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Evaluation of single-sample network inference methods for
precision oncology
Joke Deschildre1,2,3,5, Boris Vandemoortele1,2,3,5, Jens Uwe Loers1,2,3, Katleen De Preter3,4 and Vanessa Vermeirssen 1,2,3✉

A major challenge in precision oncology is to detect targetable cancer vulnerabilities in individual patients. Modeling high-
throughput omics data in biological networks allows identifying key molecules and processes of tumorigenesis. Traditionally,
network inference methods rely on many samples to contain sufficient information for learning, resulting in aggregate networks.
However, to implement patient-tailored approaches in precision oncology, we need to interpret omics data at the level of individual
patients. Several single-sample network inference methods have been developed that infer biological networks for an individual
sample from bulk RNA-seq data. However, only a limited comparison of these methods has been made and many methods rely on
‘normal tissue’ samples as reference, which are not always available. Here, we conducted an evaluation of the single-sample
network inference methods SSN, LIONESS, SWEET, iENA, CSN and SSPGI using transcriptomic profiles of lung and brain cancer cell
lines from the CCLE database. The methods constructed functional gene networks with distinct network characteristics. Hub gene
analyses revealed different degrees of subtype-specificity across methods. Single-sample networks were able to distinguish
between tumor subtypes, as exemplified by node strength clustering, enrichment of known subtype-specific driver genes among
hubs and differential node strength. We also showed that single-sample networks correlated better to other omics data from the
same cell line as compared to aggregate networks. We conclude that single-sample network inference methods can reflect sample-
specific biology when ‘normal tissue’ samples are absent and we point out peculiarities of each method.
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INTRODUCTION
In order to understand the complex molecular interactions at play
in tumor pathogenesis, high-throughput omics data have been
generated at an increasing pace1. Modeling these data in
biological networks allows for determining the key molecules
and processes that drive tumorigenesis2,3. Traditionally, network
inference methods rely on many samples to contribute sufficient
information to the learning process and to counteract the curse of
dimensionality in the omics data, i.e. the number of genes by far
outnumbering the number of samples. Methods to accomplish
this on tissue level from bulk omics data are already well-
established, and rely on varying underlying statistical and
mathematical principles such as correlation, mutual information,
Bayesian networks and regression4–6. We and others have shown
that different computational methods reveal complementary
aspects of the ‘true’ underlying networks4,7–9. However, these
methods infer networks based on numerous samples and
therefore determine a general estimate of gene interactions
largely shared by that group of samples. Hence, they result in
population-level networks, averaging the phenotypic effects of
individual patients or samples. For clinical applications, we need to
be able to interpret and extract meaningful information from
omics data of a single individual to be able to direct individualized
treatment in precision medicine10.
Currently, several approaches are being explored to analyze

omics data from a single sample or patient, and are referred to in
literature as single-sample, single-subject, sample-specific, patient-
specific and personalized methodologies. Deep n-of-1 phenotyp-
ing, where multiple omics are profiled in a single individual at

different locations in the body longitudinally, is envisioned to be
essential for the early detection and personalized treatment of
cancers11. Obtaining multiple samples from one patient is
nonetheless not straightforward due to an increased cost,
increased surgical risk, or limited tumor size. Moreover, single-
sample or patient-specific networks can be built from single cell
RNA-seq data of a single subject, where the profiling of many cells
inherently contains the variability required to infer the statistical
dependencies between genes12. However, single cell omics data
have specific limitations such as high-dimensionality, sparsity and
overdispersion and network inference methods are still being
optimized to deal with these issues. Also, single cell technologies
are currently more expensive and hardly implemented in the clinic
as compared to bulk protocols. On bulk transcriptome data,
several methods extract relevant biological knowledge from
individual samples without requiring a large disease cohort, as
reviewed in13. They either provide a gene-centric view on
differentially expressed (DE) genes or a pathway-centric view on
deregulated pathways, comparing a single sample against a
reference cohort or a control sample13–16. In addition, VIPER can
predict protein activity from regulon enrichment on single-sample
gene expression signatures obtained using a reference set17. The
single-sample Network Perturbation Assessment (ssNPA) is a
method for subtyping samples based on single-sample deregula-
tion of their gene networks18. While these methods allow for
biological interpretation of omics data at the individual level, they
do not generate biological networks or gene interactions for
single samples or patients.
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To address this, single-sample network inference methods have
been developed that can infer a biological network for a single
sample from bulk RNA-seq data. Several of these methods make
use of an aggregate network constructed from all samples and a
statistical wrapper to infer single-sample features within these
networks. Others devise a specific statistic to directly obtain
single-sample networks. Optionally, networks can be pruned by a
background network, such as a protein-protein interaction
network. The Single-Sample Network (SSN) algorithm calculates
the significant differential network between the Pearson Correla-
tion Coefficient (PCC) networks of a set of reference samples on
the one hand and that same reference set plus the sample of
interest on the other hand, both using the STRING database as
background network19. The authors experimentally validated that
SSN identified functional driver genes contributing to resistance in
non-small cell lung cancer cell lines. Subsequently, SSN has been
applied to breast and colon cancer to study stage- and subtype-
related networks and to identify diagnostic and prognostic
biomarkers20,21. LIONESS also uses a leave-one-out approach in
aggregate network inference to come to a single-sample network,
and through linear interpolation incorporates information on both
the similarities and the differences between the networks with
and without the sample of interest22. LIONESS has the major
advantage that any network inference method of choice can be
used to construct the aggregate networks, and has been applied
e.g. to study sex-linked differences in colon cancer drug
metabolism23. The Individual-specific Edge-Network Analysis
(iENA) algorithm constructs single-sample PCC node-networks
and single-sample higher-order PCC edge-networks by altered
PCC calculations of the expression data of the sample of interest
and a set of reference samples24. On the other hand, Sample
Specific Perturbation of Gene Interactions (SSPGI) computes
individual edge-perturbations based on differences between the
rank of genes within the expression matrix of normal samples and
individual samples of interest25. The Cell-Specific Network
construction (CSN) method transforms the expression data into
more stable, statistical gene associations, rendering a binary
network output at single cell or single-sample resolution, for single
or bulk RNA-seq data respectively26. The recent method SWEET
also consists of linear interpolation like LIONESS, but integrates
genome-wide sample-to-sample correlations to weigh subpopula-
tion sample sizes that can cause network size bias27. Whereas SSN,
SSPGI and CSN only apply a differential approach, LIONESS, iENA
and SWEET also take into account commonalities between single-
sample and aggregate networks.
The above mentioned single-sample network inference meth-

