
ARTICLE OPEN

MarkerMap: nonlinear marker selection for single-cell studies
Wilson Gregory 1,6, Nabeel Sarwar2,6, George Kevrekidis 1,6, Soledad Villar1,3✉ and Bianca Dumitrascu 4,5✉

Single-cell RNA-seq data allow the quantification of cell type differences across a growing set of biological contexts. However,
pinpointing a small subset of genomic features explaining this variability can be ill-defined and computationally intractable. Here
we introduce MarkerMap, a generative model for selecting minimal gene sets which are maximally informative of cell type origin
and enable whole transcriptome reconstruction. MarkerMap provides a scalable framework for both supervised marker selection,
aimed at identifying specific cell type populations, and unsupervised marker selection, aimed at gene expression imputation and
reconstruction. We benchmark MarkerMap’s competitive performance against previously published approaches on real single cell
gene expression data sets. MarkerMap is available as a pip installable package, as a community resource aimed at developing
explainable machine learning techniques for enhancing interpretability in single-cell studies.

npj Systems Biology and Applications (2024) 10:17 ; https://doi.org/10.1038/s41540-024-00339-3

INTRODUCTION
Recent advances in genomics and microscopy enable the
collection of single cell gene expression data (scRNA-seq) across
cells from spatial1 and temporal2 coordinates. Understanding how
cells aggregate information across spatio-temporal scales and
how, in turn, gene expression variability reflects this aggregation
process remains challenging. A particular experimental design
challenge is due to the fact that existing techniques (e.g., smFish3,
seqFish4, MERFISH5, ISS6) rely on the pre-selection of a small
number of target genes or markers, incapable of capturing the full
transcriptomic information required to characterize subtle differ-
ences in cell populations. Selecting the best such markers (marker
selection) is often statistically and computationally challenging,
often a function of the nonlinearity of the data and the type of
differences to be captured.
Marker selection is the product of both prior knowledge and

computational analysis of previously collected scRNA-seq data.
Computationally, it aims to reduce the dimension of data such as
gene expression—from thousands of genes to a few—to enable
downstream analysis such as visualization, cell type recovery,
identification of gene programs or gene panel design for
interventional studies. Akin to principal component analysis
(PCA)7 or variational autoencoders (VAE)8, both popular in the
analysis of single-cell RNA-seq9,10, marker selection methods seek
to describe cells as datapoints in a space of few coordinates. To
this end, PCA and VAE based methodologies associate cells with a
smaller set of latent coordinates representing aggregates of
weighted groups of gene expression. In contrast, marker selection
approaches seek interpretable representations, where coordinates
represent genes directly, rather than linear or nonlinear combina-
tions of genes.
Many methods have been proposed to select markers that best

differentiate between a set of discrete, pre-defined cell type
classes11–16. These fall into two broad categories—one-vs-all and
gene panel methods. One-vs-all methods are most common11–13

and seek to determine, for each cell type, a set of genes that are
differentially expressed in that one cell type alone, when
compared with all the other cell types. In particular, RankCorr15,

a sparse selection approach inspired by the success of a related
proteomic application17, offers theoretical guarantees and excel-
lent experimental performance. Another recent algorithm with
good performance, SMaSH16, uses a neural network framework
leveraging techniques from the explainable machine learning
literature18. In contrast, gene panel methods seek to identify
groups of genetic markers that jointly distinguish across cell types.
ScGeneFit14, for instance, is a compressive classification method19

which employs linear programming to select markers that
preserve the classification structure of the data, without identify-
ing genes with individual cell types, and possibly selecting fewer
genes as a result. One-vs-all and gene panel alike, these methods
are supervised: they rely on a ground truth classification structure
of the cells. Few unsupervised techniques exist—SCMER20 is, to
the best of our knowledge, the only genetic marker selection
approach proposed that avoids explicit clustering by using
nonlinear dimensionality reduction (UMAP) and manifold learning.
Recent reviews on feature selection in genomics applications21,22

compare and contrast these marker selection methodologies in
supervised, linear contexts.
More broadly, diverse solutions have been proposed to address

the feature selection problem in non-genomic contexts. In linear
settings, these include the popular ℓ1 regularization or Lasso23,
and CUR decomposition24, while in nonlinear regression settings,
outcomes are often predicted with neural networks25. In language
models, explainable deep learning algorithms have been devel-
oped to predict and explain outcomes like review ratings or
interview outcomes from texts where few significant words get
highlighted as explanations for the outcome26–29. In imaging,
given a trained model one can use shapley coefficients to identify
parts of an image that produce a certain prediction30,31.
In this paper, we introduce MarkerMap, a scalable and

generative framework for nonlinear marker selection. Our
objectives are two-fold: (a) to provide a general method allowing
joint marker selection and full transcriptome reconstruction, and
(b) to compare and contrast tools across different communities—
computational biology and explainable machine learning—within
a single, accessible computational framework centered around

1Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD 21218, USA. 2Center for Data Science, New York University, New York, NY 10012,
USA. 3Mathematical Institute for Data Science, Johns Hopkins University, Baltimore, MD 21218, USA. 4Department of Statistics, Columbia University, New York, NY 10027, USA.
5Irving Institute for Cancer Dynamics, Columbia University, New York, NY 10027, USA. 6These authors contributed equally: Wilson Gregory, Nabeel Sarwar, George Kevrekidis.
✉email: soledad.villar@jhu.com; bianca.dumitrascu@columbia.edu

www.nature.com/npjsba

Published in partnership with the Systems Biology Institute

1
2
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41540-024-00339-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41540-024-00339-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41540-024-00339-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41540-024-00339-3&domain=pdf
http://orcid.org/0000-0002-5511-0683
http://orcid.org/0000-0002-5511-0683
http://orcid.org/0000-0002-5511-0683
http://orcid.org/0000-0002-5511-0683
http://orcid.org/0000-0002-5511-0683
http://orcid.org/0000-0003-0760-0626
http://orcid.org/0000-0003-0760-0626
http://orcid.org/0000-0003-0760-0626
http://orcid.org/0000-0003-0760-0626
http://orcid.org/0000-0003-0760-0626
http://orcid.org/0000-0001-8328-2354
http://orcid.org/0000-0001-8328-2354
http://orcid.org/0000-0001-8328-2354
http://orcid.org/0000-0001-8328-2354
http://orcid.org/0000-0001-8328-2354
https://doi.org/10.1038/s41540-024-00339-3
mailto:soledad.villar@jhu.com
mailto:bianca.dumitrascu@columbia.edu
www.nature.com/npjsba

transcriptomic studies. As a result, MarkerMap exhibits several key
features. First, MarkerMap scales to large data sets without the
need for ad-hoc gene pruning. Second, it provides a joint setting
for both supervised and unsupervised learning. Third, it is
generative, allowing for imputation to whole transcriptome levels
from a reduced, informative number of markers. We provide a set
of metrics to evaluate the quality of the imputations and compare
the distributions of original transcriptomes with their reconstruc-
tions. Forth, its supervised option robustly tolerates small rates of
labeling misclassification, which could emerge from processing
and cell type assignment errors. We apply MarkerMap to real data,
including cord blood mononuclear cells (CBMCs) assayed with
different technologies, longitudinal samples from mouse embry-
ogenesis, and a developmental mouse brain single cell gene
expression resource. Finally, a strong link exists between marker
selection and the wider explainable machine learning litera-
ture27,28. As both communities are rapidly evolving, there is an
increasing need to systematically compare new and existing
methods, with the goal of understanding their strengths and
limitations. To address this need, we benchmark MarkerMap
against existing marker selection approaches and related meth-
odologies from the wider explainable machine learning literature.
We make MakerMap available as a pip installable package.

RESULTS
MarkerMap: learning relevant markers for scRNA-seq studies
We developed MarkerMap, a generative, deep learning marker
selection framework which uses scRNA-seq data to extract a small
number of genes which non-linearly combine to allow whole
transcriptome reconstruction, without sacrificing accuracy on
downstream prediction tasks. The input to MarkerMap is log
normalized scRNA-seq data, a budget k 2N, and an optional
annotation for each cell. MarkerMap then outputs a set of k genes
(markers) which are most predictive of the output, together with
the option of a non-linear map for reconstructing the original
gene expression space.

