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AutoTransOP: translating omics signatures without
orthologue requirements using deep learning
Nikolaos Meimetis 1, Krista M. Pullen 1, Daniel Y. Zhu1, Avlant Nilsson 1,2, Trong Nghia Hoang3, Sara Magliacane4,5 and
Douglas A. Lauffenburger 1✉

The development of therapeutics and vaccines for human diseases requires a systematic understanding of human biology.
Although animal and in vitro culture models can elucidate some disease mechanisms, they typically fail to adequately recapitulate
human biology as evidenced by the predominant likelihood of clinical trial failure. To address this problem, we developed
AutoTransOP, a neural network autoencoder framework, to map omics profiles from designated species or cellular contexts into a
global latent space, from which germane information for different contexts can be identified without the typically imposed
requirement of matched orthologues. This approach was found in general to perform at least as well as current alternative methods
in identifying animal/culture-specific molecular features predictive of other contexts—most importantly without requiring
homology matching. For an especially challenging test case, we successfully applied our framework to a set of inter-species vaccine
serology studies, where 1-to-1 mapping between human and non-human primate features does not exist.
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INTRODUCTION
Animal and cellular models are essential tools for studying the
underlying biology of human diseases, but these insights are not
always clinically translatable, resulting in the failure of numerous
therapeutics in clinical trials1,2. A common approach is to choose
orthologous biomolecules, including genes, proteins, and cellular
pathways, to perform direct functional comparisons across
species. However, functional divergence and the absence of
orthologous biomarkers can hinder these direct comparisons
between species3–5. Furthermore, within the same species, the
transcriptional response to chemical stimuli can be cell type-
specific due to distinct genetic profiles, creating an additional
barrier to understanding the mechanism of action of therapeu-
tics6–9. Consequently, computational systems-based approaches
are needed to gain a better understanding of the relationship
between biological models and translate information gained from
different model systems.
Advancements in sequencing technologies have enabled the

generation of large-scale datasets from both animal and human
species, facilitating more powerful analyses and comparisons of
molecular features between different biological systems2,3,10–13.
This has led to the development of numerous new statistical and
machine learning models3,13–17 for identifying similarities between
species and experimental models. Notably, most existing
approaches focus on direct correlations between analogous
biomarkers or processes across species despite known species
and model system differences. In an attempt to address this
challenge, Brubaker et al. proposed a technique called “Transla-
table Components Regression”18 (TransCompR), which maps
human data into the principal component space of data from
another species to identify translatable animal features that can
predict human disease processes and phenotypes. Although this
approach has been successfully applied to gain insights into some
inflammatory pathologies18,19, it depends on homologs or

comparable molecular features between species. While Trans-
CompR is well suited to identify omics signatures in one species
that is most germane for understanding phenotype characteristics
in another, it is not centrally designed to integrate signatures
across species. Moreover, this approach is by design only capable
of deciphering linear relationships, thus potentially excluding non-
linear biological relationships.
With the advent of deep learning, particularly autoencoders,

there is great potential to develop approaches that can
approximate the non-linear relationships underlying different
biological systems and species. Autoencoders are artificial neural
networks (ANNs) that can embed raw input data into a lower
dimensional space from which the original data can be
reconstructed20. Autoencoders have been used in several tasks
in biology, including analyzing high dimensional data21,22,
denoising single-cell RNA sequencing data23–25, deciphering the
hierarchical structure of transcriptomic profiles26,27, and predicting
gene expression caused by various stimuli28–30. One such model,
DeepCellState31, focused on translating cellular states, can predict
the transcriptional profile of a cell type after drug treatment based
on the behavior of another cell type. However, similar to
TransCompR, this approach depends on a 1-1 mapping of
molecular features between cells to capture a global cell
representation. Another recently proposed framework is the
compositional perturbation autoencoder (CPA)32. It can construct
a basal latent space devoid of covariate and perturbation-specific
signals, capturing only the basal cell state in single-cell RNA
sequence data. CPA can be used to generate in-silico transcrip-
tional profiles at the single-cell level for different perturbations,
cells, and species, although it still requires the mapping of
orthologous genes. To overcome such limitations, an approach
similar to those used in language translation autoencoder-based
models, which create a global language representation33,34, may
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be useful and could aid biological inter-systems translation when
1-1 mappings between features do not exist.
In this study, we use ideas from language translation

models33,34 and incorporate elements of the CPA approach to
develop an ANN framework hence referred to as AutoTransOP,
Autoencoders for Translating Omics Profiles, which utilizes
separate autoencoders for each biological system, enabling the
mapping of samples into a global cross-model space, while
providing feature importance estimates for various phenotype-
prediction tasks. It is important to note that the globality of the
latent space is not the goal itself, but it serves as a way to achieve
better performance in translating omics profiles. The basic model
is trained to simultaneously minimize the reconstruction error of
the input and the distance between samples coming from the
same condition in the global latent space. Our framework is
benchmarked, using the latest version of the L1000 dataset12,
against the established approaches of TransCompR18, FIT15, and
the ANN approach of DeepCellState31, which all require 1-1
feature mapping. We demonstrate that our approach outperforms
FIT and DeepCellState, while there is no difference when
comparing with TransCompR in cellular models. Additionally, we
present several variations of the model and we illustrate the
adaptability of our framework by applying it to data of varying
omics type and sample size to answer different biological
questions of interest. Furthermore, we demonstrate its biological
interpretability, an aspect that deep learning models often
struggle to attain, by using an integrated gradients approach35.
To analyze the performance of the model in inter-species
translation we performed mouse36 to human37 translation of
single-cell transcriptomics of lung fibrosis, as well as non-human
primate38,39 to human translation40 of smaller-scale serology
datasets to predict HIV vaccine efficacy in humans. The latter
serves as a case study of cross-species translation where no 1–1
mapping between features exists. It is worth noting that all three
examples are different use cases where different models are
trained separately, and in this study, different data modalities (e.g.,
bulk of single cell) are never combined in one model. After
building the model, we identified serological features in non-
human primates that are predictive of protection against HIV in
humans, without analogous features necessarily being present in
human data. These findings demonstrate that features derived
from this approach can be predictive of the phenotypic profile of
another biological model without requiring them to be homologs,
allowing us to maximize the amount of information we can
capture from different model systems to advance our under-
standing of complex human disease biology.

RESULTS
A flexible framework for omics translation
We developed a flexible artificial neural network framework (see
methods) for omics translation across biological models. It consists
of separate ANN encoders and decoders for each biological
system, e.g., cell line or species, that share a global latent space
(Fig. 1a), eliminating the need for a 1-1 mapping between the
features between systems. The primary goal of the framework is
not the construction of a latent space that captures all the
information of the input signature, as in most autoencoder-based
approaches, but, similarly to language translation tasks, to build a
global space that captures mostly information about conditions
and stimuli, while filtering out as much as possible system-specific
information to enable translation of perturbations. This is achieved
by minimizing the distance of embeddings coming from the same
condition (drug+ dose+ time point) and also maximizing their
mutual information, which we later empirically estimated to
validate the success of this task (Supplementary Fig. 3). The
model’s input are samples described by a vector of genes

containing their expression values. We implement two main
variations of the global latent space intending to remove the
system-specific effect of perturbations. The first variation of the
framework (AutoTransOP v1) consists of a single global latent
space that is created by maximizing the similarity of embeddings
derived from the same condition/perturbation in a different
species or cell line. The second variation (AutoTransOP v2)
incorporates the idea of the recently published compositional
perturbation autoencoder (CPA)32, where there are two separate
latent spaces: (1) a global/basal latent space and (2) a composed
latent space. The global latent space expands on the first variation
with an additional discriminator that attempts to remove the cell-
line or species effect by penalizing models where the classifier can
detect from which encoder the latent representation originates32.
In the composed latent space, a cell/species classifier is
simultaneously trained to ensure there is a cell/species effect,
which is either added through a trainable covariate vector32 or can
also be added through two intermediate ANNs, allowing for non-
linearity (see example in Supplementary Fig. 4). We utilize
integrated gradients35 to estimate feature importance for various
predictive tasks. Lastly, we also introduce a variation (AutoTransOP
v3), with one single global latent space, where a classifier is
simultaneously trained on the global latent space (see methods).
This is a contradictory learning task where the framework
attempts to simultaneously remove the cell line or species effect
globally but also hides cell or species information in a few of the
latent variables.