ods have mainly been applied by the research groups that
developed them and a systemic neutral comparison is still
missing. Only limited comparisons have been performed, which
either focused on a limited number of methods, focused on
downstream network control methods or made use of metabo-
lomics data with a limited number of features22,28–30. Furthermore,
many of the compared methods rely on ‘normal tissue’ reference
samples to contrast the tumor samples, which might not be
available for all tumor types or in all precision oncology cases. The
CCLE database offers multiple omics, including transcriptomics, on
a large panel of comprehensively characterized human cancer cell
lines and thus represents an ideal playground to apply and
compare single-sample network inference methods31,32. In this
study we constructed single-sample coexpression networks using
SSN, LIONESS, SWEET, iENA, CSN and SSPGI for lung cancer and
brain cancer samples. We found that each method constructed
networks with distinct topologies at the level of edge weight
distributions and network characteristics. The node strengths of
the different single-sample networks tended to cluster together
according to tumor subtype. For both lung and brain samples, we
identified the largest part of subtype-specific hubs in SSN,
followed by LIONESS and iENA networks. Hubs in these single-

sample networks also differed the most from hubs in the
aggregate network. However, for all methods, hubs displayed
enrichment for subtype-specific IntOGen/COSMIC drivers for
NSCLC and glioblastoma, the two largest sample groups in
respectively lung and brain samples. Differential node strengths
between tumor subtypes were mainly detected in SSN, LIONESS
and SSPGI networks. Yet, differentially strong nodes were not
enriched for known subtype specific driver genes. In SSN, LIONESS
and iENA, we noticed a tendency for lower node strengths for the
bigger subtype sample group in both lung and brain samples,
while this potential bias was absent in SWEET, CSN and SSPGI.
Finally, we showed that single-sample networks correlated better
to other omics data from the same cell line as compared to
aggregate networks. Single-sample networks from SSN, LIONESS
and SWEET resulted in the largest average correlation coefficients,
for both lung and brain samples, and for proteomics and copy
number variation data. Overall, we conclude that single-sample
networks in the absence of ‘normal tissue’ samples were able to
reflect sample-specific information better than aggregate net-
works and that different tools have their peculiarities that should
be taken into account.

RESULTS
Subtype-specific gene expression in lung and brain CCLE
cell lines
In order to evaluate single-sample network inference methods in
the absence of healthy control reference samples, we set out to
compare SSN, LIONESS, SWEET, iENA, CSN and SSPGI on gene
expression profiles from CCLE lung and brain cancer cell lines31.
We identified cell lines that closely matched their corresponding
tumor tissue with regard to gene expression, and retained 86 lung
and 67 brain cancer cell lines (Methods)33. These are further split
into subtypes including 73 non-small cell lung carcinoma (NSCLC),
12 small cell lung carcinoma (SCLC), 1 lung carcinoid, 36
glioblastoma, 9 astrocytoma, 8 glioma, 9 medulloblastoma, 3
meningioma, 3 oligodendroglioma and 2 primitive neuroectoder-
mal tumor (PNET) cell lines (Methods). An initial clustering of lung
expression profiles showed that all but one of SCLC samples
clustered separately from NSCLC samples (Fig. 1a). We further
compared gene expression in both cancer subtypes and identified
1510 up- and 1553 downregulated genes in NSCLC versus SCLC
samples (absolute log fold change (abs(LFC)) >= 1, adjusted
p-value (padj) <= 0.05) (Fig. 1b). A clustering of brain expression
profiles revealed one subcluster containing all but one of
medulloblastoma and all PNET samples (Fig. 1c). Due to limited
sample sizes for meningioma, oligodendroglioma, PNET and
glioma, we choose to perform subsequent differential analyses
in brain between glioblastoma and medulloblastoma samples. In
total, 1354 and 1043 genes were up- and downregulated in
glioblastoma versus medulloblastoma samples (Fig. 1d). In the
supplementary information, we extended some analyses to other
tumor subtypes (brain) or sub-subtypes (lung) (see further). Hence,
we detected substantial transcriptional differences between tumor
subtypes for both lung and brain samples.

Construction of single-sample networks
For both tumor types, we selected highly-variable genes (HVG) for
functional gene network construction. First, we inferred an
aggregate, undirected coexpression network using PCC, repre-
senting all samples. Next, single-sample networks were inferred
using LIONESS, SSN, SWEET, iENA, CSN and SSPGI. We slightly
modified several tools to run with PCC as the underlying network
inference method and in absence of ‘normal tissue’ reference
samples (Methods, GitHub). The choice of PCC as underlying
network inference approach allowed for a consistent comparison
between single-sample networks, as some methods exclusively

J. Deschildre et al.

2

npj Systems Biology and Applications (2024)    18 Published in partnership with the Systems Biology Institute

1
2
3
4
5
6
7
8
9
0
()
:,;



function with PCC, and between the single-sample and the
aggregate networks. We further pruned the aggregate and single-
sample networks by selecting edges present in the HumanNet
network, an integrated human functional gene network that was
used as background network (Methods, Fig. 2)34. This resulting
lung aggregate and single-sample functional gene networks
consisted of 5454 nodes and 53 296 edges, covering respectively
30.50% of proteins and 10.14% of HumanNet interactions. Due to
lack of scalability, lung SSPGI networks were slightly smaller and
comprised 4814 nodes connected by 43 193 edges. Due to gene
ID conversion based on a more recent genome annotation, lung
SWEET networks were slightly larger comprising 5706 nodes
connected by 55 806 edges (Methods, Supplementary Table 1).
The aggregate brain network and single-sample brain networks
constructed using SSN, LIONESS, CSN and iENA comprised 4741
nodes and 42 948 edges after pruning for HumanNet interactions,
while 4686 nodes and 42 206 edges remained in the SSPGI
networks. Again, SWEET networks for brain samples were slightly
larger comprising 4936 nodes and 45 724 edges.

