mice), housed in identical conditions and infected with identical pathogens
and doses, we see variations in the response. For example, for any infection,
researchers can generate an LDs, which is defined experimentally as the
dose at which 50% of the animals die; what then are the factors that lead to
this discrepancy in outcome? This heterogeneity is also present in in vitro
monocultures of clonally-generated cells, where a distribution of respon-
siveness to a uniform experimental perturbation is near ubiquitous. Given
that multiscale stochasticity is evident throughout the immune response in
disease, mechanisms and methods for incorporating stochasticity need to be
incorporated into the design of an MDT.

Thus, the sheer complexity in terms of genetics, random interactions,
cytokine profiles, receptor diversity and outcomes are daunting when
considering how to model individualized immune responses within an
MDT. However, we believe that all is not lost: as noted above we believe that
the recognition that what is important in achieving the MDT paradigm
provides an opportunity to shift how we characterize the immune system in
terms of functional responsiveness. For example, the current paradigm of
identifying immune subset phenotypes utilizes RN A sequencing technology
and multi-parameter flow cytometry (with flow cytometry being a poten-
tially real-time source of data) to sort cells by cell surface receptor status, but
we know the molecular phenotype of the cells does not necessarily connote
function. For an MDT it is less important to know how a specific cell type is
defined than it is to know what the cell type does within a specified disease
context. For example, current functional cell response assays (e.g., ELISpot)
have been used to identify potential paralysis or exhaustion in immune cell
subpopulations™. We believe that these are the type of technologies that can
be built upon to develop rapid functional assessment of a desired cellular
behavioral output (e.g., production of interferon gamma in response to a
viral antigen stimulation). In modular immune digital twins, this infor-
mation can be used to monitor/feed-back on computational immune sub-
components in a bidirectional fashion while tracking and controlling a
disease trajectory. We pose that developing a repertoire of critical functional
assays for a specific disease process will be an effective way to aggregate the
many factors and features of immune activation into a tractable set of
variables for modeling immune response with an MDT.

Five-year action plan for human immune system biology. Given the
multiscale nature of the immune response in disease, our action plan for
the next 5 years proposes targets at multiple levels, with the overarching
goal of collapsing an immune potential (which would be defined across a
population and is how the immune system is currently characterized)
into an individualized trajectory of a specific patient at a specific time to
which the MDT is “twinned”.

1. In terms of adopting a more functional view of the immune system, a
major goal should be the development of enhanced in vitro and ex vivo
assays to accurately predict immune function of selected cellular
populations in response to both endogenous mediators and clinically
relevant pathogens. This development should ideally be explicitly
translational, seeking to take methods available at the experimental
laboratory level (such as cell sorting and stimulation-response
experiments) into clinically deployable assays (such as ELISpot).

2. Ofnote, the development of such assays would provide the opportunity
for personalized immune state characterization; the profiling of an
individual’s immune cell subpopulation responsiveness to a set of
defined stimuli would serve as a “baseline” for ongoing monitoring and
early warning (in addition to providing disease trajectory identification
in the acute setting).

3. From a system-level monitoring standpoint, these developments
would be complemented by refinement and expansion of multiplexed
assays with clinically relevant turn-around times. There is also the
potential to develop personalized multi-cellular organoid/organ-on-a-
chip systems that can be used to determine responsiveness to potential
interventions.

4. The creation of multi-scale “maps” between cellular-molecular
configurations and clinically available physiological data. The creation
of data sets of such maps will be critical in being able to leverage
machine learning/artificial intelligence methods to phenomenologi-
cally link patient data across scales. There is a potentially critical role for
the ability to generate biologically-realistic synthetic data in order to
augment what will be invariably sparse clinical data®. We recognize
that the development of these capabilities is extremely ambitious.
However, this is where we envision an important role for MDTs: to
identify the requirements needed to actually deploy an Immune MDT
(and thereby gain the benefits of digital twin technology), which can
guide and focus research towards providing the necessary types of data-
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generating sensor technologies. This is particularly crucial given the
intrinsically dynamic nature of MDTs, with an emphasis on needing to
represent functional phenotypes versus generating “list-of-features”
descriptions of biological entities.