Benchmarking reconstruction and translation of gene
expression profiles between two cell lines
First, we compared our ANN framework with state-of-the-art
techniques in the context of translating homologous genes
between in-vitro models within the same species. We use the
L1000 transcriptomics dataset12 to benchmark different
approaches to translate the effects of perturbations between
different human cell lines. AutoTransOP v1, AutoTransOP v2, and
AutoTransOP v3 are compared with three previously published
approaches, DeepCellState31, FIT15, and TransCompR18 (see
methods for all). As a baseline, the models are also compared to
“direct translation”, i.e., directly using the gene expression profile
in one cell line as a prediction for the effect in another cell line. We
evaluate the models both on the task of translating the gene
expression profile between cell lines as well as the task of
accurately reconstructing the gene expression for the same cell
line. We evaluate them using several different metrics: i) Pearson’s
correlation between predicted gene expression and actual gene
expression, ii) the per sample Spearman’s rank correlation, and iii)
the accuracy in correctly predicting the sign of drug-induced gene
expression.
When utilizing the 978 landmark genes measured in the L1000,

all of our framework’s variations provide a statistically significant
increase in performance compared to the direct translation across
all metrics (Fig. 1b, p values in Supplementary Table 1,
Supplementary Table 2, Supplementary Table 3, Supplementary
Table 4). When translating from the HT29 cell line to A375,
AutoTransOP v1 outperformed FIT15 and the basic DeepCellState31

(DCS) methods. When translating in the reverse direction, from
A375 to HT29, our framework also outperforms the different
modifications of DCS (Fig. 1b). It can be noted that the 2nd
modification of DCS that enforces similarity in the latent space like
our model, also outperforms the basic DCS, which may support
the importance of enforcing similarity in the global latent space
via some distance metric. For reconstruction of the input within a
single cell line, the basic DCS approach outperforms the other
approaches, at the expense of its translation performance. On this
metric, our approach performs well and comparably with the
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other methods (Fig. 1b). The alternative variations of our frame-
work also perform comparably well.
When using the L1000 dataset with the computationally

imputed expression of 10,086 genes, the performance of all
approaches drops, though still better than the baseline. There are

generally no statistically significant differences between variations
of our approach and the other state-of-the-art approaches (Fig.
1c). To investigate the potential to later extend the method in
cases where no 1-1 mapping exists, we trained models in 16
different cell lines, where one of the autoencoders in the
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framework is used for half of the landmark genes and the other for
the rest. The goal is to create artificially different cell lines where
the genes used are different with no 1-1 mapping. We selected
the landmark genes because of their low correlation to each other
(Supplementary Fig. 5), which was also reported in the
L1000 study12. Half of the genes are selected randomly five times
and the models are evaluated using 5-fold cross-validation, where
80% of the data are used for training and 20% for testing.
Interestingly, our approach achieves very high performance (Fig.
1f), even up to ~0.8 correlation for the translation task in the U2OS
cell line, significantly better than randomized models trained by
randomly shuffling genes. This not only provides evidence for the
potential of translating omic profiles in cases with no 1-1 mapping
for their features but also demonstrates the potential to be used in
gene imputation. Finally, in the case of the A375-HT29 cell line
pair, the model again performs better than direct translation when
using different genes as input for each cell line, e.g., using only the
978 landmark genes for the A375 cell line and all the 10,086 genes
for HT29 (Supplementary Fig. 6), and it is comparable with the
performance of models using the same genes.

Performance in using predicted gene expression to infer
transcription factor activity
While the performance was worse in predicting the full set of
10,086 imputed genes, we reasoned that these imputed
transcriptomic profiles may still be useful as input into different
aggregation methods, e.g., to infer the activity of transcription
factors (TFs). When we inferred transcription factor activity (see
methods), model performance increased relative to using all
10,086 genes and was comparable to that in the case of the
landmark genes (Fig. 1b, d). Our model was not as successful at
predicting gene set enrichment (Supplementary Fig. 7). Auto-
encoders have been previously shown to be capable of capturing
regulatory relationships between genes26,31 but, to our knowl-
edge, not gene set enrichment, which might explain why we
observed increased performance only when inferring TF activity.

Creating cell-line-specific regions in the latent space enables
robust cell classification
It is important to evaluate whether the cell line or species effect is
successfully added to the composed latent space and whether the
framework can retrieve it. To establish the ability of the model to
capture cell-line-specific information, we evaluated the perfor-
mance in classifying the cell line when using all 10,086 genes of
the L1000 dataset (Fig. 1e). The performance of ANN classifiers
trained directly on the L1000 gene expression data serves as the
baseline. Classifiers built with pre-trained embeddings from DCS
or our framework with one global latent space, are expected to
have lower performance than the baseline as these approaches
generate embeddings aiming to filter the cell-line effect as much

as possible. Our framework, which aims to actively try to find a
shared latent space that is independent of the cell line information
and hence only contains information common across cell lines,
seems to be better at “forgetting” the cell line of origin in the
global space than DCS, thus generating more global embeddings
(Fig. 1e). Other evidence of the higher globality of AutoTransOP’s
latent space can be found by interrogating in detail the
distributions of the latent variables between the two cell lines.
Examining the univariate differences of each latent variable,

between embeddings of perturbations from the A375 cell line and
the HT29 cell line, yielded 590 latent variables (out of 1024) in the
case of the DCS approach31 and 275 for our approach
(Supplementary Fig. 8), which is less than half. This means that
while there are still cell line differences in our case and the space
is not completely global, it is more global than DCS. Additionally,
we examined the effect size (using Cohen’s d) between the two
cell line distributions of each latent variable, in the case of our
approach and DCS, and we observed that Cohen’s d for DCS is
higher and the difference is statistically significant (Supplementary
Fig. 9), meaning that not only more latent variables are different
between the 2 cell lines but also with a larger difference. Finally,
we compared the distribution of cosine distances of pairs of
embeddings coming from the same cell line, between DCS and
our approach and it seems the embeddings from the same cell
line are closer together in DCS (Supplementary Fig. 10), again
indicating a less global latent space.
Interestingly, when simultaneously training a classifier in the

global latent space we can outperform the baseline while the cell-
line effect is still partially filtered in the higher dimensions
(Supplementary Fig. 11). AutoTransOP v2, with the CPA-based
separation of latent spaces, in the composed latent space classifies
cell lines with 100% accuracy, even though the similarity of input
gene expression data between training and test sets, as well as the
latent space embedding similarity, is generally low (Supplemen-
tary Fig. 12). AutoTransOP v2 can create very well-separated cell-
line-specific regions (Supplementary Fig. 13) in the composed
latent space, indicating the framework’s ability to shape the latent
spaces with robust cell-line-specific regions and explaining the
observed accuracy. AutoTransOP v2 was chosen for further
analysis, even though it is not the best variation of the model
performance-wise because the difference in the L1000 benchmark
is not statistically significant and AutoTransOP v2 creates the
composed latent space, containing all the information about the
original perturbation.

Analysis of the framework’s dependence on different aspects
of the data
We further investigated how the performance of the framework was
influenced by different factors, focusing on the model incorporating
elements of the CPA approach. The framework has similar behavior
and performance across cell-line pairs (Fig. 2a). For all cell lines, where

Fig. 1 Model architecture and basic performance metrics. a Framework architecture main variations: I) AutoTransOP v1: One global space is
constructed by mapping omic profiles in a space where the distance between embeddings coming from the same perturbation is minimized.
II) AutoTransOP v2: Architecture combined with the CPA approach, where the latent space is separated into two, one global devoid of species/
cell effect and a composed latent space. di signifies “drug perturbation i” and the illustrated vector corresponds to the vector of drug-induced
gene expression values. b Model performance in reconstructing and translating gene expression profiles between the two cell lines with the
most common perturbations in the L1000 dataset, A375 and HT29, by using only the 978 measured landmark genes. AutoTransOP v3 is the one
with a classifier simultaneously trained in one global latent space. For DCS modified v1–v2, see the corresponding methods sections. It is
worth noting that DCS modified v2 has a distance term and a direct translation term in its training loss. c Model performance in
reconstructing and translating gene expression profiles between A375 and HT29 by using all 10,086 genes that are either measured or belong
to those that are well-inferred computationally. d Performance in inferring transcription factor activity by using the translated/predicted gene
expression. e Performance in correctly classifying cell lines in different cases. Reported values are the mean ± standard error (SE).
f Performance by using different inputs in the L1000. For all comparisons in this figure, a two-sided Wilcoxon test was used with n= 10 per
group. The error bars in the bar plots (b, c) denote 95% Confidence Intervals (CI). In all boxplots, the centerline denotes the median, the
bounds of the box denote the 1st and 3rd quantiles, and the whiskers denote points not being further from the median than
1.5 × interquartile range (IQR).
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input is a vector of 978 genes, ~600 total training samples are
sufficient to train a high-performance model. Some cell-line pairs
perform slightly worse, as the original correlation between the same
perturbations in the cell-line pair correlates with the model’s
performance (Fig. 2b). Another important factor that requires
investigation is the amount of paired conditions, meaning drug
perturbations tested on both cell lines used to train a model, for the
same dose and duration, which are used to enforce globality in the
latent space, by minimizing the distance of the embeddings of such
signatures in the latent space. On this front, we gradually increased
the percentage of conditions that are paired in our training data,
without a significant effect on the amount of data used to train the
model. Interestingly, the amount of paired conditions required to
successfully facilitate translation can be as low as ~10–15% of the
samples being paired (Fig. 2c). Finally, it seems the model is not
affected by a moderate imbalance in the number of conditions
coming from each cell line (Fig. 2d). Similar trends are observed
when using 10,086 genes (Supplementary Fig. 14).