Different single-sample network inference methods generate
distinct network topologies
First, we aimed to explore the network topology of the aggregate
and single-sample networks35. Supplementary Fig. 1 depicts the
distribution of edge weights in the aggregate networks, as well as
across all edges in single-sample networks. Also, it shows the
distribution of the average weight of each edge individually across

all samples. For lung samples, edge weights in SSN networks
ranged between [-0.3, 0.35], while edge weights in SWEET and
LIONESS networks ranged between [-1.5, 1.5] and [-25, 30]
respectively. iENA lung networks had an edge weight distribution
similar to those constructed by LIONESS, with weights ranging
between [-25, 32]. CSN produced networks with binary weights of
either zero or one, such that all edges present in the network of a
specific sample had a weight of exactly one. Finally, networks
constructed by SSPGI had edge weights in the interval [-15000,
15000], with non-continuous values since it is a rank-based
method. We observed similar edge weight distributions in
networks constructed for brain samples. Interestingly, edge
weights in SWEET networks followed a distribution highly similar
to their respective aggregate network, while for other methods
there is a clear deviation. In both tissues, networks constructed by
SSN, LIONESS and iENA were predominantly characterized by
edge weights close to zero. Due to the binary nature of edge
weights in CSN networks, either zero or one, a significant
proportion of edges within each single-sample CSN network was
associated with weight zero and thus absent in the network. On
average, these networks contained 27 814 and 24 399 edges for
lung and brain samples, respectively. We therefore selected the
top 25 000 edges in SSN, LIONESS, SWEET, iENA and SSPGI
networks, rendering networks comparable in size across all
methods. These networks, which had previously already been
pruned by HumanNet, are further referred to as top 25k networks.
The signs of edge weights in these networks were mostly

Fig. 1 Lung and brain cancer cell lines exhibit extensive transcriptional differences between subtypes. a Heatmap showing hierarchical
clustering of Z-scores of pairwise Spearman correlations of gene expression in lung samples using Ward’s linkage. b Volcano plot of DE genes
in NSCLC versus SCLC. Significantly DE genes are colored in red (p-adj <= 0.05 & |LFC | > 1, moderated t-test). c Heatmap showing hierarchical
clustering of Z-scores of pairwise Spearman correlations of gene expression in brain samples using Ward’s linkage. d Volcano plot of DE genes
in glioblastoma versus medulloblastoma. Significantly DE genes are colored in red. (DE differentially expressed, NSCLC non-small cell lung
carcinoma, SCLC small-cell lung carcinoma, p-adj adjusted p value, LFC log fold change).
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consistent between methods for SSN, LIONESS and iENA. SSPGI
and SWEET edges showed some inconsistencies with other
methods, while CSN edge weights are binary and thus incompar-
able (Supplementary Fig. 2).
The top 25k networks varied in edge weight distributions as

well as network topology (Supplementary Tables 1–3)36. The
aggregate networks had an order of magnitude more connected
components than single-sample networks, and also displayed
higher clustering coefficients and lower node and edge between-
ness. Thus, aggregate networks were more tightly connected with
shorter paths between nodes. Overall, topological differences
between single-sample networks themselves were rather small,
with SPPGI having a lower clustering coefficient than the rest for
both tumor types. Thus, although constructed on the same data as
the aggregate networks and subjected to similar edge selection
procedures, each single-sample network inference method built
distinct single-sample networks that were mostly different from

the aggregate network, both at the level of edge weight
distribution and network topology.

Exploration of single-sample networks
Next, we inquired to what extent LIONESS, SSN, SWEET, iENA, CSN
and SSPGI provide relevant biological insights at the sample-
specific and subtype-specific level. Therefore, we first calculated
the node strengths37 i.e. the sum of absolute edge weights for
each node in the single-sample networks, and projected these
onto their first two principal components using Principal
Component Analysis (PCA). For both lung and brain top 25k
networks, the different single-sample networks tended to cluster
together according to subtype, but only up to 18% for lung and
up to 28% for brain of the total variance is being explained by the
first two PCs, with decreasing values going from iENA, SSN,

Fig. 2 Overview of single-sample network construction and network pruning. Expression data of lung and brain cancer cell lines were
downloaded from CCLE, after which samples were selected and data preprocessed (Methods). Aggregate coexpression networks were
constructed for both tissues using Pearson’s correlation (PCC), and single-sample networks using SSN, LIONESS, SWEET, iENA, CSN and SSPGI.
SSPGI was not scalable and was therefore run with a lower number of highly variable genes (HVGs) as compared to the other methods. SSPGI
inherently already used HumanNet as background network, while the other single-sample networks were pruned for edges present in the
HumanNet network. Next, the top 25k edges were selected in SSN, LIONESS, SWEET, iENA and SSPGI networks, whereas all ~25k edges were
selected in the binary CSN networks.
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LIONESS, CSN, SSPGI to SWEET (Fig. 3, Supplementary Fig. 2,
Supplementary Fig. 3).

Analysis of hubs in single-sample networks
We further identified hubs by selecting the top 200 most
connected nodes in each single-sample network and aggregate
networks (Methods). As single-sample network inference methods
are designed to capture heterogeneity between samples of a
tumor type, we expect to some extent different hubs in different
samples, and ideally these hub genes are related to the cancer
subtype of a given sample. To test this, we first assessed the
recurrence of hub genes (i.e. the number of times a given gene is
identified as hub across a group of samples) in networks
constructed using a given method for lung (Fig. 4a) and brain
samples (Fig. 4b). All methods constructed single-sample networks
with the majority of hubs being unique to only one or a few
samples, for both brain and lung. However, SWEET, CSN and SSPGI
networks showed hubs recurring in all samples: respectively 110,
96 and 18 hub genes overlapped between all lung samples and
131, 76 and 21 hub genes overlapped between all brain samples.
Some hub genes were regularly recurring within SSN, LIONESS and
iENA networks, but none overlapped across all samples.

Furthermore, the top 200 hub genes of the aggregate networks
of lung and brain were consistently recurring among the hub
gene sets identified in single-sample networks, and this was most
obvious in CSN and SWEET networks (Fig. 4a, b). Together, these
observations suggest that SSN, LIONESS and iENA produced
networks that were inherently more different from each other
than SWEET, CSN or SSPGI networks. Also, hubs in the aggregate
networks tended to be hubs in the single-sample networks.
Hub genes should ideally be related to the cancer subtype of a

given sample, and thus similar hubs should be found within
sample groups. We thus grouped all NSCLC, SCLC, glioblastoma
and medulloblastoma single-sample networks and evaluated the
union and intersection of hub gene sets within these groups
(Supplementary Tables 4 and 5). CSN and SWEET represented with
the lowest number for the union of hub gene sets within sample
groups, indicating a poorer hub diversity over single-sample
networks within a tumor-specific or tumor subtype-specific
sample group. Especially for SSN, iENA and LIONESS there is
limited overlap in hubs e.g. for NSCLC, the largest sample group,
there were zero hubs in common across all samples. In CSN and
SWEET networks on the other hand, close to or more than 100
hubs were overlapping in any given sample group, indicating a
highly similar network topology. Nonetheless, all single-sample