The clinic

The “twin” component of an MDT explicitly ties the digital object to an
individual patient, and therefore inherently incorporates a translational
purpose of the MDT. As such, the potential clinical role of an MDT will drive
its development. Clinical practice can be divided into a series of distinct, but
related tasks: 1) diagnosis of a potential disease state (this includes mon-
itoring a state of health to identify divergences); 2) prognosis, which
attempts to predict or forecast a particular disease trajectory; 3) personali-
zation/optimization of existing therapies; and 4) the discovery/testing of
novel treatments. Items 1-3 form the basis of current clinical practice, with a
mixture of basic pathophysiology, evidence-based (ideally) practice guide-
lines and an individual physician’s expertise and intuition. Conversely, Item
4, the discovery/testing of novel treatments, is traditionally the purview of
research. These tasks can also be grouped into types: 1) a classification task
(“What illness is the medical team dealing with?”); 2) a forecasting task
(“What is going to happen to my patient in the future?”); and 3) a control
task (“What is the best course of action to make my patient better?”).
Classifying a particular use-case for potential MDTs can aid in determining
what sort of data is necessary and available (or not) for a particular purpose,
what the time scale might be for the updating between the MDT and the
real-world twin, and what type of computational method(s) would be
needed to propagate the MDT forward in time (this aspect will be covered in
more detail in the “Mathematical and Computational Modeling” section
below). Another application one could envision is for an MDT to serve as a
benchmarking tool to evaluate current therapy.

As an example, we present a potential use case of MDTs in the treat-
ment of sepsis, one of the largest sources of morbidity, mortality, and health
care costs world-wide (WHO). The unfortunate fact of sepsis is that, to date,
there is no generally accepted means of interrupting the underlying
inflammatory/immune biology that drives sepsis and its subsequent organ
failure. Major contributing reasons for this are the overall heterogeneity of
the septic population (reflected in a gap between the means of “diagnosing”
sepsis and the degree of knowledge regarding the cellular-molecular
mechanisms that drive the disease) and the complexity, both in terms of the
underlying biological mechanisms and their dynamics in given different
insults, of the disease course. In short, effective treatment/control requires
identifying the right patient at the right time for the right set of therapies, and
the current means of doing these tasks for a septic patient are woefully
inadequate. It is here that MDT's can play an invaluable role in personalizing
the characterization of a septic patient so that “right patient, right time, right
drug(s)” can be achieved.

We briefly mention one other use case presented at the forum, and refer
the reader to the Forum recordings"” for this and other examples. The MDT
project described in”” predicts the progression of breast tumors using a
partial differential equations model of breast tissue. The model is perso-
nalized to a particular patient by using patient-specific images from both
MRI and quantitative positron emission tomography. Model parameters
that capture cell migration and tumor cell proliferation properties of the
specific tumor are derived from image analysis. The resulting digital twin
can be used to predict the efficacy of certain drugs, as well as
immunotherapy™.

A key feature of an MDT is its connection to the physical patient
through the periodic recalibration of the model with data collected from the
patient. For applications involving the immune system, it is unlikely at the
present time that data can be collected at near streaming rates, like for vital
signs or fitness trackers. Currently, the most common means of repeated
data collection, in addition to patient records, is through analysis of fluids
collected from the patient, such as blood draws, bronchoalveolar lavage,
urine, etc. Another data source is imaging data such as x-rays or CT scans.
Data could also include sequencing data collected on a limited basis. There

are many well-known issues related to the quantity and quality of such data,
such as standardization, and irregularity of data collection. These issues are
more easily addressed in the context of clinical trials, for instance, than for
regular hospital operations. And, of course, there are significant privacy
issues attached with data collection and transfer that are only beginning to
be considered, as part of efforts such as’.

Five-year action plan for the clinic

A Five-Year plan for the development and deployment of MDTs needs to
integrate capabilities that can improve patient health, with aspirational
capabilities that will allow MDT' to reach their full potential within a decade.
With this in mind, we propose the following actions:

1. Explicit definition of specific use-cases/tasks for a given disease.

2. Identification of specific data types required for each use case, whether
that data currently exists in some form or will be available in the future
to meet the capabilities of an aspirational MDT. Of note, obtaining
time series/ongoing collected data is essential to this step, as the concept
of time-evolution of the MDT is inherent to its definition.

3. These first three steps should be integrated into a detailed “roadmap”
for the development and deployment of the MDT.

4. Use of this roadmap to engage collaborators and stakeholders (i.e.,
immunologists, clinicians and clinical researchers, assay developers,
mathematical modelers, and biologists) to facilitate the collection of
existing data and develop the capability to acquire new types of data as
needed.

5. Deployment of an initial MDT with diagnostic and prognostic utility
for clinical decision-support. Ideally, there should be enough
preliminary data such that reasonable planning could be implemented
after a short period for clinical trials to demonstrate their utility.

Mathematical and computational modeling

The engine of any MDT is a computational model. Depending on the
application and available data, it may include mechanistic information
about the relevant human biology, and it may take as input information
specific to either an individual patient or a patient population. In all cases,
the output is information that can be used in the treatment of an individual
patient. Figure. 2 depicts the role of the computational model in the
workflow of MDT applications.