Intuitively, MarkerMap computes feature importance scores for
each gene in the input data using neural networks. These
importance scores or logits (Methods) inform which genes are
selected as representative of the input signal. MarkerMap then
uses this reduced representation to compute an objective
function predicting the given cell annotations (supervised;
Methods), reconstructing the full input signal (unsupervised;
Methods), or both (mixed strategy; Methods). The selection step
is probabilistic and is achieved through sampling from a discrete
distribution which allows end-to-end optimization over the
selection and predictive steps. The learnt mappings allow (a)
extracting the features most informative of a given annotation
and (b) generating full gene expression profiles when information
from only the marker set is available.
Technically, MarkerMap is an interpretable dimensionality reduc-

tion method based on the statistical framework of differentiable
sampling optimization26,28. Targeted at addressing explainability
tasks in machine learning, such methods have primarily been
developed with text data in mind. Their performance has hence not
been previously evaluated in a comprehensive way in the context
of single cell studies. The relationship of MarkerMap with respect to
these method and other previous approaches is discussed in
Methods and Tables 1, 2, and 3.
MarkerMap is available as a well documented open-source

software, along with tutorial and example workflows. The package
provides a framework for custom designed feature selection
methods along with metrics for evaluation (Fig. 1).

Improving accuracy in supervised scRNA-seq studies
We evaluated the performance of MarkerMap in the context of
five publicly available scRNA-seq studies: Zeisel32, a CITE-seq
technology based data set33, a mouse brain scRNA-seq data set34,
the Paul15 stem cell data set35, and the SSv4 V1 data set36 (see
Methods for a full description of the data sets and the data
processing pipeline).
MarkerMap’s performance is benchmarked against other non-

linear approaches which, despite addressing related tasks, have
not been previously compared to one another. In detail, we

Table 1. Classification performance metrics

Models CITE-seq Mouse Brain Mouse Brain
(subtypes)

Paul Zeisel Zeisel
(subtypes)

SSv4

MarkerMap unsup (0.831,0.809) (0.982,0.981) (0.812,0.805) (0.660,0.639) (0.793,0.782) (0.437,0.392) (0.694,0.680)

MarkerMap sup (0.939,0.931) (0.994,0.994) (0.863,0.856) (0.749,0.738) (0.950,0.950) (0.686,0.664) (0.857,0.853)

MarkerMap joint (0.859,0.838) (0.983,0.983) (0.811,0.804) (0.623,0.598) (0.771,0.759) (0.466,0.420) (0.767,0.758)

Random Markers (0.822,0.798) (0.760,0.735) (0.387,0.359) (0.537,0.510) (0.734,0.715) (0.401,0.347) (0.287,0.256)

LassoNet (0.937,0.927) (0.984,0.984) (0.839,0.832) (0.776,0.768) (0.944,0.942) (0.676,0.653) (0.797,0.790)

Concrete VAE (0.811,0.784) (0.786,0.765) (0.403,0.376) (0.533,0.503) (0.726,0.710) (0.396,0.342) (0.309,0.277)

Global-Gumbel VAE (0.812,0.785) (0.785,0.763) (0.406,0.376) (0.557,0.527) (0.724,0.707) (0.384,0.327) (0.304,0.267)

SMaSH (0.930,0.918) (0.976,0.975) (0.845,0.835) (0.755,0.734) (0.952,0.952) (0.674,0.655) (0.833,0.827)

RankCorr (0.866,0.856) (0.927,0.926) (0.622,0.608) (0.673,0.660) (0.946,0.946) (0.588,0.557) (0.616,0.592)

Scanpy t-test (0.921,0.906) (0.982,0.982) (0.837,0.826) (0.746,0.720) (0.960,0.960) (0.600,0.576) (0.794,0.785)

Scanpy overestim_var (0.920,0.904) (0.975,0.975) (0.814,0.805) (0.749,0.727) (0.953,0.953) (0.630,0.611) (0.747,0.735)

Scanpy Wilcoxon (0.918,0.903) (0.978,0.977) (0.822,0.811) (0.754,0.730) (0.956,0.956) (0.647,0.626) (0.758,0.744)

Scanpy Wilcoxon Tie (0.918,0.904) (0.962,0.961) (0.611,0.610) (0.760,0.744) (0.951,0.951) (0.610,0.591) (0.594,0.580)

COSG (0.904,0.890) (0.953,0.953) (0.559,0.568) (0.731,0.721) (0.948,0.948) (0.593,0.566) (0.569,0.551)

PERSIST unsup (0.869,0.850) (0.977,0.976) (0.800,0.792) (0.657,0.624) (0.873,0.873) (0.484,0.448) (0.718,0.703)

PERSIST sup (0.912,0.896) (0.987,0.987) (0.836,0.828) (0.685,0.662) (0.922,0.922) (0.562,0.533) (0.788,0.778)

Average accuracy (first) and weighted F1 (second) scores across real single cell RNA-seq data sets, using a nearest neighbor classifier. All methods are
instructed to select 50 markers. Higher values are better, and the top performer for each data set is bolded. Results are averaged over 10 runs.

W. Gregory et al.

2

npj Systems Biology and Applications (2024) 17 Published in partnership with the Systems Biology Institute

1
2
3
4
5
6
7
8
9
0
()
:,;

considered the following feature selection baselines (Methods):
PERSIST37, LassoNet25, SMaSH16, and Concrete VAE28. We also
adapted a continuous relaxation Gumbel-Softmax technique
from27 to allow for global feature selection, rather than local
selection, in an effort to quantify the effect of the different
sampling techniques on downstream clustering performance; we
refer to this method as Global-Gate or Global-Gumbel VAE. Finally,
we quantified the quality of the learnt markers against those
learnt through classical, non-generative methods – differential
expression methods like COSG38 and the t-test, t-test with
overestimated variances, Wilcoxon-ranked sum test, as well as a
Wilcoxon-ranked sum test with tie correction from Scanpy39.
We report average misclassification and average F1 scores

corresponding to a random forest classifier (Table 1) and a nearest
neighbor classifier (Table 2), across single cell data sets. We find
that MarkerMap performs competitively with respect to these
metrics, often improving on state of the art techniques. It is worth
noting that, similar to empirical studies where dimensionality
reduction is shown to improve the accuracy of downstream
classification tasks40, the accuracy of the classifier trained only on
features detected by MarkerMap is often as good, or better, than
that of the classifier trained on the full input.
Next, we evaluated how the average accuracy varies with the

target number of selected markers (Fig. 2). We find that

MarkerMap performs particularly well in a low selected marker
regime, with less than 10% marker selected. This may be
particularly beneficial in applications like spatial transcriptomics
where only a small number of genes can be tagged for
observation. For calibration, we also included a set of random
markers (that we report as baseline). The random set of markers
performed rather well, outperforming two of the methods
considered—Concrete VAE and Global-Gumbel VAE. We attribute
the success of the random markers at classification to the high
degree of correlation between features in biological studies.
However, it is surprising that the sampling based baseline
methods were outperformed by it.
MarkerMap is available in three variants—unsupervised, super-

vised, and joint (Table 1). Unsurprisingly, the supervised version
performed best. The joint MarkerMap method was a close second,
performing on par with the other top performers LassoNet and
SMaSH. An attractive aspect distinguishing our method from
SMaSH, in particular, is MarkerMap’s additional reconstruction loss.
This allows learning markers that are both most predictive of
cluster labels and best at reconstructing the full input data. This is
particularly important in applications where feature collection is
expensive or difficult. Finally, the unsupervised version of
MarkerMap also had competitive performance. This version was
trained without cluster information, hence suggesting that

Table 2. Full transcriptome reconstruction

Models CITE-seq Mouse Brain Mouse Brain
(subtypes)

Paul Zeisel Zeisel
(subtypes)

SSv4

MarkerMap unsup (0.711,0.656) (0.854,0.687) (0.890,0.643) (0.912,0.577) (0.609,0.610) (0.615,0.613) (0.854,0.721)

Random Markers (0.707,0.653) (0.885,0.706) (0.928,0.665) (0.925,0.584) (0.613,0.615) (0.616,0.615) (0.909,0.754)

Scanpy HVGs (0.718,0.665) (0.895,0.723) (0.927,0.673) (0.926,0.592) (0.636,0.632) (0.635,0.630) (0.877,0.740)

PERSIST unsup (0.716,0.657) (0.860,0.693) (0.898,0.650) (0.903,0.571) (0.604,0.612) (0.607,0.612) (0.869,0.732)

Average ℓ2 (first) and ℓ1 (second) loss of single cell RNA-seq data sets to ones reconstructed from selected markers using a linear regression model. All
methods are instructed to select 50 markers. Lower values are better, and the top performer for each data set is bolded. Results are averaged over 10 runs.