Fig. 3 Visualization of lung samples after projecting the node strengths i.e. the sum of absolute edge weights of the single-sample
networks onto their first two principal components. We performed PCA analysis on top 25k lung networks constructed using (a) SSN, (b)
LIONESS, (c) SWEET, (d) iENA, (e) CSN and (f) SSPGI. Each dot represents one single-sample network constructed from a cell line corresponding
to a given cancer subtype. (NSCLC non-small cell lung carcinoma, SCLC small cell lung carcinoma, PCA principal component analysis).
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networks did have regularly recurring hubs per cancer subtype
group (occurring in at least 75% of the samples in a given group).
We next identified subtype-specific recurring hubs as those hubs
that regularly recur within one sample group, and do not overlap
with regularly recurring hub genes in other sample groups (Fig.
4c–f). On Fig. 4, each dot represent one gene that was identified as
a hub, and the y-axis represents the number of times that given
hub is found across a given sample group. The highest proportion
of subtype-specific versus non-subtype-specific hubs among
highly-recurring hubs was observed for SSN networks, followed

by iENA and LIONESS. Moreover, these methods generated a
lower amount of highly recurring hubs. SWEET, CSN and SSPGI
had more recurring hub genes that were less specific to the cancer
subtype of a given sample group (Fig. 4c–f). Similar results were
obtained upon investigating more subtypes (brain) or sub-
subtypes (lung) (Supplementary Fig. 5).
Next, we assessed whether these hub lists were enriched for

known cancer driver genes. We downloaded a list of known
drivers from IntOGen and COSMIC/Cancer Gene Census for NSCLC,
SCLC, glioblastoma and medulloblastoma, and additional cancer
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subtypes (analyses in supplementary information), as well as CCLE
cell line specific cancer drivers from the Cell Model Passports
database, and assessed their presence in the sets of hubs per
sample group. For both databases, we observed in addition to
some overlap, many tumor subtype-specific and sub-subtype-
specific cancer driver genes (Supplementary Fig. 6). Out of 69 and
59 driver genes for NSCLC and SCLC from IntOGen/COSMIC
respectively, 23 were present in the aggregate HumanNet lung
network. On the other hand, NSCLC and SCLC samples were
characterized by 213 driver genes in total according to Cell Model
Passports, of which 74 were present in the aggregate HumanNet
lung network. Known IntOGen/COSMIC drivers for medulloblas-
toma and glioblastoma respectively comprised 57 and 45 genes,
of which 9 and 16 respectively were present in the aggregate
HumanNet brain network. These samples were further character-
ized by 72 driver genes according to Cell Model Passports, while
19 of these were present in the aggregate brain network. After
concatenating hubs per sample group, we found that each
method constructed networks in which hub genes were enriched
for subtype-specific IntOGen/COSMIC drivers for NSCLC and
glioblastoma, the two largest sample groups. Cell Model Passport
drivers on the other hand were enriched in hub genes identified in
NSCLC, glioblastoma and medulloblastoma samples (Fig. 5a, b). An
analysis of additional sample groups, defined by cancer sub-
subtype (lung) or subtype (brain), confirmed that each tool is
capable of prioritizing subtype-specific genes as hubs, although
with decreasing sample numbers it became more difficult to
observe this (Supplementary Fig. 7, Table 1). There was no single
tool that clearly outperformed the others.
Overall, we found that SSN, LIONESS, SWEET, iENA, CSN and

SSPGI construct single-sample networks, in which different genes
were identified as hubs for different samples. For a given sample,
the average overlap of hub genes across methods was 25 genes in
lung networks, and 42 genes in brain networks. Further, we
observed varying degrees of subtype-specificity within hub genes,
with CSN and SWEET networks having the lowest diversity among
hub genes. Furthermore, we found a significant enrichment of
NSCLC and glioblastoma driver genes from both IntOGen/COSMIC
and Cell Model Passports for all methods.

Differential node strength in single-sample networks
The node strength quantifies how strongly a node is directly
connected to other nodes in the network37 i.e. by summing all
absolute weights of edges connected to the given node. In the
undirected single-sample networks we calculated the node
strength of a given node as the sum of absolute edge weights
of that node, after scaling weights to values between -1 and 1.
Using linear modeling and an empirical Bayes procedure38, we
identified differentially strong nodes (p-adj < 0.05 & |LFC | > 1)
between NSCLC and SCLC samples: 59 in LIONESS, 192 in SSN and
363 in SSPGI networks. Only one node was significantly
differentially strong in CSN and SWEET lung networks, and zero
in iENA networks (Fig. 6). However, none of these gene sets were
enriched for NSCLC- and SCLC-specific known driver genes, either
from IntOGen/COSMIC nor from Cell Model Passports. For brain
networks, we found 113, 116, and 178 differentially strong nodes
between glioblastoma and medulloblastoma samples in SSN,
LIONESS and SSPGI networks respectively (Supplementary Fig. 8).
Again, there was no significant enrichment for known subtype-
specific drivers. There was a strong tendency towards negative
LFCs for both lung and brain analyses in SSN and LIONESS
networks, a phenomenon not observed during DE analysis. This
observed preference is likely caused by an unbalanced group size
of tumor subtype-specific samples used to construct the
aggregate network, i.e., 73 NSCLC versus 12 SCLC samples and
36 glioblastoma versus 9 medulloblastoma samples, resulting in
aggregate networks which are more representative of NSCLC and
glioblastoma samples respectively. In SSN, LIONESS and iENA, we
noticed a tendency for lower node strengths for the bigger
subtype group in both lung and brain samples, while this potential
bias was absent in SWEET, CSN and SSPGI (Supplementary Figs.
10–19). SWEET aims to minimize subtype group size bias through
incorporation of a weighing factor reflecting genome-wide
correlations across samples, resulting in similar edge weight
distributions across sample groups (Supplementary Fig. 11, 17).
However, some bias seemed to remain present, since also in
SWEET networks, there was a slight tendency towards negative
LFCs (Fig. 6c and Supplementary Fig. 8c).
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Relating single-sample networks to sample-specific molecular
features
Finally, we assessed the biological relevance of single-sample
functional gene networks by comparing them to additional CCLE
omics measured on the same samples. Ideally, these single-sample
networks constructed from transcriptional gene expression
profiles have a higher resemblance to other sample-specific omics
than the aggregate network has. We downloaded proteomics and
copy number variation (CNV) data from CCLE (Methods) and
assessed the correlation between node strength i.e. the sum of
absolute edge weights of a node and protein abundance, and
node strength and CNV (Fig. 7a–d). For the aggregate networks,
we assessed correlations between node strength in the aggregate

HumanNet network and proteomics/CNV measurements in each
individual sample. On average, node strength in the aggregate
network did not correlate well with protein abundance or CNV
data, displaying correlation coefficients <0.1 for proteomics data
and <0.05 for CNV data. On the other hand, for all methods, single-
sample networks significantly outperformed the aggregate net-
work for correlation of node strength to both proteomics and CNV
data. Only for brain single-sample networks constructed by CSN
we detected no significant difference with the aggregate network
in the average correlation coefficient between node strength and
protein abundance. Overall, single-sample networks from SSN,
LIONESS and SWEET resulted in the largest average correlation
coefficients, for both lung and brain samples, and for proteomics