Evaluation of latent space embeddings
A global latent space is expected to have several properties to be
suitable for translation. We evaluate the embeddings produced
from our framework based on three criteria (Fig. 3a–c): i) different
cell lines should not occupy different subspaces, so embeddings
of pairs coming from the same cell line should not be more similar
to each other than embeddings from random pairs of samples

(meaning randomly selecting two drug perturbation and calculat-
ing the distance of their embeddings), ii) pairs of embeddings
coming from the same condition, regardless of cell line, should be
similar, and iii) biological replicates should give similar embed-
dings, so pairs of embeddings from biological replicates should be
similar to each other. We evaluated these criteria using the cosine
distance in latent space. Only a small cell-line effect is observed in
the global latent space, both for training and test embeddings
(Fig. 3a, Supplementary Fig. 15). Embeddings coming from the
same condition are closer to each other than embeddings coming
from random pairs (Fig. 3b), while biological replicates are even
closer (Fig. 3c), validating that indeed we have successfully
constructed a stimuli-specific global latent space. Similar patterns
can be observed in the global latent space when using the
approach combined with elements of CPA (Fig. 3d), but with a
cell-line effect visible in the composed latent space, as expected
with this method. We use Cohen’s d to quantify the difference
between the distributions of cosine distances across all folds in 10-
fold cross-validation (Fig. 3e), proving that indeed, there is a much
higher cell-line effect in the latent space than the effect in the
global latent space.

Interpreting the biological information captured in the
parameters
Deep learning models are often criticized for their lack of
interpretability, so we investigate the biological information
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captured by some of the model’s parameters. Since only the cell-
line effect is minimized in the global latent space of the
AutoTransOP v2, the trainable covariate (covariates such as
species, cell type, etc.) vectors should only add a cell-specific
effect. Intuitively, the global latent embeddings are expected to

capture a “zero”/basal cell state corresponding to the expression
of untreated cells (controls), and thus the trained covariate which
is added to that global representation should be similar to the
composed latent space vectors which now captures the cell line
effect. To investigate this, we used control samples from the L1000
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dataset not seen by the model during training, as well as samples
coming from untreated cell lines from the Cancer Cell Line
Encyclopedia41 (CCLE), using only the genes included in the L1000
landmark genes. Additionally, for this investigation two models
were trained completely separately: the original benchmark model
of A375/HT29 cell lines and another model using the PC3 prostate
cancer cell line and the HA1E normal epithelial cell line. The latter
pair was chosen because of high model performance (Fig. 2a) and
because these two cell lines are significantly different in terms of
biology. Each trained covariate, even though the models were
trained separately, is observed to be closer to its respective cell-
line control signatures, both when using PCA for dimensionality
reduction (Fig. 3f), where clearly defined cell-line specific regions
are observed, as well as when using t-SNE (Fig. 3g). This
demonstrates that some parts of the model are biologically
interpretable and capture specific information.

Identification of features that are important for translation
and cell classification
The framework can be used to identify latent variables and genes
that can be of biological importance. As a case study, we selected
the model of the PC3 and HA1E cell lines with a classifier trained
simultaneously to classify the cell lines from which the samples
were derived (contradictory learning tasks). To identify the
importance of genes according to the model for a variety of
tasks with respect to their output, an integrated gradient-based
approach35 was utilized (Methods) that attributes an importance
score to each variable of interest. Since the same genes are used
for both cell lines, it can be interesting to identify which are
important for the model to translate a gene expression profile
from one cell line to another cell line. Interestingly, the model
attributes more importance to many genes other than the gene of
interest when translating across cell lines for the same condition
(Fig. 4a). In the case of the landmark genes, that phenomenon is
slightly less prominent (Fig. 4b). This is particularly interesting
since one of the selected cell lines is cancerous and the other is
non-cancerous, suggesting that the model may avert the fallacy of
using the same gene as a proxy for its gene expression across
disparate biological systems. Additionally, the model does not just
attribute importance to genes that are highly expressed or under-
expressed, as illustrated by the distributions of the average
percentage overlap of top important genes (the average is derived
from averaging the overlap across all possible genes into which
the input gene can be translated) for translation and top regulated
genes across samples (Fig. 4C, Supplementary Fig. 16b). The
overlap is lower than ~20% even for considering up to 1000 top
genes, but never zero, suggesting that some, even though trivial,
relationships do exist between what our model considers
important and what is highly regulated, as it is also suggested
by the Spearman’s correlation between the absolute importance
scores and the absolute gene expression when using our model
and shuffled genes (Supplementary Fig. 16a).

The simultaneously trained classifier can also be used to identify
subsets of latent variables in the global latent space that are
important for classifying samples by cell type. Although the cell
line effect is partially filtered and embeddings coming from the
same condition are globally close to each other (Supplementary
Fig. 11), there are still 11 latent variables that allow the
classification of cell lines using a k-means-based approach (see
Methods). These latent variables can separate the samples based
on cell line (Fig. 4d), even though globally the cell line-specific
effect in the latent space is still partially filtered out. These 11
latent variables capture cell line-specific information; however, the
latent space contains more information about other covariates
too, such as drugs (Supplementary Fig. 19), conditions (Supple-
mentary Fig. 18), time (Supplementary Fig. 20), and other
information (Supplementary Fig. 21), while reducing a lot the
latent dimension decreases performance (Supplementary Fig. 22),
explaining why a high dimensional space was used. Genes
considered important by the encoders to control these latent
variables should be either cell line-specific genes or a subset of
genes that can easily distinguish between cell lines. The
importance scores of the genes for each cell line-specific encoder
do not correlate at all and are different between the two cell lines
(Supplementary Fig. 17). It is possible to even train a very simple
generalized linear model to classify cell lines based on gene
expression, only using a subset of these important genes,
achieving high performance with only a few genes from each
cell line (Fig. 4e).
More interestingly, using the model to identify important genes

for translation can provide insights into the biological mechanisms
of translating cell lines. On this front, we estimated transcription
factors (TFs) and KEGG pathways enrichment, using Gene Set
Enrichment Analysis (GSEA), based on the gradient scores
signifying the importance of a gene in one cell line to translate
to genes in another cell line. It is expected that to translate PC3 to
HA1E (and vice versa), since one is cancerous and the other one is
not, we would observe predominantly TFs whose activity is known
to be regulated in cancer, and similarly, KEGG pathways linked to
cancerous or inflammatory signals. This would mean that to push
one cell line closer to each other, TFs associated with cancer
(either activated or inhibited) should be regulated or targeted, a
sensible observation from a drug development perspective.
Indeed, by looking at the top 16 TFs, when translating PC3 to
HA1E, we can observe TFs such as E2F2, MYC, FOXM1, RELA, JUN,
FOSM, even TP53 which is often a therapeutic target of anti-cancer
therapeutics, and others (Fig. 4f). Moreover, we identify cancer-
associated or inflammatory KEGG pathways such as DNA
replication, Mismatch repair, Cell Cycle, TNF signaling, p53
signaling pathway, and others, which are again either upregulated
or downregulated in cancer (Supplementary Fig. 23). Similar
results we observed when translating from HA1E to PC3, with a
big overlap (68%) in the important TFs identified (Fig. 4g). One of
the 4 TFs not identified when translating from PC3 to HA1E, but is
found as important and significantly enriched in the other
direction, is VDR, which plays a role in renal transplantation

Fig. 3 Properties of the latent space and model parameters interpretation. The two splits in tenfold cross-validation present each time here
are the ones where the maximum and minimum difference between the two distributions is observed. For every other split, the difference is
between these two extreme cases. Additionally, (a–c) come from AutoTransOP v1, with one global latent space, while the rest come from
AutoTransOP v2. a Cosine distance between embeddings coming from random pairs of samples and pairs coming from the same cell line.
b Cosine distance between embeddings coming from random pairs of samples and pairs coming from the same condition tested on a
different cell line. c Cosine distance between embeddings coming from random pairs of samples and pairs being biological replicates.
d Distance between embeddings coming from random pairs of samples and pairs coming from the same cell-line in the global and then the
composed latent space in AutoTransOP v2. e Cohen’s d between distributions of cosine distances between random pairs of embeddings and
embeddings coming from the same cell distribution. A two-sided Wilcoxon test was used with n= 10 per group. f, g 2D-Visualization of L1000
control conditions, untreated cell lines from the CCLE dataset, and the trainable vectors of AutoTransOP v2 containing the cell line basal effect
added to perturbations. In all boxplots, the centerline denotes the median, the bounds of the box denote the 1st and 3rd quantiles, and the
whiskers denote points not being further from the median than 1.5 × interquartile range (IQR).
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outcome42, as vitamin D receptors (VDRs) are expressed in
kidney43,44, meaning that this tells us that to push HA1E, a kidney
cell line, closer to PC3, we need to regulate the activity of a kidney-
critical TF. All in all, these suggest that the model can be used to
suggest targets to be perturbed to make the transcriptional profile
of one cellular model more similar to another, and perhaps result
in a more similar phenotype. The type and direction of such
perturbation, together with consideration of potential off-target
effects, requires further analysis and is out of the scope of
this work.