Table 3. Random Forest classification performance metrics

Models CITE-seq Mouse Brain Mouse Brain
(subtypes)

Paul Zeisel Zeisel
(subtypes)

SSv4

MarkerMap unsup (0.888,0.857) (0.983,0.982) (0.843,0.835) (0.814,0.803) (0.866,0.856) (0.503,0.420) (0.795,0.780)

MarkerMap sup (0.939,0.925) (0.994,0.994) (0.884,0.878) (0.882,0.879) (0.945,0.944) (0.717,0.683) (0.874,0.867)

MarkerMap joint (0.892,0.863) (0.987,0.986) (0.842,0.835) (0.737,0.712) (0.813,0.799) (0.481,0.398) (0.799,0.785)

Random Markers (0.873,0.836) (0.853,0.844) (0.494,0.451) (0.589,0.546) (0.803,0.790) (0.478,0.387) (0.440,0.376)

LassoNet (0.938,0.923) (0.987,0.986) (0.863,0.856) (0.887,0.884) (0.946,0.944) (0.707,0.676) (0.834,0.824)

Concrete VAE (0.873,0.837) (0.866,0.857) (0.511,0.471) (0.620,0.576) (0.812,0.797) (0.483,0.398) (0.436,0.373)

Global-Gumbel VAE (0.872,0.837) (0.852,0.842) (0.489,0.442) (0.597,0.549) (0.785,0.768) (0.468,0.381) (0.496,0.440)

SMaSH (0.936,0.920) (0.982,0.982) (0.875,0.868) (0.881,0.878) (0.952,0.951) (0.722,0.693) (0.861,0.852)

RankCorr (0.886,0.860) (0.941,0.940) (0.724,0.709) (0.787,0.777) (0.944,0.943) (0.615,0.557) (0.698,0.669)

Scanpy t-test (0.930,0.911) (0.988,0.988) (0.870,0.862) (0.892,0.889) (0.956,0.955) (0.687,0.655) (0.834,0.824)

Scanpy overestim_var (0.929,0.909) (0.981,0.981) (0.858,0.851) (0.894,0.891) (0.954,0.953) (0.699,0.671) (0.793,0.777)

Scanpy Wilcoxon (0.926,0.905) (0.983,0.982) (0.864,0.857) (0.891,0.887) (0.951,0.951) (0.713,0.683) (0.807,0.793)

Scanpy Wilcoxon Tie (0.924,0.902) (0.971,0.971) (0.621,0.620) (0.891,0.889) (0.951,0.950) (0.689,0.661) (0.612,0.601)

COSG (0.919,0.894) (0.962,0.962) (0.570,0.572) (0.853,0.852) (0.950,0.949) (0.665,0.627) (0.592,0.573)

PERSIST unsup (0.901,0.875) (0.975,0.974) (0.825,0.816) (0.725,0.703) (0.893,0.889) (0.573,0.517) (0.779,0.760)

PERSIST sup (0.924,0.905) (0.987,0.987) (0.861,0.854) (0.744,0.731) (0.927,0.925) (0.618,0.569) (0.829,0.816)

Average accuracy (first) and weighted F1 (second) scores across real single cell RNA-seq data sets, using a Random Forest classifier. All methods are instructed
to select 50 markers. Higher values are better, and the top performer for each data set is bolded. Results are averaged over 10 runs.

W. Gregory et al.

3

Published in partnership with the Systems Biology Institute npj Systems Biology and Applications (2024) 17

interpretable compression is possible for the biological study
considered. When compared to approaches employing related
sampling schemes—Concrete VAE and Global-Gumbel VAE,
MarkerMap performs positively, suggesting that the differences
in performance are largely due to parameter updating and
aggregation across batches, rather than the sampling technique
itself.
Interestingly, even though MarkerMap and LassoNet present

comparable overall misclassification errors, the individual cluster
misclassification values are quite different (Fig. 2). For example, in
the CITE-seq data set, MarkerMap is slightly better at identifying
the population of CD8 T and Eryth cells, while LassoNet is better at
identifying the DC population and both methods have difficulties
identifying Mk cells (Fig. 2). In contrast, Concrete VAE has a strong
performance for a small set of cell types, but performs poorly in
general compared to the other methods (Fig. 2). Likewise, in the
Mouse Brain data set, MarkerMap is better at identifying
endothelial cells (End) and low quality cells (LowQ), while
LassoNet is better at identifying neuroblastoma cells (Nb). Given
this, rather than advocating for a best method for this task, we
instead advocate for transparent, easy to use, top performing
methods, which can pick up different signals from the data.

Learning representations which are robust to mislabeling
Further, we investigated the effects of mislabelled training data on
MarkerMap and different benchmarks. Cell type labels often come
from different processing pipelines and can be error prone. Hence,

marker selection methods ought to show robustness when the
training labels are not completely accurate.
To examine this effect we considered two experimental setups.

First, we replaced the labels of a fraction of the training set by a
random label uniformly sampled over all the possible training
labels (Fig. 2). The misclassification rate was then measured only
on the correctly labeled test data set. In this experiment, both the
marker selection and the classifier were trained with incorrect
labels so the performance decayed significantly when the fraction
of misclassified points was large. Second, we also replaced the
labels of a fraction of the training set by a random label uniformly
sampled over all the possible training labels at the marker
selection step, but the final classifier was trained on the correct
labels on the (possibly incorrect) selected markers (Fig. 2). This
experiment suggests all top performing methods (MarkerMap,
LassoNet) are similarly stable with respect to noisy labels. The
experiments also confirm that the performance of the unsuper-
vised methods does not change, as they do not depend on input
labels. Our numerical results are reported for the Zeisel, CITE-seq,
Mouse Brain, Paul, and SSv4 data sets, and additional figures are
presented in Supplementary Figures 3 through 14.
While the performance should be expected to deteriorate as the

fraction of mislabelled training points increases, Fig. 2 shows that
this happens slowly for small label noise. Recent theoretical results
show that deep learning models can be robust to mislabel-
ling41–43. This can be seen as a consequence of the consistency of
certain estimators:44 shows this to be the case of a nearest
neighbor classifier under general conditions. Such a margin is

n cells

d genes

genes to remove

Preprocess MarkerMap

k=5 markers

Features
Accuracy Benchmarking

UMAP Embedding

Robustness Benchmarking

Reconstruction

Annotation
(optional)

Selected Markers

number of markers fraction of mislabeled training samples

PCA eigenvalues

reconstructed data
original data

Fig. 1 Computational pipeline of MarkerMap. Data are imported as an n × d array of expression counts, together with optional annotations.
During preprocessing, some genes are removed, and the rest undergo scaling, normalization, and a log(1+X) transform (Methods). Then
MarkerMap or a variety of other marker selection algorithms are run to pick kmarkers. These markers are used for downstream tasks including
benchmarking, UMAP embedding, and data reconstruction. The architecture of MarkerMap is depicted in the lower right. Given input signals,
a differentiable sampling process selects a global set of markers. In the supervised setting when annotations are available, the signal restricted
to the selected markers is fed to a neural network that predicts labels. In the unsupervised version, the signal restricted to the selection is fed
to a variational autoencoder that aims to reconstruct the original signal with no information of the label. The joint loss version uses a convex
combination of the reconstruction loss and the classification loss. A circle represents a source of random inputs to be used for differentiable
sampling, a technique for iteratively assigning weight to informative features (Methods).

W. Gregory et al.

4

npj Systems Biology and Applications (2024) 17 Published in partnership with the Systems Biology Institute

large enough to accommodate realistic expectations of mislabel-
ling error in data sets; we do however note that there may be
more complex, adversarial, or systematic sources of error for which
robustness may not hold. Figure 2 echoes the good performance
of a set of random markers, when the number of markers is
sufficiently large45 and chosen to characterize a single cell type.