Fig. 6 Single-sample networks display distinct differential node strength between non-small cell lung carcinoma (NSCLC) vs small cell
lung carcinoma (SCLC) across network types. The node strength, or sum of absolute edge weights, was calculated for all nodes in top 25k
networks constructed by (a) SSN, (b) LIONESS, (c) SWEET, (d) iENA, (e) CSN and (f) SSPGI. Differentially strong nodes (p-adj < 0.05 & |LFC | >= 1,
moderated t-test) in NSCLC versus SCLC (LFC < 0 means lower in NSCLC than SCLC) were identified using linear modeling and an empirical
Bayes procedure. (p-adj adjusted p value; LFC log fold change, NS non-significant).
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and copy number variation data. Together, these findings suggest
that single-sample network inference methods were better in
capturing sample-specific molecular features than aggregate
networks and that SSN, LIONESS and SWEET single-sample
networks correlated similarly and higher with sample-specific
omics than the other methods, and the aggregate network.

DISCUSSION
The fight against highly complex and heterogeneous diseases
such as cancer necessitates an in-depth understanding of disease
pathobiology, at population level, but especially at the level of
individual patients. Investigation of biological networks and their
rewiring in disease can therefore greatly benefit the development
of individualized therapeutic strategies. Although single cell
technologies offer the ability of constructing networks for
individual patients, there are still limitations associated with this
approach, especially in the clinical setting. Bulk molecular profiling
techniques on the other hand are well established and cheaper,

there is a plethora of data already available, and bulk network
inference algorithms have been extensively benchmarked12.
However, bulk network inference methods construct population-
level networks, representing interactions shared by most patients.
Single-sample network inference methods have thus been
developed to prioritize biologically meaningful information of a
single individual from bulk omics data, bridging the gap towards
personalized medicine, a major goal in present-day cancer
research10.
In this study, we compared six single-sample network inference

algorithms, LIONESS, SSN, SWEET, iENA, CSN and SSPGI in their
construction of single-sample functional gene networks from
tumor cell line transcriptomics data in the absence of normal
samples. Specifically for these single-sample networks, we
investigated graph properties, sample-specificity and cancer driver
properties of hubs, the ability to distinguish samples of different
cancer subtypes from each other, as well as their concordance
with other sample-specific omics data. Although each method
functions as intended in its original publication and research
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Fig. 7 Feature-wise correlation between node strength in single-sample networks and other sample-specific omics data. a Lung
proteomics data; b Brain proteomics data; c Lung Copy Number Variation (CNV) data; d Brain Copy Number Variation (CNV) data. Significant
differences of the average correlation coefficients between the single-sample methods and the aggregate HumanNet network (not for
expression) are shown above the boxplots (*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001 and ****p ≤ 0.0001, Kruskal-Wallis and post hoc Dunn test).
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context, these studies understandably lack neutrality, and so far,
only limited benchmarking has been performed22,28–30. First, we
discovered that each method had different characteristics and
requirements concerning in- and output data structures. The
SSPGI algorithm was not scalable above 7800 genes. Also, as CSN
returns binary networks comprising either zero or one as edge
weights, the average number of edges within each single-sample
network was lower compared to other methods. Therefore, we
first pruned networks by selecting for edges present in the
HumanNet reference network, and then selected the top 25 000
edges within each single-sample network to compare networks of
similar size. Furthermore, edge weights ranged between highly
different outer bounds in networks from very low in SSN to very
high in SSPGI, so after exploring edge weight distributions we
scaled them to values between [-1,1] for all methods.
Existing benchmarks focused on a limited number of features

per sample, on the performance of further downstream structural
control (SSC) methods, or only evaluated a limited number of
network inference tools28–30. A comparison between LIONESS and
SSN revealed that when both methods depend on the exact same
aggregate network, there is an almost perfect linear relationship
between edge weights of LIONESS and SSN networks for a given
sample30. Both methods heavily rely on PCC for network
construction, and construct highly similar networks. Indeed, we
found that SSN and LIONESS networks had similar network
topological characteristics, hub gene sets and correlation to
sample-specific omics. However, it must be noted that the
mathematical framework employed by LIONESS allows to make
use of more advanced network inference tools than PCC22.
Hub genes in SSN networks, identified based on node degree,

have been shown to be strongly related to cancer driver
mutations19. However, there is no consensus regarding the
number of nodes to select as hubs. While the SSN study suggests
to use the top 5, 10 or 20 most connected nodes, we selected the
top 200 most connected nodes and found hub gene sets to be
significantly enriched for known subtype-specific driver genes.
Within methods, there was a variable number of overlapping hubs
between different single-sample networks and the aggregate
network, with hub genes identified in CSN and SWEET networks
displaying the lowest diversity across samples. As a result, hubs
from these networks also had the lowest cancer subtype
specificity, as most hubs regularly recurred across both subtypes.
Since all single-sample networks were undirected coexpression
networks, we calculated node strength as the sum of absolute
edge weights. We identified most differentially strong nodes in
single-sample networks of SSN, LIONESS and SSPGI, although
these were not enriched for known subtype-specific cancer driver
genes.
One critical remark is that the original applications of LIONESS,

SSN, iENA and SSPGI used a group of healthy samples to create
the aggregate network or build the edge perturbation matrix,
which was not the case in this study. Paired healthy and disease
samples are not always available in a clinical setting and not for all
tumor types, thus we aimed to investigate the performance of
these methods in the absence of control reference samples. When
the aggregate network is constructed from a healthy or
homogenous group of samples, each sample of interest will be
compared to this aggregate network representing a healthy state.
One can thus argue that the construction of an aggregate network
from a heterogenous group of samples will eventually result in
less explicit differences between the aggregate and the single-
sample networks. Due to the unbalanced tumor subtype sample
numbers during the construction of aggregate lung (73 NSCLC
versus 12 SCLC samples) and brain (36 glioblastoma versus 9
medulloblastoma samples) networks, the final aggregate networks
were dominated by the larger sample group. As a result, we
observed a tendency for higher average node strengths for
samples belonging to the underrepresented sample group for