Performance in inter-species translation for lung fibrosis
Animal models do not recapitulate human biology perfectly, so
computational modeling can be used to improve the translation

between human and animal models. We evaluate the ability of the
framework to perform inter-species translation. We utilize the raw
gene counts coming from single-cell RNA-sequencing of a
mouse36 and human37 lung fibrosis dataset. The decoders predict
the mean and the dispersion parameter for every gene, derived
from a negative binomial distribution45,46. The variance is later
calculated from the dispersion parameter. Furthermore, both a
trainable species vector and another trainable cell type vector are
added to the global space, in an attempt to minimize both species
and cell type effects. We evaluate the performance in the
reconstruction of gene expression profiles (per cell type) and
the ability to translate between mouse and human, using
common cell types, under tenfold cross-validation, in terms of
Pearson’s r of the predicted per gene means and variances, where
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we would expect to observe a similar distribution in a successful
translation, and thus mean and variance. Our framework outper-
forms DCS in terms of Pearson’s r of the means and variances,
both in reconstruction and translation, while there is no difference
using the model with ortholog genes or all genes (Fig. 5a, c).

Meanwhile, TransCompR outperforms the model in reconstruction
while it is not statistically better in translation, but in general, the
model performs comparably (Fig. 5a, c). Possibly, TransCompR
performs so much better in reconstruction because of the fewer
parameters and the PCA-based space it builds. It is worth noting
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that based only on the human lung fibrosis dataset, three of the
top ten genes contributing to the top principal components do
not have homologs in mice (Supplementary Fig. 26), meaning that
irrespective of performance, a method considering only homologs
would exclude important genes for lung fibrosis. Finally, observing
the performance per specific cell type (Fig. 5b, d), the model
achieves remarkable performance, both for reconstruction and
translation, for some cell types, such as Macrophages and AT2
cells, while it seems that there is a correlation between
performance and the number of cells within a cell type in the
whole dataset (Supplementary Fig. 27). This means that the model
is performing poorly for rare cell types, but for cell types such as
Macrophages, AT2 cells, and Myofibroblasts, which are associated
with fibrosis or are lung-specific (AT2) and dominate the cellular
population in the samples, it achieves even translating between
mouse and human with a Pearson correlation greater than ~0.75.
We also evaluate the ability of each approach to classify fibrosis,

species, and cell type and to classify correctly a signature as a
different species when that is translated in the composed latent
space, by adding a different species effect. In our framework,
utilization of all genes outperforms the homolog genes
approaches in predicting fibrosis and species-translation, though
the performance of all approaches is high (Fig. 5e). Similar to what
was observed for the L1000 dataset, species and cell type are
perfectly predicted in our framework. Additionally, both the
species and cell-type effects are relatively filtered (Fig. 5g, h,
Supplementary Figs. 24, 25) in the global latent space, which is the
space where the species and cell-type effect are filtered out from
latent embedding representations, compared to the composed
latent space, which is the space containing embeddings after
adding again the species and cell type effect retrieved from the
model using trainable vectors. This means the model succeeds in
partially removing the cell type and species effect in the global
latent space and then retrieving it again in the composed latent
space.

Generalization in other disease datasets
Models that are trained on a specific data set can often perform
worse on external test sets, and it is, therefore, useful to
investigate to which extent the model can predict disease,
species, and cell types in other datasets, as well as different tissue
and disease datasets. For this, we use an independent dataset on
mouse lung fibrosis47 and a dataset on human liver cirrhosis48. In
the mouse dataset, even though different genes were measured
than those in our model, the performance is still decent in disease
classification (Fig. 5d). For the human dataset, which is an extreme
case of fibrosis in a different organ, the model has markedly lower
performance although better than chance (Fig. 5d). Interestingly,
in both cases, the model can still perfectly identify cell types and
species (Fig. 5d), once again displaying the model’s ability to
capture the general characteristics of the system.

An inter-species model from serology data for predicting
protection against HIV
As a final case study, we developed a model for cross-species
translation of serology data, where there is no 1-1 mapping of
features, to predict vaccine-induced protection from HIV in
humans. Previous failed HIV vaccine trials have suggested that
neutralizing antibody titers, the primary outcome for most vaccine
trials, do not consistently correlate with vaccine efficacy49.
Moreover, recent research suggests that deeper characterization
of the antibody response, including antibody subtype prevalence
and Fc-receptor binding affinity, may be necessary to predict the
quality of the vaccine response50. Notably, a crucial difficulty in
comparing pre-clinical animal models and human clinical trial data
in this context is that antibodies and Fc-receptors with similar
names across species can be categorically distinct, disparate in
both structure and functions between species, such that for
numerous proteomic features orthologous features do not exist.
Our ANN approach has the potential to advance our under-
standing of which preclinical features might best predict the
efficacy of an HIV vaccine. Here, we utilize serology data from non-
human primate (NHP) and human datasets38–40 following
vaccination against SHIV and HIV, respectively. In line with other
models constructed using this framework, the model was trained
so that protected individuals are close to each other in the global
latent space, regardless of species. We utilize AutoTransOP v2,
with a small modification, where two separate classifiers try to
predict vaccination status and protection in the global space, and
a third classifier predicts species in the composed latent space. For
the human serology features, the model has high performance
when reconstructing each feature (Fig. 6a, r= 0.92 ± 0.01). Ιn
NHPs, while some features are not predicted well and there is a
big variation in performance between folds, the overall perfor-
mance is still good (Fig. 6a, r= 0.77 ± 0.04). Finally, the perfor-
mance across all classification tasks is exceptionally high (Fig. 6b),
including 100% accuracy in species classification and translation,
which is evaluated by how well the species classifier predicts
species label when translating a signature to another species in
the latent space.
Using the model, we aimed to identify features from both

species that are predictive of human protection. For this, we
performed the integrated gradient approach in parallel to
likelihood ratio tests (LRT) on each latent variable (see methods).
Latent variables are denoted as important in predicting human
protection only if there is an agreement between the likelihood
ratio test results and the integrated gradients (Supplementary
Fig. 33). The human features identified indeed have a statistically
significant difference between protected and non-protected
individuals (Supplementary Fig. 34a). Finally, we identified NHP
features that have a high gradient score when translating to
human signatures, meaning these NHP features are predictive of
human features linked with viral protection (Fig. 6c, d). These
features are not necessarily associated with NHP protection
(Supplementary Fig. 34b) but they could be predictive of human
protection. Notably, while the top human features identified are
generally related to V1V2-specific IgG titers, the top NHP features

Fig. 5 Evaluation of the framework in inter-species translation in fibrosis. a Performance (Pearson’s r) in predicting the per gene mean and
variance of single-cell RNA-sequencing data for the tasks of reconstruction, across all cell types, and species translation, across common cell
types, in the human-mouse lung fibrosis datasets. Only statistically significant comparisons are shown (TransCompR was not compared at all
with DCS). b Performance of AutoTransOP v2 per specific cell type. c Performance comparisons for the tasks of translation in common cell
types between the two species. d Per common cell type translation performance of AutoTransOP v2. e Classification performance comparison
in different tasks. f Classification performance of the framework using all genes in external disease datasets. g Embeddings separation based
on species and cell types in the global latent space versus the composed latent space. The effect size d is calculated as Cohen’s d. For all
comparisons in this figure, a two-sided Wilcoxon test was used with n= 10 per group. In all boxplots, the centerline denotes the median, the
bounds of the box denote the 1st and 3rd quantiles, and the whiskers denote points not being further from the median than
1.5 × interquartile range (IQR).
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include a wide range of feature types, including Fc receptor
binding, interferon gamma (IFNg) elispots, and IgG titers.
Classification of NHP features by antigenic target revealed some
surface antigens (Gp140, Env) and intracellular antigens (Gag, p17)
to be similarly important in predicting the top human features
(Fig. 6c). When classified by feature type (IgG titer, Fc gamma
receptor (FcgR) subtype, etc), IgG titers, interferon-gamma (IFNg)
elispots, and human FcgR3A-1 show higher median importance