Prospects for reconstruction in unsupervised settings
As a generative model, MarkerMap allows the reconstruction of
the full transcriptomic input from the selected set of most
informative markers. To understand the limits of this recovery, we
first quantified the reconstruction quality by comparing distribu-
tional properties of the original and reconstructed data sets.
Specifically, variances of genes from the reconstructed data were

computed and compared to the variances of their counterparts in
the original test data in a Mouse Brain data set, following
unsupervised MarkerMap training with a 80–20% train-test split.
The variances of the reconstructed data were lower than those of
the original data (Fig. 3). This is a common phenomenon for
generative models obtained with variational autoencoders, known
as variance shrinkage46,47. To further visualize this, both test data
and reconstructed data were projected onto the first two principle
eigenvectors of the test data (Fig. 2).
We further assessed whether, despite variance differences, the

highly variable genes in the original data are recapitulated in the
reconstructed one. To this end, two metrics for relative ranking
were employed: the Jaccard Index and Spearman Rank Correlation
Coefficient, ρ. Additionally, average ℓ2 distance between the

BA C

D

Fig. 2 Predictive performance of MarkerMap. MarkerMap improves cell type prediction accuracy when annotations are provided
(supervised setting) and allows for gene expression profile reconstructions when they are not (unsupervised and mixed settings).
A–C Prediction accuracy of a variety of models on the Zeisel data set. A Accuracy increases as a function of the number of k markers selected,
averaged over 10 runs. B Robustness to label noise, averaged over 10 runs, in the presence of classifiers trained on data with noisy labels, for
k= 50 markers. C Robustness to misclassification when label errors are only present at the marker selection step, with classifiers trained on
errorless data, averaged over 10 runs, for k= 50 markers. D Confusion matrices for Supervised MarkerMap, LassoNet, and Unsupervised
MarkerMap on the CITE-seq and Mouse Brain data sets. Each method was restricted to the selection of 50 markers, and the classifier
considered was a nearest neighbor classifier.

W. Gregory et al.

5

Published in partnership with the Systems Biology Institute npj Systems Biology and Applications (2024) 17

reconstructed expression profiles and the original expression
profiles were computed per cell type (Evaluation Metrics and
Methods).
Each of these metrics were computed for both the recon-

structed data from MarkerMap and reconstructed data from a

related generative model, scVI48. The scVI model learns the
parameters of a zero-inflated negative binomial distribution for
modeling genes counts from scRNA-seq data48. While both
MarkerMap and scVI use a variational autoencoder framework
for reconstruction, MarkerMap tries to reconstruct the full gene

A

B

C Original
Reconstructed

Oligo

OPC
Nb

Micro

LowQ

Inh

Ext

Astro

Pyramidal SS

Pyramidal CA1
Oligodendrocytes

Microglia

Interneurons

Endothelial-Mural
Astrocytes Ependymal

Fig. 3 Downstream MarkerMap evaluation:visualization and reconstruction. A UMAP embeddings of the Zeisel data for different values of
k markers. For UMAP, the parameters n_neighbors = 50, min_dist = 0.1 were used. B UMAP embeddings of the Mouse Brain data for different
values of k markers. For all UMAPs, the parameters n_neighbors = 50, min_dist=0.1 were used. C In rows 1 and 3, histograms of gene
expression variance values from the Mouse Brain data set for the original values and their corresponding reconstructions across cell types. In
rows 2 and 4, PCA projections onto the first two eigenvectors of the original data along with their reconstructed counterparts. Additional
variance and UMAP embedding figures are presented in the Supplementary Fig. 1 (variance plots), and Supplementary Figs. 2, 3, 4 (UMAP
embeddings).

W. Gregory et al.

6

npj Systems Biology and Applications (2024) 17 Published in partnership with the Systems Biology Institute

expression from the input of a small number of discrete markers,
while scVI uses the full gene expression as input. In these
experiments we used 50 markers for MarkerMap. Compared to
scVI, MarkerMap generally scores worse on the variance metrics
and better on the ℓ2 distance (Table 4). However, it should be
noted that MarkerMap and scVI have slightly different goals that
suggest that these results are appropriate. Unsupervised Marker-
Map tries to find the best k markers that optimally reconstruct the
full data, while the scVI model learns a low dimensional manifold
from which data is generated. A direction of future exploration is
leveraging the differential sampling scheme of MarkerMap and
the generative power of scVI to improve MarkerMap’s reconstruc-
tion ability, while preserving its interpretability quality.

DISCUSSION
In this work we propose MarkerMap, a data-driven, generative,
neural network framework for feature selection. Given scRNA-seq
data, we employ differentiable sampling methods to find a global
set of genetic markers with competitive performance in down-
stream classification (of cell type) and reconstruction (of the entire
transcriptome of an unseen test data). The supervised version
selects the markers that maximize label prediction accuracy. The
unsupervised version selects markers that maximize the recon-
struction accuracy of a variational autoencoder (with no label
information). A mixed MarkerMap is also available, combining
both label prediction and transcriptome reconstruction. Our
experiments suggest that, even though differentiable sampling
techniques based on properties of the Gumbel distribution are
often suggested for interpretable machine learning tasks, they can
underperform. Hence, the mathematically appealing, continuous
relaxation procedure alone is not enough to explain why
MarkerMap is competitive with respect to alternatives. Additional
exploration, both experimental and theoretical, is required to
understand this empirical result. In this work, we provide a
competitive solution to feature selection in a real biological
context. Most importantly, we provide a tool where related
solutions from different fields can be compared to aid future
research in this area. A promising future application of this tool is
the design of probes for spatial trascriptomics studies.
We provide an extensive numerical benchmark of both

supervised and unsupervised tools in the context of genetic
marker selection on real single cell gene expression data sets. We
show that while all methods exhibit better performance as the

number of selected markers increases, the methods have
differences in stability when presented with noisy labels. The
baselines considered originated from different research commu-
nities, which have not been previously compared to one another
despite addressing similar tasks.
MarkerMap introduces new concepts from explainable machine

learning in a transcriptomic centric setting. We show that
MarkerMap is competitive across real data sets, thus offering the
potential for optimal combinatorial experimental design with
downstream analysis in mind. MarkerMap is available as a pip
installable python package that is easy to use, robust and
reproducible, making it appropriate for the experimental design
of transcriptomic studies, along with the development of new
metrics and methodology.
As deep generative models inspired by the growing explain-

ability literature27,28 and foundation models literature become
popular in genomics37, we sought to establish benchmarks for
exploring both the potential and limitations of such tools, and
thus included them in our analysis. Our message is simple: the
flexibility of generative models can, in principle, improve both
clustering and imputation, despite the need for more computa-
tional resources. This is increasingly the case for larger datasets,
with a larger number of clusters and richer subclusters. Even if the
improvements are small, they could be crucial in cases where rare
cell types exist.
However, we saw a large variability in the performance of the

different generative models considered, even as they share
architectural similarities (e.g.,37 can perform worse than Scanpy
subroutines on small datasets). Documenting such behaviors is
crucial as the architectures of generative models become more
involved. However, this skepticism should not temper the
enthusiasm for generative model research: having access to good
generative models means the ability to generate counterfactual
data and to simulate perturbational scenarios in both spatial and
non-spatial settings. While this lies outside the scope of our
current paper, we hope to expand this exploration in follow-
up work.

METHODS
MarkerMap
MarkerMap is a generative method which belongs to the class of
differentiable sampling techniques for subset selection26–28.
Existing differentiable sampling techniques aim to find local

Table 4. Quality metrics for full transcriptome reconstruction

Cell types MarkerMap
Jaccard Index

Spearman ρ ℓ2 Distance scVI Jaccard
Index

Spearman ρ ℓ2 Distance

Astro 0.505 0.578 40.021 0.858 0.976 51.765

Endo 0.162 0.110 42.404 0.240 0.265 50.352

Ext 0.688 0.913 57.396 0.925 0.993 74.897

Inh 0.663 0.869 56.244 0.905 0.988 73.628

LowQ 0.551 0.722 52.773 0.690 0.859 66.035

Micro 0.340 0.351 35.379 0.762 0.945 44.239

Nb 0.351 0.438 42.272 0.634 0.848 53.200

OPC 0.465 0.591 45.875 0.794 0.952 58.249

Oligo 0.589 0.655 35.527 0.908 0.991 48.340

All 0.738 0.908 48.234 0.939 0.994 63.354

Reconstruction quality metrics comparing the original Mouse Brain data against data reconstructed from markers identified by MarkerMap, broken down by
cell type and overall. The three left columns are for MarkerMap reconstruction and the right three columns are for scVI reconstruction. Each value is the
averaged over 5 random splits of the training and testing data. For the Jaccard Index and Spearman ρ, higher scores are better, while for ℓ2 distance, lower
scores are better. MarkerMap map uses 50 markers, while scVI uses the full 4581 genes.