SSN, LIONESS and iENA. Also, we noticed a strong tendency
towards negative LFCs in comparisons of the node strengths
between subtype sample groups for LIONESS and SSN networks.
Also the higher proportions of subtype-specific hubs in SSN,
LIONESS and iENA networks could potentially be attributed to this
potential bias. In the recent study of the single-sample network
inference method SWEET, the authors also noticed that sample
size differences between intrinsic subpopulations may cause a
network size bias in the statistical perturbation model for the SSN
method, in the statistical dependency model for the CSN method
and in the model of removing a single sample from an aggregate
network for the LIONESS method27. Adversely, SWEET includes a
weighting factor during edge weight calculation that reflects
genome-wide sample-to-sample correlations. However, in our
study this resulted in highly similar single-sample networks, as we
observed high similarity of hub gene sets, low hub subtype-
specificity, and only a single differentially strong node in NSCLC vs
SCLC or medulloblastoma vs glioblastoma single-sample net-
works. Nevertheless, SWEET, together with SSN and LIONESS, was
one of the methods where node strengths correlated the best
with single-sample proteomics and CNV data. It must be noted
that whereas SWEET employs a Z-test on the fully connected
network to select edges and build the final single-sample
networks, we opted to use SWEET with a selection of the top 25
000 edges, as we did for the other methods. SWEET will weigh
edges of subtype samples that are overrepresented more, because
the difference of these edge weights to the edge weights of the
aggregate network becomes less. Upon selecting the edges with
the top 25 000 highest weights, SWEET single-sample networks
together will therefore consist of more balanced edge weights
reflecting all subtypes as opposed to LIONESS that will favor the
edge weights of underrepresented subtypes.
Hence, we advocate for the careful assembly of aggregate

networks with subgroups of similar size, especially when using
SSN, LIONESS or iENA. Ideally, also covariates are taken into
account, although this is not possible in the correlation framework
employed by SSN, LIONESS, SWEET or iENA, or the frameworks
employed by CSN and SSPGI39. The recent single-sample network
inference method DysRegNet, which is based on an aggregate
network of normal control samples, employs linear models using
TF expression as an explanatory variable for target gene
expression, which allows to also incorporate known covariates
such as sex, age, or origin of the sample39.
Overall, there is a lack of ground truth data which makes a true

benchmark study difficult. Instead, we explored the relationship
between single-sample networks and other omics data modalities,
namely proteomics and CNV, at the sample level. We found that
single-sample networks inferred by all methods outperformed the
aggregate network regarding correlation to sample-specific omics.
Furthermore, we demonstrated this correlation difference with
two independent omics data, proteomics and CNV, reinforcing
that single-sample networks provide sample-specific information
that is not present in the aggregate network, hence their added
value. SSN, LIONESS and SWEET showed a higher correlation to
sample-specific omics than the other methods. Correlation to
gene expression data was even higher, however, gene expression
data in itself cannot provide the additional level of systems
biological insights as provided by network analysis through e.g.
hub gene analysis or differential node strength. Moreover, clusters
of nodes in coexpression networks often represent biological
entities that function together in the same process9. Also, we
heavily relied on cancer subtype annotations of CCLE cell lines
during our hub gene and differential strength analyses. Yet,
clustering of samples based on expression data showed that these
annotations might not be ideal, as several samples clustered
together with other subtypes. These issues have previously been
addressed33, and we used a specific approach to include the most
relevant cell lines in our study.
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In conclusion, we have constructed single-sample networks
for 86 lung and 69 brain cancer cell lines from CCLE, using six
different single-sample network inference methods. Several
network pruning steps were required to make networks
comparable. For all methods, we found that hub genes were
enriched for known cancer subtype-specific driver genes and
node strengths of single-sample networks correlated better to
sample-specific omics than the traditional bulk aggregate
network, suggesting that single-sample networks are a valuable
tool for personalized medicine (Fig. 8). Overall, CSN and SWEET
performed worse than other methods in hub analyses such as
hub specificity and enrichment of known drivers. SWEET single-
sample networks seemed to be highly similar to each other
regarding hub gene sets and a lack of differentially strong
nodes, which suggest the inclusion of a weighting factor during
single-sample network inference removes a significant portion
of variability. Also CSN networks might suffer from high
similarity across samples due to the binary nature of edge
weights. Based on correlation of the node strengths of single-
sample networks to sample-specific proteomics and CNV data,
SSN, LIONESS and SWEET performed best in providing sample-
specific information (Fig. 8). For SSN, LIONESS and iENA, it is
important to balance different sample groups within the
samples under study, since these methods seemed to have a
bias for sample group size.
Hence, from our study, we conclude that most of the single-

sample network inference methods are able to reflect sample-
specific biology better than aggregate networks for use-cases
were ‘normal tissue’ samples are absent. However, single-sample
network inference remains a very challenging task since informa-
tion gain depends on only one datapoint per gene, and we

showed that algorithmic choices can have strong influences on
the outcome. While these methods represent a valuable resource
for personalized medicine and precision oncology, we recom-
mend that any generated hypothesis should be carefully
interpreted and experimentally validated.

METHODS
Data and cell line selection
Expression read counts and metadata were downloaded from the
DepMap (Cancer Dependency Map) website (20Q4 version 2
release)31,32,40. Expression data were available for 84 primary brain
cancer and 189 primary lung cancer cell lines. For both tumor
types, outlier cell lines were excluded in two ways. First, only cell
lines with Spearman correlation of expression profiles greater than
0.55 to real tumor tissue, as outlined in a pan-cancer comparison
of CCLE cell lines and TCGA tumor samples33, were kept to ensure
biological interpretability. Second, cell lines strongly differing from
the other cell lines of the same tumor type were removed by
clustering to exclude unrepresentative samples for a given tissue.
Clustering was done with the hclust function using average
agglomeration, with tree cutting at 95% of the maximum height
of the tree in R (version 3.6). Clusters with less than 3 samples
were removed. After filtering, 67 brain and 86 lung cancer cell
lines were retained for single-sample network inference.

Expression data preprocessing
The RNA-seq count data was processed using EdgeR41 in R
(version 3.6). Raw counts were filtered to keep only genes with
counts per million (cpm) greater than 1 in at least one sample.

Fig. 8 Summary of single-sample networks evaluation. Overview of the six single-sample network inference tools compared in this study.
The single-sample networks were evaluated in this study for their methodology and implementation in a Network construction, their subtype-
specific hub recurrence in b Hub specificity, their enrichment for known cancer driver genes in both IntOGen/COSMIC and Cell Model
Passports in c IntOGen/COSMIC and d Cell Model Passports, and their correlation to other sample-specific omics data in e Omics correlation.
‘Aggregate network’ and ‘background network’ reflect whether these are required by each tool. ‘Scalable’ reflects whether a tool could be run
on the complete set of highly variable genes. ‘Other GRN tools’ reflects whether a tool can be used in combination with advanced regulatory
network inference tools other than PCC. ‘Edge weight bias’ reflects whether we observed an edge weight bias due to unbalanced sample
groups while constructing the aggregate network. Subtype-specific hub recurrence was calculated by dividing the average recurrence of
subtype-specific hubs by the average recurrence of non-subtype-specific hubs, scaled between 0 and 1. Enrichment columns reflect 1 – p
values for enrichment of different hub gene sets as described in Fig. 5 and Supplementary Fig. 7 (hypergeometric test). Omics correlation
reflects the correlation to other omics as described in Fig. 7.
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Next, raw counts were normalized by library size, converted into
cpm and log-transformed. We selected 7942 and 9252 highly
variable genes (HVG; variance >2.75 over all samples per tumor
type), respectively, for brain and lung as input for single-sample
network inference (HVG selection). Due to lack of scalability, only
7800 highly variable genes were retained for SSPGI for both tumor
types (see SSPGI method section). Finally, scaling and centering
were performed per gene. Heatmaps were constructed after
calculating Spearman correlations between samples and applying
Ward linkage using ComplexHeatmap42.