For instance, a deep learning model might be trained on clinical data
from a large patient cohort of gastric cancer patients, and is then used to
determine a patient’s response to an immunotherapy treatment”. Such
models may or may not include any mechanistic information about the
relevant tumor biology, such as mutated signaling pathways and their
downstream effects, and predictions for the specific patient are based on
correlation between the patient’s data and those of the reference population
used in the model. At the other end of the spectrum, a computational model
may capture all known features of human biology relevant to a given
application and may make treatment recommendations based on a model
analysis, informing clinical trials, without directly using any data from a
specific patient”. The focus of Forum participants was primarily on MDTs
based on a mechanistic computational model. This preference stems from
the ability of mechanistic MDTs to link outcomes to mechanisms, thereby
informing treatment. Additionally, these models allow for the performance
of uncertainty quantification in relation to their predictions.

Many mechanistic models of human biology are now available, par-
ticularly those incorporating aspects of the immune system. For numerous
applications, the underlying model of an MDT will need to encompass
various mechanisms, spanning several spatial and temporal scales. For
example, while most drug mechanisms are intracellular, their effects man-
ifest at the tissue or organ scale, necessitating cross-scale integration. The
immune response to an infection is multifaceted, coordinating diverse
mechanisms and cell types. Consequently, computational models for MDT's
will likely be high-dimensional, multi-scale, multi-physics, hybrid, and
stochastic, containing numerous parameters. Integrating heterogeneous
data types, from molecular to physiological, will be essential for their
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the patient and is periodically re-calibrated. Control algorithms attached to the
model can be used to optimize available patient treatments.

parameterization and application. Most crucially, these models should be
adaptable to individual patient data. Very few such models have been
constructed for clinical use or new biology discovery, leading us into
uncharted territory in their construction, analysis, validation, and
application.

An important issue in quantitative medicine in general and MDTs in
particular is data integration. We first note that MDT' are an ideal vehicle
for the integration of heterogeneous data types at different scales, from
molecular to organism-level data, since they provide a rigorous framework
that links heterogeneous data types characterizing heterogeneous biological
processes in the correct biological fashion. Practically, however, this can
raise many challenges, unique to different applications. There are no general
approaches to this problem, to our knowledge. In addition, data collection
might be technologically challenging. Sometimes, surrogate data types can
be used. For instance, gene expression data are often used as surrogates for
protein data, even though it is well-understood that this is often problematic
for several reasons, e.g., lack of correlation in expression. Also, while it is
sometimes possible to obtain data at different scales from the same
experiment, this is not always the case.

Finally, we comment on the use of machine learning and artificial
intelligence (ML/AI) models for the purpose of constructing MDTs. For the
purpose of illustration, we focus on cancer applications, since this is a field
that is comparably rich in data. It is important to note that there are certain
problems of central importance to oncology where the methods of Al/Big
Data are fundamentally limited in their ability to power digital twins. For
example, predicting treatment response and then, subsequently, identifying
an optimal interventional plan for an individual patient. Examples of the
need to solve this problem abound in both medical and radiation oncology
where it is well-recognized that a “one-size-fits-all” approach is not
appropriate, but a practical method for identifying optimal patient-specific
interventions is not well-established. Given the tremendous heterogeneity
between patients, it is difficult to imagine how a digital twin built on
population data can provide anything more than general insights into
predicting an individual patient’s response, let alone how to optimize their
treatment plan®. This is because a patient is not just diagnosed with cancer,
or (for example) breast cancer, or (for example) triple negative breast cancer;

rather, they are diagnosed with one of the (currently) known subtypes of
triple negative breast cancer. Thus, to build a digital twin for Ms. Jane Doe
that is powered by population-based data, one would need to find a training
data set with hundreds (thousands?) of patients that share her subtype, her
biological characteristics, and contains all the therapeutic regimens she
might receive. That data set does not exist and is unlikely to ever exist
because cancer is getting more precisely diagnosed (thereby increasing
patient heterogeneity) and the number of available drugs is increasing
(thereby increasing treatment options). (This, in fact, recently played out for
early triple negative breast cancer when pembrolizumab was approved as
part of the standard-of-care therapy’', thereby necessitating building new
databases for all population-based approaches for this disease). This is but
one example of a problem for which biology-based mathematical models
offer a distinct advantage over the Al/Big Data only approach. By explicitly
including known biology and physics into the mathematical model”, one
can calibrate such models using only patient-specific data to personalize the
digital twin, thereby allowing one to not only systematically simulate
patient-specific interventions, but also select the one with the highest
probability of yielding a positive outcome™.