for human prediction relative to the NHP FcgRs. Certain NHP
features are consistently highly associated with specific top
human serological features, and in some cases (e.g., IgG gp70-
V1V2) we observed multiple NHP features mapping to one human
feature while in other cases only one NHP feature is identified as
strongly associated (e.g., IgG 244 gDneg) (Fig. 6d, Supplementary
Fig. 35). Notably, there is only one pair of homologous features in
this network of important NHP and human features (IgG gp70
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Fig. 6 Inter-species translation of serology data. a Per feature Pearson correlation in ten fold cross-validation for human features and for
non-human primate (NHP) features. b Classifiers’ performance in various tasks (n= 10 per task). In all boxplots, the centerline denotes the
median, the bounds of the box denote the 1st and 3rd quantiles, and the whiskers denote points not being further from the median than
1.5 × interquartile range (IQR). c Functional grouping of NHP features predictive of protection-associated human features. In the top
nightingale rose plot, NHP features are categorized by antigenic target. Blue features are antigens found on the surface of the HIV virus, green
features are internal viral components, and orange features are specific to the antigens present in the primary vaccine (Prime) and booster
vaccine (Boost). In the bottom nightingale rose plot, NHP features are categorized by serological feature type. Brown features are binding
affinities specific to the human Fc-receptors, blue features are binding affinities specific to the NHP Fc-receptors, and yellow features are either
anti-Rhesus IgG titers or functional assays (IFNg Elispots; C1q complement assays). In both plots, median percentile rank is plotted for all
features belonging to each category. d Network visualization of the associations between specific NHP and human serological features,
related to human protection. Brown nodes represent NHP features and dark blue nodes represent human features. Red and blue edges are
connected to NHP features that are positively or negatively associated with protection in humans, respectively. Only the strongest NHP-
human feature pairs are visualized here (see the methods for selection criteria).
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V1V2), highlighting the utility of our model’s ability to identify
relationships between unmatched features from different species.
Our analysis is both consistent with previous studies and identifies
novel feature associations across species. An especially important
result is that we can ascertain particular NHP immune system
features as indicative of non-orthologous human immune system
features providing important contributions to protection, which
can aid in identifying serological biomarkers in NHPs that are
highly predictive of human HIV vaccine efficacy.

DISCUSSION
Here, we develop AutoTransOP, an ANN framework that facilitates
the translation of omics profiles between different biological
systems. The framework combines ideas from the CPA approach32

and other species and cellular translation methods13,15,18,31,
together with ideas from language translation models33. The
explicit goal is to align omics signatures between systems, rather
than identifying what information inherent in the signature of one
system is most germane for understanding phenotype character-
istics in the other, which has been the objective in many previous
studies16–19. The framework performs as well as (or even better
than) other state-of-the-art translation techniques, when using
homolog features between systems, and performs similarly
without a 1-1 mapping between features. Notably, the framework
constructs a relatively global latent space with stimuli-specific
regions, for which classifiers can be jointly trained to make
predictions for various tasks, such as the diagnosis of diseases.
Most current approaches to translating between systems

require homolog features and utilize linear transformations to
facilitate translation13–18, and are thus restricted to represent
linear inter-species relationships. Also, the non-linear ANN-based
approach DeepCellState31 requires homology of the molecular
features used to describe the biological systems. In contrast, our
framework can represent non-linear relationships between
different biological systems, without requiring any kind of
homology, and achieves high performance using only a small
percentage of paired conditions. This enabled us to train a
translation model on serology datasets for which a 1-1 mapping of
the features between the two biological models did not exist.
Through interpretation of this model, relationships between very
different molecular profiles that correlate with specific phenotypes
can be identified, e.g., protection against infection.
Interpretability of deep learning models in biology remains a

challenge. These models have been criticized for providing a poor
understanding of which biological relationships they capture51,52.
On this front, we demonstrate in our framework how integrated
gradient approaches35 can be used to estimate the importance of
features used by different parts of the framework for various tasks,
enabling some biological interpretation of the model. Based on
this, we could propose serological features predictive of human
protection against HIV, including non-human primate-specific
features that can be observed in the preclinical stages of vaccine
development. Finally, elements of the framework can be used to
interpret and successfully retrieve the effects of species or cell
types, filtered from the global latent space. This can explain the
ability of the framework to predict cell types and species with high
performance also in independent disease datasets, derived from
different organs/tissues. However, there are still limitations in the
generalization of in the models to external datasets. In particular,
the performance on such datasets drops significantly as samples
from different pathologies and tissues are considered. Even within
the same disease, the inclusion of different features can lead to
reduced performance in predicting disease diagnosis.
Despite our framework being trained successfully on datasets

with relatively small sample sizes, the model still contains many
parameters, especially when using a larger number of features,
which inevitably leads to overfitting. Some of these shortcomings

could likely be alleviated by applying our framework to larger
datasets, such as ARCHS410, which contains hundreds of
thousands of publicly available RNA-sequencing data from
humans and mice. Training with more data and more diverse
unique conditions may enable higher generalization and higher
granularity in modeling different biological covariates. Another
approach would be to adapt from the Cross-Domain Structural
Preserving Projection (CDSPP)53 method, but in a non-linear
manner, machine learning approaches that require fewer samples,
such as modifications of the recently proposed Species-Agnostic
Transfer Learning (SATL)54, where the model learns a linear
projection matrix for a domain-invariant feature subspace, in order
to build the global latent space. Additionally, with the advent of
Natural Language Processing (NLP) models55 and attention-based
models56, our encoder modules could potentially be modified
with NLP-like representations. Recently, Geneformer57, an
attention-based model, was pre-trained on a corpus of 30 million
single-cell transcriptomic profiles and was proven to be context-
aware of the system it encodes. Although it still requires some
level of homology, it paves the way to utilize NLP approaches for
transfer learning in biology, and ultimately translation.
The flexibility of our framework allows the modeling of many

different biological systems. This could lead to the computational
optimization of biological systems and assays aiming to model
human pathology. Using our framework, we can both explore
potential transcriptional modifications to design better disease
models and identify features predictive of human biology without
requiring homology between systems, ultimately reducing
resources spent during experimental modeling and potentially
expediting the translation of in-vitro and preclinical findings to
human therapeutic advancement.

METHODS
Preprocessing of in-vitro transcriptomics benchmark dataset
The L1000 CMap resource12 contains bulk gene expression data
from drug perturbations across different cell lines and provides a
benchmark dataset with diverse conditions and a large sample
size (for a total of 720,216 samples of drug perturbations of
varying quality). Additionally, several equivalent perturbations
across different biological systems are available (406 paired
conditions for the case of A375 and HT29 cell lines after filtering
and pre-processing, explained below) to evaluate the performance
in translating omics profiles. We selected high-quality drug
perturbations from the latest version of the L1000 dataset
(accessed via clue.io). The level 5 z-score transformed and pre-
processed differential gene expression data of 978 landmark
genes, measured with the L1000 assay, and additionally, 9196
computationally inferred genes in the CMap resource that were
marked as well-inferred, were considered in the subsequent
analysis. We consider perturbations as high-quality if they consist
of signatures with more than three replicates, where at least half
of them passed the standard quality control protocols in the assay,
as provided in the dataset, and were not identified as statistical
outliers (as considered by the L1000). Additionally, where
multiple-signature perturbagens, i.e., technical replicates, only
the signature with the highest transcriptional activity score (TAS)
across these technical replicates was retained in the dataset, these
signatures are labeled “exemplars” by the CLUE platform and are
specifically designated for further analysis by the platform58. The
TAS metric is provided along with the L1000 dataset and
quantifies signal strength and reproducibility. Finally, the ability
to distinguish between random pairs of signatures and true
biological replicates, meaning the same perturbagen tested on the
same cell line for the same duration and dosage, was evaluated for
different parts of the dataset, split using varying TAS thresholds
(Supplementary Fig. 38) and samples with a TAS ≥ 0.3 were
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retained. After filtering 13,699 samples remained, with 1107
conditions available in total for the HT29 cell line and 1213 for the
A375 cell line. In the case of control signatures, we followed the
same procedure but without filtering based on TAS.

Preprocessing single-cell RNA sequencing interspecies
datasets
For the human and mouse single-cell RNA-sequencing datasets,
we first re-annotated manually each annotated cell into one of the
four classes: i) immune cells, ii) mesenchymal cells, iii) epithelial
cells, iv) endothelial cells, and iv) stem cells. These high-level labels
were later used to remove cell effect from the global latent space
and were also used in the subsequent cell-type classification.
Finally, the gene expression count data were log-transformed
(xinput ¼ log10ðcount þ 1Þ) to rescale and reduce the dynamic
range and skewness of the data, also avoiding this way extreme
values which could potentially lead to extreme values of the
weights of the models. Moreover, this process attempts to
stabilize the variance of the data. We have to note, however that
this transformation is not statistically better in terms of
performance, even though it has slightly better performance
(Supplementary Fig. 39).

Preprocessing of the serology datasets
For all serology data, we aimed to construct a model using only
antibody and receptor measurements. The human data were
retrieved from Chung et al.40 upon request, the avidity molecular
features were dropped and the data were z-scored per feature.
The non-human primates’ data were retrieved from Barouch
et al.38 upon request, the samples taken in week 28 were used,
and antibody-dependent cellular function features and mass
spectrometry data were dropped. The data were log-transformed (
x ¼ log10ðMFI þ 1Þ), the median per feature from controls was
subtracted from each feature to standardize the data. Finally, the
data are z-scored per feature.