Aggregate networks and network visualization
Aggregate networks were constructed separately for brain and
lung samples using PCC after HVG selection. These fully connected
coexpression networks were subjected to pruning for edges in the
HumanNet background network, an integrated functional gene
network34. We choose to work with the HumanNet-XN v2 network
(https://www.inetbio.org/humannetv2/), which contains 17 929
genes and 525 537 edges representing physical protein-protein
interactions, functional associations substantiated by different
omics data and interologs from other species and co-citation links.
We then selected the top 25 000 edges based on edge weights in
these networks.

Cancer driver genes
Lists of known cancer drivers i.e. genes which contain mutations
that have been causally implicated in cancer, for different lung
and brain cancer subtypes were downloaded from the IntOGen
website (19/06/2023, https://www.intogen.org/search) and the
COSMIC/Cancer Gene Census website (19/06/2023, https://
cancer.sanger.ac.uk/cosmic/census). Also, for each CCLE cell line
included in this study, specific known cancer drivers were
downloaded from Cell Model Passports (19/10/23, https://
cellmodelpassports.sanger.ac.uk/). These cancer drivers were then
grouped per sample group and considered subtype-specific
drivers.

Single-sample network inference methods
Table 2 provides an overview of the different single-sample
network inference methods used in this study. We slightly
modified several methods to run them with PCC as underlying
network inference method, without ‘normal tissue’ reference
samples, as well as with different or without background
networks.
In SSN (Single-Sample Network), a reference PCC network is first

generated based on transcriptome data of several reference
samples, usually normal tissue samples. Here we used all selected
cell lines for a specific tumor type, with the sample of interest each
time omitted as a reference. Then, the same is done for all the

Table 2. Overview of the different single-sample network inference methods used in this study

Method Underlying concept Remarks

SSN19 Differential correlation between reference network and reference network + sample
of interest

ΔPCC ¼ PCCrþ1 � PCCr

with PCCðxi ; xjÞ ¼ Covarianceðxi ;xjÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Variance xið ÞVarianceðxjÞ
p

All cancer samples of specific tumor type as
reference, no normal samples
No background network such as STRING, no
significance testing of the edges

LIONESS22 Linear interpolation

eqi;j ¼ N eαi;j � eα�q
i;j

� �

þ eα�q
i;j

With e edge weight in respectively all samples network (α) or all samples network
without sample of interest q (α - q) and N scaling factor inversely proportional to the
total number of samples

PCC as aggregate network inference method

IENA24 Single-sample correlation

sPCC xi ; xj
� � ¼ Covariancer xi ;xjð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Variancer xið ÞVariancer xjð Þp

with Covariancerðxi ; xjÞ ¼ ðxi � μri Þðxj � μrj Þ
with Variancer xið Þ ¼ 1

N

PN
i¼1 ðxi � μri Þ2

With mean and variance for genes xi and xj taken from the reference r

Only sPCC node-networks from iENA, not shPCC
edge-networks
All cancer samples of specific tumor type as
reference, no normal samples

CSN26 Local gene-gene association based on statistical independency model

ρsij ¼
nsij
n � nsi

n :
nsj
n

With ρ statistic of edge i-j in cell / sample s, n is the number of cells / samples with
expression of gene i, j or both as plotted in scatter diagrams, and ni

s = nj
s= 0.1n

Binary output
Developed for single cell
Scatter diagrams per gene pair considering all
cancer samples

SSPGI25 Edge perturbation based on gene expression rank subtraction
Δe;s ¼ δe;s � δe
δe;s ¼ ri;s � rj;s
With expression rank r, delta rank matrix δ and benchmark delta rank vector δ for an
edge e between genes i and j within a sample s

HumanNet as background network, not
Reactome
Not scalable, up to 7800 genes
Benchmark delta rank vector calculated using all
cancer samples of specific tumor type as
reference, no normal samples

SWEET10 Linear interpolation with genome-wide sample weight Wq

Wq ¼ μqPCC�min μPCCþx
max μPCC�min μPCCþx

With μqPCC the mean of PCCs between sample q and all other n samples, μPCC is the set
of average PCCs for n samples and x is a constant value of 0.01
eqi;j ¼ Wq ´ n ´ Kðeαþq

i;j � eαi;jÞ þ eαi;j
With e edge weight in respectively all samples network (α) or all samples network plus
sample of interest q (α+q) and K a balance parameter of 10%

No significance testing of the edges

We slightly modified several methods because we ran them with PCC as underlying network inference method, without ‘normal tissue’ reference samples, and
with different or without background networks. This allowed making a consistent comparison between methods.
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reference samples plus the sample of interest to generate the so-
called perturbed network. Finally, these two networks are
subtracted from each other. The significance of p-values is not
considered as we prune all the networks in the same way using
HumanNet and 25k HumanNet (Fig. 2)19. Although there is a SSN
Python implementation online, we made our own R implementa-
tion for ease of use with the above-mentioned modifications.
In LIONESS, linear interpolation is performed on the edge

weights of two networks, here constructed by PCC, the first
containing all samples, the second containing all samples except
for the sample of interest22. We used the LIONESS function from
the LIONESS R package (https://github.com/mararie/LIONESSR).
This function creates one edge list file for all samples in the input
expression dataset. We used the single-sample PCC calculation in
the iENA node-network24, where the PCC between two genes in a
single-sample is calculated using mean and variance in a reference
group, usually normal tissue samples, but here all selected cell
lines for a specific tumor type. A customized implementation of
the algorithm in R was made because no source code was
provided with the original publication.
The Cell-Specific Network (CSN) was developed originally to