W. Gregory et al.

7

Published in partnership with the Systems Biology Institute npj Systems Biology and Applications (2024) 17

features that suit each input individually. These methods have
been used for and are relevant to language contexts where the
input is usually a sequence of variable length representing text.
For example, in an online market setting, we might want to learn
what specific words or group of words of a review are most
predictive of the score associated with the review. Instead,
MarkerMap seeks to find a global set of features (markers when
referring to genes), amenable to the structure of scRNA-seq data,
which results in optimization differences.
In a nutshell, given high dimensional data points or gene

expression profiles fxigni¼1 � Rd , arranged in a matrix X 2 Rn ´ d ,
the feature selection problem aims to find a subset of coordinates
(i.e., markers, genes) S⊂ {1,…, d}, ∣S∣= K, relevant to a given
downstream task (i.e., clustering, visualization, reconstruction). For
example, in sparse linear regression, data X is used to predict
responses Y 2 Rn so that Y ≈ Xβ when only a small subset of the
columns making up X is relevant for the prediction. Similarly, in
non-linear settings, the search is over a joint pair (β, f), where f is a
non-linear function so that Y ≈ f(Xβ).
Instead of optimizing for β, differentiable sampling methods

assume informative samples are generated from a continuous
distributions over a simplex with dimension equal to K, the
number of features to be selected26–29. This is accomplished
through a selector layer. In detail, the selector layer contains
k= 1,…K nodes. The nodes are associated with a d-dimensional
real-valued vector γ(k) which governs the probability that a feature
will be selected, whose entries j are equal to:

γ
ðkÞ
j ¼

exp log π
ðkÞ
jð Þþ gðkÞjð Þ=τð ÞPd

s¼1 exp log π
ðkÞ
sð Þþ gðkÞsð Þ=τð Þ ; (1)

where gðkÞj are independent samples from a Gumbel distribution
with location 0 and scale 1, τ is positive and real, and π(k) represent
the class probabilities over a categorical distribution. The γ(k) is a
vector following a Gumbel-Softmax distribution, independently
introduced by29 and26. This distribution takes the form

pπ;τðγð1Þ; :::γðKÞÞ ¼ ðK � 1Þ!τK�1
XK
i¼1

πðiÞ

γðiÞð Þτ
 !�KYK

i¼1

πðiÞ

γðiÞð Þτþ1
 !

;

(2)

and can be visualized over the (K− 1)-dimensional simplex.
The number τ is referred to as temperature and the values

log πðkÞ are called logits. The logits control how likely a feature or
gene j is likely to be selected as a representative feature k our of the
total K features we can select. For an input xi ¼ ðxijÞdj¼1, each node k
of the selector layer outputs xi � yðkÞ, which essentially masks the
genes that are deemed uninformative. As the temperature τ
approaches 0, PrðγðkÞj ¼ 1Þ ! π

ðkÞ
j =
P

sπ
ðkÞ
s , and only one feature of

xi is selected and matched with a unique selector node k28.

Illustrative Toy Example
Consider a data set of X ¼ fxigni¼1 gene expression profiles,
corresponding to n cells with 10,000 variable genes. In this toy
scenario, we only record if these gene are overexpressed (+1) or
under expressed (-1) with respect to some control population. A
natural task would be to attempt to compress our data by
expressing it in a lower dimension, which is often achieved with a
VAE (Architecture). The cells come in two states A and B, depending
on how they respond to a particular perturbation, a response which
we observe. Assume that whether the cells are in state A or state B
only depends on 3 genes in the following way. A cell is in state A if
the genes are either all overexpressed (1,1,1) or all underexpressed
(-1,-1,-1), otherwise they are all in cell state B. None of the genes are
individually informative of the clustering, the mean per cluster
would be 0 for all genes. Initially, we may not know which of the
10,000 genes are indicative of the cell states, but we’d like to obtain
a reduced number of genes capable of accurately predicting cell

state. For example, without prior information, one might assume all
genes are equally good at this task, so our initial ‘weighting’ of the
genes would be (1

10;000 ;
1

10;000 ; ¼
1

10;000) (Parameter Initialization)
which would translate to a continuous probability distribution
through equation (1) i.e. they specify the πj. The uniformity
corresponds to randomly picking any of the genes as informative
features. Then, through the variational optimization algorithm
(Optimization), these weights are iterated on until, upon conver-
gence, the genes that are jointly more indicative of cell state will
have a higher probability weight, while also being sufficient for the
reconstruction of the entire gene expression. This will correspond to
a vector (13 ;

1
3 ;

1
3 ; 0; 0¼ 0) assuming the first three genes are the

most informative.

Optimization
Letting p(x) be the probability distribution over the d-dimensional
data X and given a set of labels Y, MarkerMap learns: a) a subset of
markers S of size K, b) a reconstruction function f θ : R

K ! Rd , and c)
a classifier fW : RK ! Y.
To learn these elements, the following empirical objective is

optimized:

argmin
S;θ;W

EpðxÞ½kf θðxSÞ � xk2 þ ℓðfWðxSÞ; yðxÞÞ�; (3)

where the first term optimizes signal reconstruction from a subset
of markers xS and the second objective minimizes the expected
classification risk, both over the unknown distribution p(x) with
respect to a loss function ℓ. In practice, we consider the alternative
empirical objective

argmin
S;θ;W

αkf θðXSÞ � Xk2 þ ð1� αÞkðfW ðXSÞ; YÞk2; (4)

where α ∈ [0, 1] serves to balance between a reconstruction loss
and classification loss. MarkerMap considers three separate
objectives: a supervised objective with α= 0, an unsupervised
objective with α= 1, and a joint objective where α= 0.5. More
generally, α can be treated as a tunable (but fixed) hyperpara-
meter that weighs the reconstruction and classification terms in
the optimization objective. Because full reconstruction is nomin-
ally a harder task it can be considered a bottleneck, since one can
achieve low classification error without information about the
entire gene expression. Thus, when α is small enough, the
convergence of MarkerMap is dependent on the quality of the
reconstruction. Depending on the user-specified goal, the three
proposed values of α provide either a classifier (α= 0) which may
be capable of selecting a smaller number of genes with good
performance, a generative model (α= 1) which is capable of
signal reconstruction possibly at the cost of additional markers
needed, or both (α= 0.5). One may choose a different value of α
that is possibly data- or problem-specific.
Optimizing this objective is difficult due to the combinatorial

search over the subset S. We address this challenge heuristically
by expanding on continuous sampling techniques27 in a batch
learning setting49. In a nutshell, b= 1, 2,…B batches are sampled
without replacement from the data set (X, Y). The selected features
are then computed and aggregated across batches as follows:

1. Instance-wise logits log πbi ¼ f πðxiÞ are generated for each xi
in the batch b, where fπ is a neural network. Averaging them
leads to an intermediate average batch logit log πb.

2. The average batch logits are computed by aggregating
information from the current and previous batches,
log πb βlog πb�1 þ ð1� βÞlog πb; β 2 ð0; 1Þ much like
the update for mean moment in BatchNorm49.

3. The K continuous d-dimensional hot encoded vectors

γðkÞ;b ¼ ðγðkÞj Þ
b

j¼1;d are generated from log πb via continuous

relaxation, see (1).

W. Gregory et al.

8

npj Systems Biology and Applications (2024) 17 Published in partnership with the Systems Biology Institute

4. Each γ(k),b selects one of the K features by element-wise
multiplication Xb

S ¼ Xb2γb .
5. The resulting Xb

S then becomes the input in a Variational-
Autoencoder-like architecture, which includes a classifier
loss as well as a reconstruction (Fig. 1 and Eq. (4)).

6. All network weights are updated through stochastic gradient
descent steps, following the optimization of the appropriate
loss in Eq. (4) until convergence. The steps are repeated for B
timesteps, corresponding to the number of batches.

Architecture
The three main components of MarkerMap’s architecture are the
neural network fπ for instance-wise logit generation, the task
specific feed-forward network fW for classification, and the
variational autoencoder fθ for encoding and reconstruction. The
neural network fπ is an encoder with two hidden layers and a
sampling layer performing relaxed subset sampling27. For
supervised tasks, fW is represented by a decoder with one hidden
layer. The encoder component of the variational autoencoder fθ
has two hidden layers, while the Gaussian decoder has one hidden
layer. All the hidden layers have the same size and are data set
dependent, except for the Gaussian latent layer which has
dimension 16 across experiments. The activation functions were
chosen as follows: Leaky Rectified Linear Unit functions for hidden
layers, identity transformation for the last layer of fθ and softmax
for the last layer of fW. All activations were preceded by batch
normalization in all hidden layers to mediate vanishing gradients.