Five-year action plan for mathematical and computational
modeling

1. The biomedical modeling community has spent decades building
complex models of different medical and disease processes in humans
from cancer to infections. These are all potentially usable as drivers of
MDTs or components thereof. As a first step, we need to develop and
curate a repository of model templates (i.e., accepted model structures)
and specific model models (e.g., peer-reviewed models of specific
signaling networks) that can be used in the construction of MDTs,
ranging from intracellular to physiological scales. Existing repositories
include, e.g., Biomodels™, Cell Collective* and GinSim®. These can be
built upon for a more comprehensive curated collection.

2. Existing techniques for the validation, calibration, and analysis of
computational models, most importantly sensitivity and identifiability
of model parameters, are not always directly applicable to models
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underlying an MDT. Research is needed to develop appropriate model
analysis techniques for MDTs.

3. For many applications, MDTs will be used to forecast the future health
trajectory of a patient, as well as the effect of available interventions to
change it. Existing control and optimization methods (e.g., ref. 28)
mostly apply only to ordinary differential equations models. Research
is needed to develop novel forecasting and control approaches suitable
for complex MDTs.

4. There are many existing models of disease processes and immune
system function that can be used to build MDTs, as mentioned above.
Research is needed to develop a platform for the modular construction
of complex MDT models from component models. Such a platform is
essential for achieving the long-term vision of a virtual patient. A
possible approach is proposed in'>*.

The data from an individual patient captures different aspects of their
characteristics and health status. We have genomic data, gene expression
measurements, protein, and metabolite concentrations in different tissues
under different conditions, imaging data of everything from immune cells in
lymph nodes to functional MRI data in the brain, electronic health records,
to lifestyle and behavioral data. They all provide information about some
aspect of a person, and the challenge is to integrate them in a meaningful way
to provide a holistic representation. A computational model of the patient
that is dynamically updated with all this information is a natural way to
accomplish the data integration required. The confluence of several
simultaneous developments has created an environment in which this
promise of personalized medicine is taking on shape: vastly increased
availability of data, from the molecular to the population scale, leading to a
deeper understanding of human biology and its role in health and disease,
and, finally, an expansion of our computational and modeling tools.

As mentioned earlier, most of the projects discussed at the Forum do
not meet the criteria for being considered a digital twin or being readily
turned into one. All the models discussed can, in principle, serve as the
basis for a computational model that is personalized to a patient as all of
them capture some aspect of disease-relevant human biology. The most
common reason this has not been done for the models discussed is that
they are still in the phase of model validation using, in most cases, animal
or in vitro data, as appropriate human data are often not available. The
second reason is that patient data routinely collected in a healthcare set-
ting are often not suitable to be used directly for the calibration of the
models discussed, since models often contain events at the intracellular
scale or spatial heterogeneities that are difficult to capture at the tissue
scale. Thus, the first step needs to be to develop surrogate measurements
for unavailable data and to develop surrogate models that can be used as
the underlying MDT model.

If the experience of the computational biology community over the last
30 years is any indication, then possibly the most daunting challenge to
widespread adoption of the MDT paradigm is the formation and func-
tioning of the interdisciplinary teams required for this purpose. In addition
to biologists and mathematical modelers, we need to also integrate clin-
icians. All three communities need to find ways to come together for both
research and deployment of this technology. This point is made strongly in
the National Academies report on the subject'’. The Forum participants
included representatives of the three communities, and the difficulty of
aligning objectives and bridging language barriers was discussed. There are
no ready-made solutions to this problem, but appropriate funding
mechanisms requiring this integration can provide incentives.

A well-designed funding program for MDT research by the public
sector is crucial if substantial progress is to be made over the next decade.
New funding paradigms should be considered for this purpose. There can
also be an important role for the business community and philanthropic
organizations in providing funding for this effort and collaborating on the
myriad research problems that will need to be tackled and solved. The
Forum we are reporting on here is intended to support a dialog around this
topic. Collectively, a community is emerging around this effort that can,

with the right resources, help make rapid progress on bringing MDTs to
patients at a large scale.

Finally, we comment briefly on a number of important issues related to
MDTs that were not discussed at the Forum, in part because time was very
limited, and in part because the topics required expertise not represented
among a significant number of the participants. This includes regulatory
hurdles to the deployment of digital twins, ethical and privacy issues, the
economics of MDT use on a large scale, and health equity issues, among
many others. Another topic, vitally important for digital twin deployment, is
uncertainty quantification. There are many contributors to model uncer-
tainty, including the stochasticity that many models, in particular ones that
involve the immune system, display. This too was not discussed at length at
the Forum for lack of time. Most of these topics are addressed in both the
EDITH draft strategic plan® and the National Academies report'', and we
encourage the reader to consult them.
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