The general framework and the training procedure
In this implementation (also described with pseudo-code in
Supplementary Note 1), the framework always models pairs of
systems for translation, species, or cell lines. Each is modeled with
separate encoders and decoders for each of the species or cell
lines in the pair attempting translation, while inside a latent
module, the global latent space is shaped (Fig. 1a). Both the
encoders and the decoders are multi-layered neural networks,
with each layer consisting of, sequentially: a fully-connected layer,
a batch normalization layer59, an ELU activation function60, and a
dropout layer61. The final output layer of the encoder and the
decoder consists of only one fully connected layer without a
trainable bias term.
For the construction of the global latent space (pseudo-code in

Supplementary Note 1) several metrics are optimized: the distance (
Ldistance) between embeddings of profiles coming from different
systems undergoing the same perturbation is minimized and their
cosine similarity (Lcosine) and mutual information (LMI, see details
below) is maximized; and the divergence of the distribution of the
latent variables from a random uniform distribution is also
maximized (Lprior). Even though in the literature62–64, at least, when
only having encoders part to create embeddings of an input
structure, it is suggested to minimize divergence from a uniform
distribution, we decided to do the opposite due to evidence that
the embeddings tend to resist enforcing a uniform distribution
without a significant loss of performance (Supplementary Fig. 36).
Both cosine similarity and Euclidean distance losses were added to
enforce the strongest possible filtering of species and cell type
effect, while the cosine similarity also enforces normalization of the
latent embeddings. Mutual Information (MI) maximization is

achieved using two different ANN discriminators, as previously
proposed in the MINE62, Deep InfoMax63 and InfoGraph64 studies,
where the Jensen-Shannon Mutual Information between embed-
dings coming from the same perturbation is estimated and the
extra prior loss is calculated and added in the final loss, according to
the following equations with the implementation taken from the
deepSNEM model65 and the GitHub repository of Deep InfoMax63

https://github.com/rdevon/DIM/tree/master/cortex_DIM/functions:

Lprior ¼ 1
N

XN

i¼1
½logðDiscr2ðviÞÞ þ logð1� Discr2ðzgi ÞÞ�; (1)

where vi is a randomly sampled embedding from a prior random
uniform distribution ranging from 0 to 1 and zgi is a global latent
space embedding. N is the number of samples in a batch during
training.

LMI ¼ �ðEp � EqÞ; (2)

Ep ¼ 1PðmaskÞ ½lnð2Þ � softplusð�Discr1ðzgÞ �maskÞ� �mask;

(3)

Eq ¼ 1Pð1�maskÞ ½softplusð�Discr1ðzgÞ � ð1�maskÞÞ

þDiscr1ðzgÞ � ð1�maskÞ � lnð2Þ� � ð1�maskÞ;
(4)

where Ep and Eq are respectively the mutual information
estimates, adapted from the GitHub of Deep InfoMax63 (https://
github.com/rdevon/DIM/tree/master/cortex_DIM/functions),
between pairs derived from the same conditions and pairs coming
from different conditions, averaged for every possible pair in a
batch during training. zg are global latent space embeddings,
whose pairwise mutual information is estimated using the Discr1
discriminator and mask is the mask of positives (similar conditions)
created in each batch of training procedure. LMI serves as an
estimate for maximizing the difference, between similar and
different conditions, of a lower bound of mutual information. The
actual calculation of MI is not the goal here. Indeed, this
maximization was achieved (Supplementary Fig. 3).
Both Discr1 and Discr2 utilize non-KL-divergence approaches as

suggested in the literature62–64. Discr1 is the discriminator that
generates a probability score between every sample in the batch
and all others, during training and is used to estimate the mutual
information between two embeddings from the global latent
space63. It takes as input two global latent space embeddings and
passes them through the same three fully-connected layers, each
of them followed by a ReLU activation function60 and one fully-
connected skip connection. Then, the product of the result of this
non-linear transformation of the two embeddings is the output of
Discr1 and is passed through the softplus activation function
(gðxÞ ¼ logð1þ exÞ), to ultimately be used approximate the
Jensen-Shannon lower bound of their Mutual Information, as
proposed originally in MINE62 and Deep InfoMax63. Discr2 is the
second discriminator which takes as input an embedding vector
and calculates the probability a point in this embedding space is
sampled from a specific distribution. This way Lprior forces each
feature of the learned embeddings to be sampled from a
distribution which is not the random uniform distribution ranging
from 0 to 1, as a small analysis showed that it is difficult to enforce
a uniform distribution without taking a hit in performance
(Supplementary Fig. 36) and the latent embeddings tend to
assume a normal distribution (Supplementary Fig. 36b), not
necessarily with a mean of 0 and a standard deviation of 1.
However, it is important to note that using a prior loss is not
necessary as it makes not real difference in the distribution and
performance of the model (Supplementary Fig. 37). It has three
similar fully-connected layers and the final scalar output is passed
through a sigmoid activation function60. These regularization loss
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terms (Ldistance, Lcosine, LMI) are calculated and averaged across
every pair of global embeddings (zgi ; zgj ) that are coming from the
same condition. The Lprior is calculated for every sample in the
dataset, meaning every global latent embedding and averaged
across samples. For the case of the L1000 dataset, we consider
similar perturbations those that are coming from experiments of
the same drug, tested on the same cell line, with the same dose
and time duration. For the lung fibrosis dataset, similar profiles are
considered those coming from samples that have the same
diagnosis (fibrosis or not). For the serology datasets, we train the
framework so that embeddings coming from protected indivi-
duals against HIV are close to each other regardless of species
(and even vaccination status)
The basic task of this autoencoder framework is reconstruction,

which is achieved by minimizing some kind of reconstruction loss
(Lrecon). In the case of z-scored profiles from bulk data, this is done
by minimizing the mean sum of squared errors between the input
of the encoders and the output of the decoders. The sum of
squares error is averaged across samples. For only the case of
single-cell RNA-sequencing data, based on the implementation
proposed in the CPA manuscript32 (found here https://
github.com/facebookresearch/CPA), the negative binomial nega-
tive log-likelihood is used to optimize the reconstruction, by
assuming that the data are derived from a negative-binomial
distribution characterized by the mean and the dispersion
parameter that are both predicted, while the goal is to reconstruct
the original count matrix45,46. The negative binomial negative log-
likelihood loss is calculated for every sample and the average
across all samples in the batch is minimized. Finally, while the raw
gene counts are used for reconstruction from the decoder in the
loss function, the encoders take as input the log-transformed
counts, and initially perform an element-wise multiplication
between genes and a set of trainable weights, before feeding
the data into the feedforward neural network layers of the
encoders.
Classifiers are used for different classification tasks. These

consist of multiple fully connected layers and a final SoftMax
activation function before the output. The average entropy loss
across samples for every classification task in the latent space is
minimized:

entropyi ¼
1
N

XN

j¼1
CrossEntropyðClassifieriðzjÞ; labeljÞ; (5)

where entropyi is the average cross entropy between every jth
prediction of a classifier taking a latent vector as input and the
true label for that sample.
L2-regularization of the weights and bias of the encoders

(L2encoder;i), decoders (L2decoder;i), and classifiers (L2classifier;i) is also

enforced by minimizing the sum of squares for the aforemen-
tioned trainable parameters.
Taken together, for the basic variation (AutoTransOP v1,

described in pseudo-code in Supplementary note 1), the following
loss function is optimized:

Lossbasic ¼ λrecon � Lrecon þ λdistance � Ldistance þ λMI � LMI

þλprior � Lprior þ
X2

i¼1
ðλenc;i � L2encoder;iÞ

þ
X2

i¼1
ðλdec;i � L2decoder;iÞ þ

XM

i¼1
ðλL2class;i � L2classifier;iÞ

þ
XM

i¼1
ðλclass;i � entropyiÞ � λcosine � Lcosine;

(6)

where M is the number of classifiers and thus individual
classification tasks, and the rest of the terms, together with how
they are calculated, have already been described in the previous
paragraphs of this section. For values for each of the λ used in the
loss function, see Supplementary Table 5.

Variation of the global latent space with a simultaneously and
competitively trained classifier
For AutoTransOP v3, the variation of the global latent space with a
simultaneously and competitively trained classifier, the aim is to
embed some species or cell line information in some of the latent
variables. A simple classifier for correctly predicting the cell line
label is trained simultaneously on the global latent space with the
rest of the framework and an entropy loss is added to the original
description of the framework. The construction of a global latent
space and the training of the classifier are competing tasks, where
the framework is trained to achieve a stable trade-off.

Variation of the framework, including elements of the CPA
approach
For AutoTransOP v2, the variation of the framework, which
incorporates the elements of the CPA approach, the global latent
space is expanded by augmenting the loss function with some
additional terms.
An adverse classifier of species and cell types is added. As

described in the original CPA manuscript32, during training we
iterate between training the classifier (updating only its para-
meters) on the global latent space, and training the rest of the
framework with the addition of a penalty (entropyadverse) if the
classifier correctly classifies species and cell types. To improve the
robustness of the discriminator it is initially pre-trained only with
encoders and discriminators, without other classifiers and the
decoders, so that it can already distinguish cell types and species
in the global space.

Table 1. Framework’s basic hyperparameters.

Hyperparameter L1000: 978 genes L1000: 10,086 genes Lung fibrosis Serology

Latent dimension 292 1024 512 32

Hidden encoder layers dimensions [640,384] [4096,2048,1024,512] [4096,2048,1024,512] [64]

Hidden decoder layers dimensions [384,640] [512,1024,2048, 4096] [512,768,2048, 4096] [64]

Cell type classifier hidden layer dimensions [256,128,64] [512,256,128] [256,128,64,32] -

Species classifier hidden layer dimensions - - [256,128,64,32] [32,16,8]

Fibrosis classifier hidden layer dimensions - - [256,128,64,32] -

Serology phenotype classifiers classifier hidden layer dimensions - - - [32,16,8]

Adverse classifiers hidden layers dimensions [256,128,64] [512,256,128] [512,256,128,64] [32,16,8]

Total batch size 512 512 1024 50

Number of epochs 1000 1000 200 2000

Learning rate 0.001 0.001 0.001 0.001
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Furthermore, species and cell type effects are added to the
latent space via trainable vectors. In the newly composed latent
space, from which the decoders are sampling embeddings,
classifiers are jointly trained to correctly classify cell types, and
species (or even disease diagnosis). Additionally, the trainable
vectors are regularized by the L2 norm (L2trainedeffect ). All the above
can be summarized in this new loss function:

Loss ¼ Lossbasic � λadverse � entropyadverse þ λtrainedeffect � L2trainedeffect
(7)

Framework for the serology datasets
In the serology dataset, we use AutoTransOP v2, where now is
aimed to later identify features predictive of protection or
vaccination status regardless of species. For this purpose, we
train two classifiers predicting vaccination and protection status in
the global latent space. We care more about protection and thus,
as described previously, we aim to create similar embeddings and
minimize their distance in the global latent space just by looking
at protection status.

Framework’s basic hyperparameters
Here, we present the basic parameters used to train the model (Table
1). No thorough hyperparameter tuning was performed, and values
were selected based on empirical values and tuned so that there is
convergence in the training loss and the training reconstruction
performance (Pearson’s r). Additionally, these values were also tuned
so that the performance in training (not validation/test) is sufficiently
high, meaning that the model is at least able to fit the given data. This
empirical tuning was done only based on the 1st training set in
tenfold cross-validation. We performed tenfold cross-validation
(where the validation sets are used as test sets to only evaluate the
models) where 10% of the data were hidden for validation each time
and 90% for testing. The 10% changes each time, so all data have at
some point been put in the set for evaluating the models. All the
parts of the framework are trained simultaneously.
The latent space dimension was chosen to be as small as

possible until the model’s performance dropped in both
training and validation of only the 1st fold. Based on this
latent dimension and the original input dimension of the data
the sizes of hidden layers of the encoders were chosen to be in-
between, gradually reducing the input dimension to that of the
latent space. The actual size and number were constrained by
practical memory limits. With the exception of the lung fibrosis
models, the decoders had the same number and sizes of hidden
layers as those of the encoders, but now they increase the size
of the embeddings from the latent dimension to the original
input dimension.

Evaluation procedure and metrics
The model performance was evaluated using tenfold cross-validation.
One fold (10%) of the data was hidden during training and used to
evaluate performance in unseen data, and 90% of the data from each
system (species or cell line in the case of L1000) were used for
training. For the L1000 dataset, for evaluating the translation of the
whole omics profile, we made sure that for the case of paired
conditions, the perturbation in both cell lines was hidden during
training.

The classification tasks were evaluated by total accuracy and F1-
score (or micro F1 for multiple categories):

Accuracy ¼
PK

i¼1TPi þ
PK

i¼1TNiPK
i¼1TPi þ

PK
i¼1TNi þ

PK
i¼1FPi þ

PK
i¼1FNi

; (8)

F1micro ¼
PK

i¼1TPiPK
i¼1TPi þ 1

2 � ð
PK

i¼1FPi þ
PK

i¼1FNiÞ
; (9)

where K is the total number of classes in multi-class classifica-
tion, TP and FP symbolize true and false positives, and TN and
FN symbolize true and false negatives. For the case of multiple
classes, we define as positives the samples belonging to that
specific class while everything else is a negative sample. Using
this definition of positives and negatives we further calculate
the TP, FP, TN, and FN per class. In the case of cell-type
classification in lung fibrosis K= 5.
For the cell line classification in L1000, species classification

both in lung fibrosis and the serology datasets, and vaccination
and protection status in the serology dataset, we use the F1 score
and accuracy for binary classification

Accuracy ¼ TPþ TN
TP þ TN þ FP þ FN

; (10)

F1 ¼ TP
TP þ 1

2 ðFP þ FNÞ : (11)

To evaluate the validity of the predictions (ŷ) of whole
signatures in translation and reconstruction, compared to the
ground truth (y), we utilized:

i. the global Pearson’s correlation

rðŷ; yÞ ¼
Pðyi � yÞðŷi � ŷÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðyi � yÞ2 P ðŷi � ŷÞ2

q ; (12)

where ŷ and y are flattened and the ith element is the ith point in
these flattened vectors.

ii. the average per sample Spearman’s correlation

rs ¼
PN

i¼1rðRankðŷÞ; RankðyÞÞi
N

; (13)

where N is the number of samples and Rank() means ranking the
gene based on their differential gene expression and using these
ranks to calculate Spearman’s correlation.
iii. the average per

sample

sign accuracy ¼ TPþ TNþ TrueZeros
total predictions

; (14)

where TP signifies the genes that have a positive sign
regulation both in the actual data and predictions, TN signifies
the genes in the sample that have a negative sign regulation
both in the actual data and predictions, and TrueZeros are the
genes that have an absolute expression ≤10−6 both in the
actual data and predictions (a small tolerance rather than
strictly zero was chosen for numerical reasons).
For the single-cell RNA-sequencing data where we predict the

per gene mean and variance, we calculate the coefficient of
determination (R2) per gene mean and variance, similar to the CPA
manuscript32. In general, R2 is calculated as:

R2 ¼ 1� RSS
TSS

; where RSS ¼
X

ðŷi � yiÞ2 and TSS ¼
X

ðyi � yÞ2

(15)
Separation of latent space embeddings
To evaluate the similarity of embeddings for different signatures,
and whether there is separation based on cell, species, or
conditions in the latent space, we utilize cosine distance, ranging
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from 0 (the same) to 2 (completely) different:

cosine distance ¼ 1� cosine similarity ¼ 1�
Pd

i¼1z1;iz2;iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPd
i¼1z

2
1;i

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPd
i¼1z

2
2;i

q ;

(16)

where z1 and z2 are two latent space vectors to be compared and
d is the total number of elements in the vector, i.e., the latent
dimension.
To estimate if there is a cell, species, or condition effect, and

compare it between the composed and global latent space we
utilize Cohen’s d to estimate the effect size between the
distributions of cosine distances, derived from random pairs of
embeddings and pairs coming from the same cell, species, or
condition. The effect size is thus calculated using the mean and
standard deviations of two cosine distance (cos) distributions as:

d ¼ cos1 � cos2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððn1�1Þs21þðn2�1Þs22Þ

n1þn2�2

q ; (17)

where n1, n2 is the number of samples of each of the two distance
distributions, cos1; cos2 are the means of the cosine distance
distributions and s1, s2 are the standard deviations of the cosine
distance distributions. A Cohen’s d around 0.8 is a large effect size
(around two is considered a huge effect size) while around 0.5 is a
medium effect size, and around 0.2 and below is considered small
or very small66,67.

Feature importance using integrated gradients
To estimate the importance of features, we utilize integrated
gradients35 from the Captum library68.

InterGradiðxÞ ¼ ðxi � x0iÞ
Z 1

a¼0

dFðx0 þ aðx � x0ÞÞ
dxi

da; x0 ¼ baseline ¼ 0

(18)

The importance scores are calculated based on the gradient
with respect to the input of the model, and thus, the higher the
absolute integrated gradient the higher the importance of that
input feature to control the output. A negative score means the
variable has a negative effect pushing the prediction to the other
class, while a positive score has a positive effect.
For example, if we want to identify important latent variables to

classify a sample as one coming from a particular cell line, we
calculate the integrated gradient of every latent variable to make
the classification and take the average across all samples. Similarly,
if for example, we are aiming to calculate the importance of genes
to control latent variables in the global latent space, we can
calculate the integrated gradient score of every gene for every
variable in every sample, and then take the average across
samples.

K-means-based separation of important latent variables
Latent variables can be separated into important and unimportant
ones using k-means, inspired by an approach that was used to
identify important connections between latent components and
genes in microbial organisms by using the weights derived from
independent component analysis69,70. We assume that only two
main clusters of latent variables exist, one containing important
variables and one containing unimportant ones. On this front, the
latent variables are clustered based on their absolute gradient
scores into three clusters, where 3rd cluster is assumed to be a
very small cluster of outliers. The midpoint between the variable
with the highest score in the unimportant cluster and the variable
with the lowest score in the important cluster is used as a
threshold to distinguish between significantly important and
unimportant latent variables. As a sanity check the important

variables are also compared with the top-ranked variables based
on their score.

Likelihood ratio tests for the identification of important latent
variables
To identify which latent embeddings correlate with viral protec-
tion after accounting for vaccination status and species, a LRT was
performed on each individual latent variable. Here, the likelihood
(L) of the alternative model ðHAÞ : latent variablei embeddings �
protectionþ vaccination þ species was compared to the likelihood
of the nested model, or null hypothesis,

ðH0Þ : latent variablei embeddings � vaccination

þspecies in LRT ¼ �2 ln
LðH0Þ
LðHAÞ

� �
:

(19)

We rejected H0 for latent variablei when the FDR-adjusted p
value of the chi-square test was less than 0.05, concluding that the
model including protection has a statistically significant better fit
than the model without protection. In the volcano plots, the
� logðpvalueÞ is plotted against the t value for the protection term
in the alternative model. This method assumes that the relation-
ship between the latent variable embeddings and protection is
linear. R package lmtest71 (version 0.9.40) was used to perform
these statistical tests. Finally, the intersection of these latent
variables with significant latent variables (average percentage
importance score across folds ≥10%), based on their gradient
score from the trained protection classifier, is used for the final
identification of robust latent variables associated with viral
protection. We keep latent variables that the sign of correlation
with protection agrees in both approaches.

Identification of protection-associated serological features
The importance of the serological features is calculated as
previously described with the integrated gradient score of every
feature for every latent variable that was identified to be
statistically significant for predicting viral protection of humans,
averaged across samples coming from the respective species.
Serological features with high scores (and at least ≥20%) can
control latent variables in the global latent space associated with
human viral protection, and thus they are predictive of human
protection. For human features, we also validate that the
univariate differences between protected and unprotected
individuals are indeed significant, by using a non-parametric
Wilcoxon test, with Bonferroni correction for multiple hypothesis
testing.
Finally, we calculate the integrated gradient score for translat-

ing each non-human primate serological profile to a human
profile. The non-human features with high scores in association
with the top human features can be considered serological NHP
predictive of human viral protection. The Nightingale Rose plots
were constructed by categorizing each NHP feature by antigenic
target or feature type and subsequently calculating the median
percentile rank of each NHP feature per category. Percentile rank
was calculated from the mean importance values of each NHP
feature for translating to each protection-associated human
feature and averaged across these human features. To take a
more granular look at the relationship between each NHP feature
and human feature, we constructed a network of the top NHP-
human feature pairs that pass the following criteria: (1) the NHP
feature reconstruction Pearson correlation coefficient was greater
than or equal to 0.75, (2) the standard deviation of the NHP
feature importance across folds was in the bottom quartile of
NHP-human feature pairs, (3) the NHP feature had an importance
score with magnitude greater than 10 in relation to at least one of
the top human features, and (4) the NHP feature importance score
was in the top quartile of scores that passed criteria (1–3). Using
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these criteria, 88 NHP-human feature pairs were identified as the
most consistently important features for predicting human
protection. The network representation of these 88 NHP-human
feature pairs was created using Cytoscape version 3.10.1.

DeepCellState method and variations
The original model, as developed by Umarov et al.31, is an
autoencoder neural network framework, which consists of one
common encoder and two separate decoders, one for each cell
line or species in our case. The model aims to encode every gene
expression profile into a common cell line space. The input gene
expression is first passed through a dropout layer with a dropout
rate of 0.5 and then the encoder consists of fully-connected
feedforward neural network layers. The decoders are similar and
consist of fully-connected feedforward neural network layers that
reconstruct the input gene expression using the latent space
representation. The output layer has a direct connection to the
dropout layer in the input and combines the two representations
to make the final prediction. The authors utilized L1 regularization
for the latent layer, enforcing sparsity on the activity of the latent
representations. The Activation function used is leaky relu for all
layers except the output layer, which uses tanh activation.
The first variation of this model (DCS modified v1) is identical

to the originally proposed model, with the only modification of
removing the direct connection with the dropout layer in the
input. In the second model variation (DCS modified v2), we also
removed the direct connection with the dropout layer in the
input. An important modification is made in the training loss of
this model. We include a distance term in the loss, to minimize the
distance of latent embeddings coming from the same condition,
regardless of the cell or species they are derived from. Finally, for
these paired conditions we also minimize the mean squared error
of predicted translated gene expression and the ground truth. The
final variation (DCS modified v3) is identical to version 2, with the
only difference of not calculating the mean squared error of direct
translation when using the model. We still use a distance term in
the loss function.

TransCompR-based method
“Translatable Components Regression”72 (TransCompR) is a
method, developed by Brubaker et al., that can map human data
into the principal component space of another species to identify
translatable animal features that can predict human disease
processes and phenotypes. For translating molecular profiles, we
use this framework for projecting the molecular profile of a
biological system or species into the principal component space of
another system or species. This principal component space is now
equivalent to the latent space which can be used by a neural
network (like the decoder) or a simple multi-linear regression
model to predict the translated molecular profile (Supplementary
Fig. 2).

FIT-based method
FIT15 is a machine learning method that fits a linear regression
model between homolog genes coming from the same perturba-
tion tested on two different species (or it can be used with cell
lines). During fitting a regularization penalty is added to force the
slope of the fitted line to be 1 and the intercept 0. This trained
framework can be used then to translate molecular profiles.

Gene set enrichment analysis (GSEA)
Gene Set Enrichment Analysis (GSEA) was performed on multiple
gene sets (Supplementary Fig. 3) using the FGSEA library73,74 from
the Bioconductor resource75. Thus, the gene-level feature vector
of each perturbation was transformed into a gene set-level feature
vector of Normalized Enrichment Scores (NES).

GSEA-based distance of transcriptomic profiles
The pairwise distance between gene expression feature vectors
was calculated using the R package Gene Expression Signature in
Bioconductor76, similar to Iorio et al. 7 Given two gene expression
vectors ranked by their z-scored expression, A and B, GSEA is used
to calculate the ES of the top and bottom genes of A in B and vice
versa. The distance between the gene expression profiles is
computed as

1� ESAinB þ ESBinA
2

(20)

and ranges from 0 to 2. A GSEA distance equal to 0 means that the
most upregulated and downregulated genes are the same in the
two vectors A and B, while a distance equal to 2 means they are
reversed. The GSEA distance is calculated for multiple thresholds
as to how many top and bottom genes to consider and the
average distance is taken for further analysis.

Inference of transcription factor activity
To infer the transcription factor activity, we utilized the VIPER
algorithm77 together with the Dorothea Regulon78. The VIPER
algorithm calculates the enrichment of gene expression signatures
of regulons, that are based on transcription regulatory networks.
This way the activity of a transcription factor (TF) is inferred based
on the expression of downstream genes known to be regulated by
this specific TF. The Dorothea regulon contains known regulatory
interactions, annotated based on the confidence that this
interaction exists. Here, interactions are restricted to confidence
levels A and B.

Hardware and software specifications
All models were expressed in and trained using the PyTorch
framework79 (version 1.12) in Python (version 3.8.8). When using
the 978 landmark genes and for the serology case study, the
models were trained in an NVIDIA GeForce RTX 3060 Laptop GPU
with 6 GB of memory. The larger models (using 10,086 genes and
the single-cell lung fibrosis data) were trained on the MIT Satori
GPU cluster using NVIDIA V100 32GB memory GPU cards. Pre-
processing and statistical analysis of the results were done in the R
programming language (version 4.1.2). Visualization of results was
done mainly using ggplot280. More information about the versions
of each library used can be found in the GitHub provided in the
Data and Code availability sections.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
The study did not produce any new experimental data. The L1000 dataset was accessed
via clue.io. The single-cell RNA-sequence data from Strunz et al. 36 and Habermann et al.
37 can be found in the Gene Expression Omnibus under their respective accession
numbers GSE141259 and GSE135893. The serology datasets were retrieved from Chung
et al. 40, upon request, and Barouch et al. 38, upon request. All analyzed data that were
used to train our models and produce all tables and figures are available at https://
github.com/Lauffenburger-Lab/OmicTranslationBenchmark (corresponding Zenodo:
https://zenodo.org/doi/10.5281/zenodo.10475298).

CODE AVAILABILITY
The code to generate and pre-process data, figures, and tables, as well as train models, is
available at https://github.com/Lauffenburger-Lab/OmicTranslationBenchmark (corre-
sponding Zenodo: https://zenodo.org/doi/10.5281/zenodo.10475298).
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