Temperature annealing
The temperature τ in (1) is a key parameter in the sampling
procedure. It controls how fast the continuous encoding vectors γ(k)

approach a true one-hot encoding. Low values of τ emulate true
feature selection, while higher values of τ are more likely to extract
linear combinations of features. However, 0 < τ< 1 leads to
inconsistent feature selection27. To mediate this issue, we used a
temperature annealing scheme. First, we initialize τinitial > 1. This leads
to gradients with less batch to batch variability and more diversity in
feature selection, as γb will be more diffuse. Second, we decay the
temperature during training by a constant factor28. We found that
setting τinitial≥2 with a decay factor leading to a τfinal∈ (0.001, 0.1)
resulted in good performance across all experiments.

Parameter initialization
MarkerMap allows us to initialize the logits log πb=0 with an informed
guess of which markers are relevant. In the absence of prior
information we initialize the logits as log πb=0= 1c, where c is any
constant. The weights of each linear layer are initialized using Kaiming
initialization50. The weights of the BatchNormalization layers are
initialized as a vector of 1 for scaling and a vector of 0 for the biases.
For backpropagation we use the Adam optimizer with a

learning rate obtained via a learning rate finder51. A range of
learning rates between 1e-8 and 0.001 are explored in linear
intervals, with a minimum of 25 epochs and max of 100 epochs.
Training can end early when the average loss on the validation set
does not decrease after 3 epochs.
In all our experiments we randomly split the data in training

(70%), validation (10%), and test sets (20%). The batch size is 64 for
all data sets. The quality of the markers selection did not depend
on batch size (with tested values of 32, 64, and 128 on the Zeisel
and Paul data sets). For the hidden layer size, we chose values
approximately equal to 1

10 th the number of genes in each data set.
This heuristic showed positive empirical results, while also keeping
the network to a reasonable size. This resulted in a hidden layer
size of 256 for Zeisel and Paul, 64 for CITEseq, and 500 for Mouse
Brain and SSv4.

Scalability
Training MarkerMap on the 4581 genes and 39,583 cells of the
Mouse Brain data set (the largest data set considered) on public
cloud GPUs resulted in a training time of 5 minutes for supervised
classification tasks, and 15 minutes for unsupervised tasks.
LassoNet performed similarly when the architecture (number of
hidden layers and units) and batch sizes were chosen to be similar
to those of MarkerMap. RankCorr and SMaSH achieved smaller
training times, less than a minute, but require supervised signals.
The differential expression tests in Scanpy and COSG are quick but
also require supervised signals. PERSIST benefits somewhat by
taking a two step approach to learning markers, but the initial step
makes the method take longer.

Benchmarks
We contrast MarkerMap against several subset selection methods.
The methods have been introduced in different communities and
many have not been previously compared to one another.

● LassoNet: A residual feed-forward network that makes use of
an ℓ1 penalty on network weights in order to induce sparsity
in selected features25.

● Concrete VAE: a traditional VAE architecture that assumes a
discrete distribution on latent parameters and performs
inference using the formulation of the concrete distribution
(also known as Gumbel-Softmax distribution)26.

● Global-Gumbel VAE: adapted from27. A VAE architecture
related to the Concrete VAE.

● Smash Random Forest: A classical Random Forest classification
algorithm implemented in the SMaSHpy library (see https://
pypi.org/project/smashpy)16.

● RankCorr: A non-parametric marker selection method using
(statistical) rank correlation, implemented in the RankCorr
library (see https://github.com/ahsv/RankCorr)15.

● PERSIST: An autoencoder model similar to MarkerMap that
finds markers in an unsupervised fashion, or uses cell labels for
supervised learning. PERSIST uses specific loss functions
geared towards scRNA-seq data and a two step process to
find the most relevant markers. (see https://github.com/
iancovert/persist/)37

● COSG: A differential expression test based on cosine similarity
of expression of different genes. (see https://github.com/
genecell/COSG)38.

● Scanpy: The ‘rank_genes_groups` function of this package
performs differential expression tests based on the cell groups
with a number of different statistical methods. We tested the
methods t-test, t-test with overestimated variance, Wilcoxon-
ranked sum test, and Wilcoxon-ranked sum test with tie
correction (see https://scanpy.readthedocs.io/en/stable/
index.html)39

● Scanpy Highly Variable Genes: The ‘highly_variable_genes’
function of this package39 performs an unsupervised method
from Seurat52 to select genes that are highly variable.

The differential expression tests are one-vs-all methods. For
these, we took one marker from each cell type, removing
duplicates, until that would put us over our budget k. Then we
took the marker with the highest score (COSG) or lowest p-value
(Scanpy) until we had k markers.

Data sets
We used publicly available real world data sets from established
single cell analysis pipelines, where the problem of marker
selection is of interest in the context of explaining cluster
assignment. In each data set, the labels correspond to cell types.

W. Gregory et al.

9

Published in partnership with the Systems Biology Institute npj Systems Biology and Applications (2024) 17

https://pypi.org/project/smashpy
https://pypi.org/project/smashpy
https://github.com/ahsv/RankCorr
https://github.com/iancovert/persist/
https://github.com/iancovert/persist/
https://github.com/genecell/COSG
https://github.com/genecell/COSG
https://scanpy.readthedocs.io/en/stable/index.html
https://scanpy.readthedocs.io/en/stable/index.html

Zeisel data set. The Zeisel data set contains data from 3005 cells
and 4000 genes32. The cells were collected from the mouse
somatosensory cortex (S1) and hippocampal CA1 region. The
labels correspond to 7 major cell types and where obtained
though biclustering of the full gene expression data set. For the
Zeisel (subtypes) data set, we used the more specific 47 cell types.
We removed cells whose specific cell types were unknown,
leaving 2816 cells.

CITE-seq data set. Cellular Indexing of Transcriptomes and
Epitopes by Sequencing (CITE-seq) is a single cell method that
allows joint readouts from gene expression and proteins. The CITE-
seq data set contains data from 8617 cells and 500 genes33. These
cells correspond to major cord blood cells across 13 cell types,
obtained from the clustering of combined gene expression and
protein read-out data, and not from the clustering of the original
single cell data set alone.

Paul data set. The Paul data set35 consists of 2730 mouse bone
marrow cells, collected with the MARS-seq protocol. Post
processing, each cell contains 3451 genes. The Paul data set
contains progenitor cells that are differentiating, hence the data
appear to follow a continuous trajectory. The associated outputs
represent 10 discrete cell types sampled along these trajectories.
Hence, the cell types are are not well separated35. After removing
general genes and housekeeping genes, we are left with 3074
genes. For this data set we do not further remove genes based on
cell type because the data set is already small.

Mouse brain data set. This data set is a spatial transcriptomic data
set, containing data from 40,572 cells and 31,053 genes from
diverse neuronal and glial cell types across stereotyped anatomi-
cal regions in the mouse brain34. The output labels correspond to
the major cell types identified by the authors. Prior to the pre-
processing described below, we perform additional gene and cell
filtering because training with the full data set was not feasible for
the unsupervised model on public cloud infrastructure. We start
by removing cells with unknown cell types. Then we keep only
those genes that satisfy the following two conditions: (1) they are
present in at least 0.05% of cells and (2) they are present in 3% of
cells or the average gene expression level in cells where the gene
is present is greater than 1.12. These particular values are
somewhat arbitrary and could be changed based on the
researcher’s desires. After this filtering we are left with 39,583
cells and 12,869 genes; further pre-processing described below
will reduce the number of genes to 4581. In the Mouse Brain data
set we use the 9 major cell types after removing those that are
unknown. In the Mouse Brain (subtypes) data set we use all
59 specific cell types, which includes two different unknown
categories. When leaving these two unknown categories in, we are
working with 40,532 cells and 7115 genes after the pre-processing
described below.

SSv4 V1 data set. The SSv4 data set36 consists of cells collected
from the mouse primary visual cortex (V1). This publicly available
data set includes initial pre-processing done by PERSIST37 which
reduces the data set to 13,349 cells and 10,000 genes with 98 cell
types. We removed 6 cell types that each had fewer than 4 cells
because many of our supervised methods require multiple
representatives per class. After further pre-processing described
below, the resulting data set size is of 13,342 cells and 4293 genes.