infer gene association networks for single cells. Still, it can also be
applied to bulk data to infer single-sample networks26. It
generates a binary output, where gene-gene interactions are
considered present (1) or not present (0). CSN is based on
statistical dependency. For each gene pair, an expression scatter
diagram is made in which each dot represents one cell or sample.
Next, within each plot, the neighborhood of each sample is
identified using a predefined rectangular distance threshold along
both axes. The number of neighboring cells or samples in these
neighborhoods (nx, ny and nxy) divided by the total number of
cells or samples n are estimates of the marginal density function
of x and y and the joint density function of x and y, respectively.
These are used to define a statistic from -1 to 1, which follows a
normal distribution given that gene x and gene y are indepen-
dent. Because the mean and the standard deviation of this normal
distribution are known, this statistic can be used to calculate a
p-value that, in case of significance, rejects the null hypothesis
that gene x and y are independent in sample k and form an edge.
The MATLAB code for this method is provided on the papers
GitHub page (https://github.com/wys8c764/CSN).
SSPGI calculates edge perturbation values25. First, the gene

expression matrix is converted into a rank matrix by ranking the
genes according to the expression value in each sample. Second, a
delta rank matrix is calculated by subtracting the ranks of any two
genes connected by a given edge in the background network. The
original publication created a background network based on all
gene interactions in the Reactome pathway database43. In theory,
the required background network could contain all possible edges
between all genes in all samples, but in practice this is not feasible
due to the lack of scalability of SSPGI. We could run SSPGI only on
7800 genes and with HumanNet given as background network,
which caused no other interactions being calculated than the
ones present int HumanNet. Including more genes, or all possible
edges as background caused the method to terminate with an
error. For all methods we worked on a high performance
computing infrastructure on an Dual Intel Xeon Gold 6420 CPU
cluster using one node with a usable memory of 700 GBM and
2×18 cores. As within-sample delta ranks of gene pairs are stable
under normal conditions, a benchmark delta rank vector is
calculated using the mean rank of all genes across the reference
group of normal samples. However, we built this benchmark delta
rank vector using all selected cell lines for a specific tumor type.
Finally, the edge perturbation matrix is created by subtracting
every sample’s benchmark delta rank vector from the delta rank
matrix. The authors provide the SSPGI implementation written in R
on their GitHub page (https://github.com/Marscolono/SSPGI).

SWEET constructs a single-sample network for each sample Sp
based on the gene expression of n case samples. First, SWEET
calculates a genome-wide sample-to-sample correlation matrix. The
average PCC for each sample S is then used to calculate a genome-
wide sample weight WS. Second, an aggregate network is
constructed using PCCs as edge weights. A perturbed network is
then inferred by creating a copy of the expression profile of sample
S, and calculating PCCs between all genes for n+ 1 samples. Finally,
the difference between the aggregate and perturbed network is
calculated and integrated with genome wide sample weights W to
construct n single-sample networks. The significance level of each
edge is later evaluated using a z-test, and all edges with a score
larger than the significance level are removed. However, in our
implementation we omitted this last step, and selected the top 25
000 edges in each single-sample network instead, so that networks
constructed by different methods were comparable in size. Due to a
more recent genome annotation used to convert Entrez IDs in the
HumanNet network to gene symbols, SWEET networks were slightly
larger than SSN, LIONESS, iENA, CSN and SSPGI before selection of
the top 25 000 edges.
Outputs from each single-sample network inference method

were converted into a dataframe with edges as rows and samples
as columns, generating a uniform format as provided by the
LIONESS algorithm. In a subsequent step, we filtered the edges of
the other single-sample networks obtained by SSN, LIONESS,
SWEET, iENA and CSN based on the HumanNet background
network, as explained for the aggregate network. Finally, we
selected the top 25 000 edges in each single-sample network
constructed by SNN, LIONESS, SWEET, iENA and SSPGI, in order to
make them comparable in size to the average CSN network.

Analysis of network topology
The average edge weight distribution was plotted for each
method using ggplot2’s geom_density function in R44. The average
weight of an edge was determined by calculating the average
weight of a given edge across all samples, ignoring entries for
which the given edge was not present in the single-sample
network. For plotting the weight density distribution of all edges,
the weights of all non-zero edges were concatenated into a single
weight vector. We used the igraph package in R to determine
network characteristics45. Clustering coefficients were calculated
using the transitivity function with type average, network densities
using the edge_density function without considering loops. Node
betweenness was calculated using the estimate_betweenness
function while treating the network as an undirected graph. As
this is a node-specific characteristic, we calculated the mean value
across all nodes within each sample. Edge betweenness was
determined using the betweenness function with the same
parameters as for node betweenness. Finally, the diameter and
count_components functions were used to calculate network
diameter and the number of connected components, respectively.

Principal component analysis
The node strength was calculated as the sum of absolute edge
weights for each node37. Node strength matrices were transposed
so rows represented samples and columns represented nodes,
after which R’s prcomp function was applied. Plots were drawn
using the autoplot function in ggplot2, and dots were colored
according to the sample cancer subtype.

Hub gene analysis
Hub genes were identified as the top 200 most connected nodes
in each top 25k single-sample network. Enrichment for known
cancer driver genes was assessed under a hypergeometric
distribution using all genes present in the network as background.
Violin plots were made visualizing the recurrence of hubs in all
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samples as well as all samples within a disease subtype. Regularly
recurring hubs were defined as hubs recurring in at least 75% of
networks in a sample group per method.

Differential node strength
Since LIONESS, SSN, iENA, CSN, SSPGI and SWEET produce single-
sample networks with different ranges of edge weights, we
performed a within-sample normalization to scale edge weights
within [-1, 1]. The differential node strength between sample
subgroups was evaluated by calculating the sum of absolute edge
weights for each node and applying linear modeling with an
Empirical Bayes procedure, as implemented in the limma
package46. The differential strong nodes were identified having
an absolute log-fold change (LFC) > 1 and an adjusted p-value <
0.05 (Benjamini & Hochberg correction). Enrichment for known
cancer driver genes was assessed by a hypergeometric distribu-
tion using a combined list of all known driver genes per tissue and
all genes present in the network as background.

Comparison to other omics data
Normalized proteomics datasets were downloaded from the CCLE
website (protein_quant_current_normalized.csv, version 20Q4),
and cell lines were matched to samples present in single-sample
networks for lung and brain, separately. Rows with duplicate gene
symbols were removed. As these data were already normalized,
no further preprocessing was applied. Next, we selected samples
with matching proteomics data from the preprocessed expression
dataset. The node strength i.e. the sum of absolute edge weights
per node was calculated in all single-sample networks and the
aggregate networks. We then calculated PCCs between proteo-
mics data and the node strength of all nodes in the single-sample
networks for each matching sample, and between the node
strengths of the aggregate network and each individual proteo-
mics sample. Copy number variation data was also downloaded
from the CCLE website (20Q4_v2_CCLE_gene_cn.csv). We applied
the same procedure to copy number variation data. Results were
plotted using ggplot244.

Funkyheatmap
The funky heatmap was plotted using funkyheatmap package in R47.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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