Data processing
The data were processed and filtered following16,33. In particular,
we first remove genes associated with general cell function as well
as housekeeping genes. Next, we remove genes which are in
present in less than 30% of cells for every cell type. We also

remove genes which are present in over 75% of cells for at least
50% of the cell types. Lastly, we normalize the gene counts per cell
so that each cell has the same total gene expression, we perform a
log2ð1þ xÞ transform of the cell counts, and we center and scale
the data so that each gene has mean 0 and variance 1. When
evaluating the generative data, we forgo normalizing gene counts
across cells and setting the mean to 0 and the variance to 1 of
each gene. Instead, we only perform the log2(1+ X) transform and
then set the mean and variance of the entire data matrix X to 0
and 1 respectively.

Evaluation metrics
Given K, most of the methods selected the top K features
informative of ground-truth labels. The exceptions, RankCorr and
LassoNet, do not allow the selection of an exact number of
features, as they rely on specifying a regularizer parameter that
controls feature sparsity. In those cases, we selected K features by
grid searching the regularizer that would get the desired number
of features.
For each baseline and data set, the selected features were then

used as only input to a either a nearest neighbors classifier or a
random forest classifier. For each data set, method and classifier
type, we reported two quantities, the misclassification rate and a
weighted F1 score, along with their corresponding confusion
matrices. These quantities are defined as follows, for a number of
ground truth clusters c= 1, 2,…C.

● Average misclassification rate. The misclassification rate of a
given cluster is defined as

Mc ¼ 1� TPc
TPc þ FPc

; (5)

where TP and FP correspond to the number of true positives and
false positive predictions, respectively. We report the average
misclassification 1

C

P
c Mc .

● Average F1 score. Per cluster, the F1 score is defined as

Fc ¼ 2PcRc
Pc þ Rc

; (6)

where Pc and Rc are the precision and recall of the classifier for a
cluster c. We report the average F1 score 1

C

P
c Fc .

When evaluating the reconstructed data, we use the Jaccard
Index, the Spearman Correlation Coefficient ρ, the ℓ2 distance, and
the ℓ1 distance. Let X 2 Rn ´ d be our data as before, and let ~X 2
Rn ´ d be the reconstructed data.

● Jaccard Index. First we calculate the variances of each gene in
the original data. Since each gene is a column of X, the
variance of those columns is a d-length vector which we will
denote σ2

X . Next we find the rank vector of the variances,
Rðσ2

XÞ, where the largest variance is assigned 1, the second
largest is assigned 2, and so on until the smallest variance is
assigned d. We use the ranks to find the indices of the largest
20% of the variances:

IX ¼ i : R σ2
X

� �½i� � d
5

� �
(7)

We follow the same process for the reconstructed data to get the
set of indices I~X . Finally, we calculate the Jaccard Index on these
two sets of indices to determine their similarity53:

J ¼ IX \ I~X
�� ��
IX ∪ I~X
�� �� (8)

The Jaccard Index ranges from 0 to 1, and higher values indicate
that more of the highly variable genes from the original data are
also highly variable in the reconstructed data.
● Spearman correlation coefficient. The Spearman correlation

coefficient is exactly the Pearson correlation coefficient
calculated on the ranks of a vector’s values, rather than the

W. Gregory et al.

10

npj Systems Biology and Applications (2024) 17 Published in partnership with the Systems Biology Institute

raw values. Thus, we first calculate the rank vectors of the
gene variances as we did for the Jaccard Index, Rðσ2

XÞ and
Rðσ2

~X
Þ. Finally we calculate the correlation coefficient:

ρ ¼
cov R σ2

X

� �
; R σ2

~X

� �� �
σR σ2Xð ÞσR σ2

~X

� � (9)

where σRðσ2X Þ and σRðσ2
~X
Þ are the standard deviations of the ranks of

the original data and the reconstructed data respectively. This ρ is
the Spearman correlation coefficient—values closer to one
indicate higher similarity of the ranks of the gene variances.
● ℓ2 Distance. To calculate the ℓ2 distance, we take the average

over all cells of the ℓ2 distance between the original cell and
the reconstructed cell:

1
n

Xn
i¼1
kxi � ~xik2 (10)

where xi is the ith row of X. Lower values indicate that the original
data and reconstructed data are more similar.
● ℓ1 Distance. To calculate the ℓ1 distance, we take the average

over all cells of the ℓ1 distance between the original cell and
the reconstructed cell:

1
n

Xn
i¼1
kxi � ~xik (11)

where xi is the ith row of X. Lower values indicate that the original
data and reconstructed data are more similar.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
We used publicly available data as detailed in the Data sets section.

CODE AVAILABILITY
The code is available as a Python package at https://github.com/Computational-
Morphogenomics-Group/MarkerMapand on pip as “markermap”. See Fig. 1 for an
overview of the package functionality. Code to easily load and pre-process the four
data sets used in this paper are provided. Additional pre-processing can be done with
the Scanpy package, and MarkerMap also provides functions to manage to split the
data into training and test sets. The package implements MarkerMap as well as
Concrete VAE and Global Gate VAE. Additionally, it provides wrappers for all the other
mentioned methods to allow for easy benchmarking. All models select k markers,
which are then used for further tasks including visualizations.

Received: 26 April 2023; Accepted: 17 January 2024;

REFERENCES
1. Lohoff, T. et al. Integration of spatial and single-cell transcriptomic data eluci-

dates mouse organogenesis. Nat. Biotechnol. 40, 74–85 (2022).
2. Sladitschek, H. L. et al. Morphoseq: Full single-cell transcriptome dynamics up to

gastrulation in a chordate. Cell 181, 922–935.e21 (2020).
3. Codeluppi, S. et al. Spatial organization of the somatosensory cortex revealed by

osmfish. Nat. Methods 15, 932–935 (2018).
4. Lubeck, E., Coskun, A. F., Zhiyentayev, T., Ahmad, M. & Cai, L. Single-cell in situ rna

profiling by sequential hybridization. Nat. Methods 11, 360 (2014).
5. Chen, K. H., Boettiger, A. N., Moffitt, J. R., Wang, S. & Zhuang, X. Spatially

resolved, highly multiplexed RNA profiling in single cells. Science 348, aaa6090
(2015).

6. Ke, R. et al. In situ sequencing for RNA analysis in preserved tissue and cells. Nat.
Methods 10, 857–860 (2013).

7. Hotelling, H. Analysis of a complex of statistical variables into principal compo-
nents. J. Educ. Psychol. 24, 417 (1933).

8. Kingma, D. P. & Welling, M. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114 (2013).

9. Townes, F. W., Hicks, S. C., Aryee, M. J. & Irizarry, R. A. Feature selection and
dimension reduction for single-cell rna-seq based on a multinomial model.
Genome Biol. 20, 1–16 (2019).

10. Svensson, V., Gayoso, A., Yosef, N. & Pachter, L. Interpretable factor models of
single-cell rna-seq via variational autoencoders. Bioinformatics 36, 3418–3421
(2020).

11. Finak, G. et al. Mast: a flexible statistical framework for assessing transcriptional
changes and characterizing heterogeneity in single-cell RNA sequencing data.
Genome Biol. 16, 1–13 (2015).

12. Delaney, C. et al. Combinatorial prediction of marker panels from single-cell
transcriptomic data. Mol. Syst. Biol. 15, e9005 (2019).

13. Ibrahim, M. M. & Kramann, R. Genesorter: feature ranking in clustered single cell
data. bioRxiv https://doi.org/10.1101/676379 (2019).

14. Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene
selection for cell type discrimination in single cell analyses. Nat. Commun. 12, 1–8
(2021).

15. Vargo, A. H. & Gilbert, A. C. A rank-based marker selection method for high
throughput scrna-seq data. BMC Bioinformatics 21, 1–51 (2020).

16. Nelson, M. E., Riva, S. G. & Cvejic, A. Smash: a scalable, general marker gene
identification framework for single-cell RNA-sequencing. BMC Bioinformatics 23,
328 (2022).

17. Conrad, T. O. et al. Sparse proteomics analysis–a compressed sensing-based
approach for feature selection and classification of high-dimensional proteomics
mass spectrometry data. BMC Bioinformatics 18, 1–20 (2017).

18. Shrikumar, A., Greenside, P. & Kundaje, A. Learning important features through
propagating activation differences. In International Conference on Machine
Learning, 3145–3153 (PMLR, 2017).

19. McWhirter, C., Mixon, D. G. & Villar, S. Squeezefit: label-aware dimensionality
reduction by semidefinite programming. IEEE Trans. Inform. Theory 66,
3878–3892 (2019).

20. Liang, S. et al. Single-cell manifold-preserving feature selection for detecting rare
cell populations. Nat. Comput. Sci. 1, 374–384 (2021).

21. Yang, P., Huang, H. & Liu, C. Feature selection revisited in the single-cell era.
Genome Biol. 22, 1–17 (2021).

22. Pullin, J. M. & McCarthy, D. J. A comparison of marker gene selection methods for
single-cell RNA sequencing data. bioRxiv https://doi.org/10.1101/
2022.05.09.490241 (2022).

23. Tibshirani, R. Regression shrinkage and selection via the lasso. J. Roy. Statistical
Soc.: Ser. B (Methodological) 58, 267–288 (1996).

24. Mahoney, M. W. & Drineas, P. Cur matrix decompositions for improved data
analysis. Proc. Natl Acad. Sci. 106, 697–702 (2009).

25. Lemhadri, I., Ruan, F., Abraham, L. & Tibshirani, R. Lassonet: a neural network with
feature sparsity. J. Mach. Learn. Res. 22, 1–29 (2021).

26. Maddison, C. J., Mnih, A. & Teh, Y. W. The concrete distribution: a continuous
relaxation of discrete random variables. In: 5th International Conference on
Learning Representations, ICLR 2017, Toulon, France, April 24–26, 2017, Conference
Track Proceedings (2017).

27. Xie, S. M. & Ermon, S. Reparameterizable subset sampling via continuous
relaxations. In: International Joint Conference on Artificial Intelligence (2019).

28. Balın, M. F., Abid, A. & Zou, J. Concrete autoencoders: differentiable feature
selection and reconstruction. In: International Conference on Machine Learning,
444–453 (PMLR, 2019).

29. Jang, E., Gu, S. & Poole, B. Categorical reparameterization with gumbel-softmax.
In: International Conference on Learning Representations (2016).

30. Chen, J. et al. L-Shapley and C-Shapley: Efficient Model Interpretation for Struc-
tured Data. International Conference on Learning Representations (2018).

31. Teneggi, J., Luster, A. & Sulam, J. Fast hierarchical games for image explanations.
IEEE Trans. Pattern Anal. Mach. Intell. (2022).

32. Zeisel, A. et al. Cell types in the mouse cortex and hippocampus revealed by
single-cell RNA-seq. Science 347, 1138–1142 (2015).

33. Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in
single cells. Nat. Methods 14, 865 (2017).

34. Kleshchevnikov, V. et al. Comprehensive mapping of tissue cell architecture via
integrated single cell and spatial transcriptomics. bioRxiv https://doi.org/10.1101/
2020.11.15.378125v1 (2020).

35. Paul, F. et al. Transcriptional heterogeneity and lineage commitment in myeloid
progenitors. Cell 163, 1663–1677 (2015).

36. Tasic, B. et al. Shared and distinct transcriptomic cell types across neocortical
areas. Nature 563, 72–78 (2018).

37. Covert, I. et al. Predictive and robust gene selection for spatial transcriptomics.
Nat. Commun. 14, 2091 (2023).

W. Gregory et al.

11

Published in partnership with the Systems Biology Institute npj Systems Biology and Applications (2024) 17

https://github.com/Computational-Morphogenomics-Group/MarkerMap
https://github.com/Computational-Morphogenomics-Group/MarkerMap
https://doi.org/10.1101/676379
https://doi.org/10.1101/2022.05.09.490241
https://doi.org/10.1101/2022.05.09.490241
https://doi.org/10.1101/2020.11.15.378125v1
https://doi.org/10.1101/2020.11.15.378125v1

38. Dai, M., Pei, X. & Wang, X.-J. Accurate and fast cell marker gene identification with
COSG. Briefings Bioinformatics 23, bbab579 (2022).

39. Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression
data analysis. Genome Biol. 19, 15 (2018).

40. Nguyen, L. H. & Holmes, S. Ten quick tips for effective dimensionality reduction.
PLoS Comput. Biol. 15, e1006907 (2019).

41. Li, M., Soltanolkotabi, M. & Oymak, S. Gradient descent with early stopping is
provably robust to label noise for overparameterized neural networks. In: Inter-
national Conference on Artificial Intelligence and Statistics, 4313–4324 (PMLR,
2020).

42. Patrini, G., Rozza, A., Krishna Menon, A., Nock, R. & Qu, L. Making deep neural
networks robust to label noise: a loss correction approach. In: Proc. IEEE Con-
ference on Computer Vision and Pattern Recognition 1944–1952 (2017).

43. Priebe, C. E., Huang, N., Villar, S., Mu, C. & Chen, L. Deep learning is provably
robust to symmetric label noise. Preprint at https://arxiv.org/abs/2210.15083
(2022).

44. Lugosi, G. Learning with an unreliable teacher. Pattern Recognition 25, 79–87
(1992).

45. Fischer, S. & Gillis, J. How many markers are needed to robustly determine a cell’s
type? Iscience 24, 103292 (2021).

46. Skafte, N., Jørgensen, M. & Hauberg, S. Reliable training and estimation of var-
iance networks. Adv. Neural Inform. Process. Syst. 32 (2019).

47. Akrami, H., Joshi, A. A., Aydore, S. & Leahy, R. M. Addressing variance shrinkage in
variational autoencoders using quantile regression. Preprint at https://arxiv.org/
abs/2010.09042 (2020).

48. Lopez, R., Regier, J., Cole, M. B., Jordan, M. I. & Yosef, N. Deep generative modeling
for single-cell transcriptomics. Nat. Methods 15, 1053–1058 (2018).

49. Ioffe, S. & Szegedy, C. Batch normalization: accelerating deep network training by
reducing internal covariate shift. In: International Conference on Machine Learning,
448–456 (2015).

50. He, K., Zhang, X., Ren, S. & Sun, J. Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification. In: Proc. IEEE International Con-
ference on Computer Vision 1026–1034 (2015).

51. Smith, L. N. Cyclical learning rates for training neural networks. In: 2017 IEEE
Winter Conference on Applications of Computer Vision (WACV), 464–472 (IEEE,
2017).

52. Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell https://
doi.org/10.1016/j.cell.2021.04.048 (2021).

53. Jaccard, P. The distribution of the flora in the alpine zone 1. N. Phytologist 11,
37–50 (1912).

ACKNOWLEDGEMENTS
W.G., G.A.K., and S.V. were partially funded by ONR N00014-22-1-2126. S.V. is also
partially funded by the NSF-Simons Research Collaboration on the Mathematical and
Scientific Foundations of Deep Learning (MoDL) (NSF DMS 2031985), and the
TRIPODS Institute for the Foundations of Graph and Deep Learning at Johns Hopkins

University. W.G. and S.V. are also partially supported by a Amazon+JHU AI2AI
research award. B.D. was partly supported by the Accelerate Programme for Scientific
Discovery, funded by Schmidt Futures. The authors would like to thank Sinead
Williamson and Maria Brbic for their comments on earlier versions of the manuscript.
The authors would also like to thank the anonymous reviewers for their insightful
feedback and constructive comments on this project.

AUTHOR CONTRIBUTIONS
W.G., N.S., G.A.K., S.V., and B.D. developed the code and performed the computational
analysis. W.G., N.S., G.A.K. contributed to this work equally. B.D. and S.V. conceived,
managed and supervised the project. All authors wrote and reviewed the manuscript.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41540-024-00339-3.

Correspondence and requests for materials should be addressed to Soledad Villar or
Bianca Dumitrascu.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024

W. Gregory et al.

12

npj Systems Biology and Applications (2024) 17 Published in partnership with the Systems Biology Institute

https://arxiv.org/abs/2210.15083
https://arxiv.org/abs/2010.09042
https://arxiv.org/abs/2010.09042
https://doi.org/10.1016/j.cell.2021.04.048
https://doi.org/10.1016/j.cell.2021.04.048
https://doi.org/10.1038/s41540-024-00339-3
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	MarkerMap: nonlinear marker selection for single-cell studies
	Introduction
	Results
	MarkerMap: learning relevant markers for scRNA-seq studies
	Improving accuracy in supervised scRNA-seq studies
	Learning representations which are robust to mislabeling
	Prospects for reconstruction in unsupervised settings

	Discussion
	Methods
	MarkerMap
	Illustrative Toy Example
	Optimization
	Architecture
	Temperature annealing
	Parameter initialization
	Scalability
	Benchmarks
	Data�sets
	Zeisel data�set
	CITE-seq data�set
	Paul data�set
	Mouse brain data�set
	SSv4 V1 data�set

	Data processing
	Evaluation metrics
	Reporting summary

	DATA AVAILABILITY
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION

