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Digital twins elucidate critical role of Tscm in clinical
persistence of TCR-engineered cell therapy
Louis R. Joslyn 1,2✉, Weize Huang1,2, Dale Miles 1, Iraj Hosseini1,3 and Saroja Ramanujan 1,3

Despite recent progress in adoptive T cell therapy for cancer, understanding and predicting the kinetics of infused T cells remains a
challenge. Multiple factors can impact the distribution, expansion, and decay or persistence of infused T cells in patients. We have
developed a novel quantitative systems pharmacology (QSP) model of TCR-transgenic T cell therapy in patients with solid tumors to
describe the kinetics of endogenous T cells and multiple memory subsets of engineered T cells after infusion. These T cells undergo
lymphodepletion, proliferation, trafficking, differentiation, and apoptosis in blood, lymph nodes, tumor site, and other peripheral
tissues. Using the model, we generated patient-matched digital twins that recapitulate the circulating T cell kinetics reported from a
clinical trial of TCR-engineered T cells targeting E7 in patients with metastatic HPV-associated epithelial cancers. Analyses of key
parameters influencing cell kinetics and differences among digital twins identify stem cell-like memory T cells (Tscm) cells as an
important determinant of both expansion and persistence and suggest that Tscm-related differences contribute significantly to the
observed variability in cellular kinetics among patients. We simulated in silico clinical trials using digital twins and predict that Tscm
enrichment in the infused product improves persistence of the engineered T cells and could enable administration of a lower dose.
Finally, we verified the broader relevance of the QSP model, the digital twins, and findings on the importance of Tscm enrichment by
predicting kinetics for two patients with pancreatic cancer treated with KRAS G12D targeting T cell therapy. This work offers insight
into the key role of Tscm biology on T cell kinetics and provides a quantitative framework to evaluate cellular kinetics for future
efforts in the development and clinical application of TCR-engineered T cell therapies.
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INTRODUCTION
The past decade has witnessed rapid progress in the field of
adoptive T cell therapy, including the approval of multiple
chimeric antigen receptor (CAR) T cell therapies in hematological
cancers1. CAR-T cells, engineered to target surface antigens on
tumor cells to drive tumor eradication, is a therapy that can result
in long-term remission alongside T cell persistence in the most
successful cases. Another approach is TCR-engineered T cells,
designed to recognize MHC-presented antigen to enable target-
ing of intracellular proteins2. Recently, both CAR- and TCR-
engineered T cells have shown at least partial efficacy against
solid tumors2,3, expanding on initial successes in hematological
malignancies.
As a ‘living drug’, T cell therapy products are complex,

heterogeneous, and can proliferate after infusion4. Therefore,
understanding the cellular kinetics and pharmacology of T cell
therapies can be difficult compared to protein-based therapeutics,
for which molecule properties are more uniform and pharmaco-
kinetics are better characterized. Cellular kinetics of T cell
therapies tend to follow four phases: 1) distribution – a steep
decline in circulating T cell concentrations as cells traffic to tissue
immediately following infusion, 2) expansion – a rapid increase in
T cell concentrations following distribution and 3) contraction – a
decline in cell concentrations following expansion and 4) decline
or persistence – a slow decay in cell concentrations that can last
months to years4,5. Each phase results from a combination of
biological processes such as T cell proliferation, trafficking,
differentiation, activation, apoptosis, exhaustion and anergy6,7,
however their relative contributions to different aspects of cellular

kinetics have yet to be deconvolved. Furthermore, the infused
product can include T cells with varying levels of memory
differentiation, activation, plasticity, or even exhaustion8–10, and
the impact of these variables is also not well characterized.
Understanding the cellular kinetics of TCR-engineered T cell

therapies in solid tumor indications is crucial to ensure T cell
expansion, migration, antigen recognition, tumor regression, and
maintenance of long-term surveillance to improve the efficacy of
these therapies and prevent tumor recurrence. As a complemen-
tary approach to in vitro and in vivo experiments, mathematical
and in silico computational models have been developed to study
the cellular kinetics of T cell therapies. These models typically use
nonlinear differential equations to describe and simulate the
dynamics of T cell therapies and have focused on CAR T cell
therapies in hematological malignancies11–13. However, no models
have been developed to describe TCR-engineered T cell kinetics
for solid tumors and only a few have attempted to capture the
various T cell memory phenotypes present in T cell therapies7,11,14.
In this work, we present a quantitative systems pharmacology

(QSP) model that represents fundamental mechanisms of T cell
turnover, differentiation, and trafficking to describe the multi-
phasic kinetics of TCR-engineered T cells, including different T cell
memory phenotypes and endogenous T cells in multiple
physiological compartments following lymphodepletion and T
cell infusion. We use the model to reproduce and analyze the
cellular kinetics data reported in a clinical study of TCR-engineered
T cells targeting neoantigen E7 in patients with HPV-associated
epithelial cancer15. Given the small size of the study and the high
degree of interpatient variability, we apply a recently developed
digital twin methodology16 to create “individualized” virtual
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patients that reproduce observed cellular kinetics from each study
patient. We perform quantitative analysis of the digital twins to
identify mechanisms that impact cellular kinetics and explore how
dose amount and composition influence cell expansion and
persistence. We also show that the resulting model, digital twins,
and findings are more broadly applicable by predicting kinetics
from a clinical trial on KRAS G12D targeting T cell therapy17. The
model and analysis presented provide insight into biological
processes governing the kinetics of TCR-engineered T cell
therapies, highlight an important role of Tscm biology and provide
a quantitative framework to inform future efforts in the
development and clinical application of TCR-engineered T cell
therapies.

RESULTS
Digital twins capture kinetics of multiple T cell phenotypes at
different dose levels and compositions
The QSP model represents fundamental mechanisms of T cell
biology to describe the cellular kinetics of endogenous
CD3+ T cells (Tendo) and CD8+ TCR-engineered T cells (stem
cell-like memory T cells -Tscm, central memory T cells - Tcm, effector
memory T cells - Tem, effector T cells - Teff) in multiple physiological
compartments following lymphodepletion and T cell infusion
(Fig. 1, see Methods & Fig. 2 for details). We first calibrated the

model using gQSPSim workflows18 to generate a representative
“reference virtual patient” across all dose cohorts that recapitu-
lates the overall quantitative data on cellular kinetics after therapy
with autologous T cells engineered to target the neoantigen E7 in
metastatic HPV-associated epithelial cancer patients (Supplemen-
tary Fig. 1B)15. We selected to calibrate the model to this publicly
available clinical data because the study provided dose amounts,
dose compositions and cellular kinetics for each patient
(see Fig. 2A in Nagarsheth et al. which displays cellular kinetics
across time for each patient15). Simulation of the reference patient
at each dose level (low dose - 109 edited cells, middle dose - 1010

edited cells, high dose - 1011 edited cells) reproduces the
observed clinical cellular kinetics in blood. All subsets of TCR-
engineered T cells characterized in the study (Tscm, Tcm, Tem, and
Teff cells) exhibit distribution, expansion and decay over time,
except in the low dose group, in which neither the observed data
nor the reference virtual patient shows expansion of the T cells.
These results verify that the model and reference virtual patient
can quantitatively describe the dynamics of all TCR-engineered T
cell subsets as well as the endogenous T cells, as a function of total
infused T cell dose (Supplementary Fig. 1), but may not be able to
capture all the variability present in the data.
As the cellular kinetics show a high degree of interpatient

variability within and across dose cohorts (Supplementary Fig. 1A),
we employed a digital twin approach (Supplementary Fig. 2). The

Fig. 1 QSP model describes dynamics of T cell phenotypes across multiple physiological compartments. The QSP model describes the
in vivo dynamics of multiple T cell phenotypes following treatment with TCR-engineered T cells. The model includes four T cell phenotypes,
Tscm, Tcm, Tem, and Teff, across blood, tumor, tumor-draining lymph node, and other tissues/lymph nodes compartments. Endogenous T cells
(Tendo) are present in all non-tumor compartments. Baseline proliferation (except Teff), apoptosis, and trafficking between compartments are
represented for all T cells. Antigen-driven proliferation and engineered T cell differentiation is modeled in the tumor and tumor-draining
lymph node, and Tem and Teff traffic through the blood to the tumor compartment.
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digital twin methodology is a relatively new approach for
calibrating QSP models when there is limited observed data for
different clinical dosing scenarios and a high degree of
variability16. For each patient, we screened thousands of virtual
patients to select 10 digital twins, each of which reflects a unique
combination of underlying biological parameter values to closely
match the observed patient kinetics when simulated with the
corresponding clinically administered dose amount and composi-
tion (see Supplementary Methods for digital twin generation and
workflow). Given the uncertainty in biological parameters, the use
of multiple digital twins per patient allows us to explicitly account
for alternative parameterizations of the underlying biology that
are consistent with the observed data, but may yield divergent
predictions under untested protocols and different dosing regi-
mens or cell composition of the infused product.
The digital twins successfully capture the distinct cellular

kinetics of each patient in response to distinct dose amounts
and compositions of TCR-engineered T cells (Fig. 3, patient IDs 2 &
11 were removed from the original dataset due to a lack of data).
Like the reference patient, the digital twins capture the general
differences between cohorts, with minimal cell expansion in the
patients of the low dose group (IDs 1, 3) and greater expansion of
Tscm and Teff cells in the patients of the high dose cohort (IDs 7, 8,
9, 10, 12). The digital twins additionally capture within-group
variability; for example, in the middle dose group, simulations
reproduce the higher cell numbers and different kinetic profiles in
patient 5 compared to those of patients 4 and 6.

Taken together, the superset of all digital twins forms a virtual
population that represents the 10 patients in the clinical study.
The virtual population can be used to project cellular kinetics for
the 10 clinical patients under different TCR-engineered T cell
therapy regimens and compositions and to dissect the biological
processes driving the observed and predicted kinetics and
interpatient variability.

Proliferation and trafficking of early memory T cell
phenotypes explain differing cellular kinetics across and
within dose cohorts
The digital twins are defined by distinct inferred parameterizations
of the underlying biological processes governing cellular kinetics.
Ridgeline plots (Fig. 4A–N) and principal component analysis (PCA)
(Fig. 4O, Supplementary Fig. 3) were separately used to visualize
the parameter space for digital twins of each patient and to
compare these across patients. Parameters that vary between
clinical patients highlight potential underlying biology that is
important for capturing their differential kinetic profiles.
The ridgeline plots (Fig. 4A–N) show consistent distributions

across patients for many parameters, such as antigen-driven Tem
proliferation (Fig. 4C) and Tem conversion (Fig. 4M); these
processes do not appear to drive interpatient differences in
cellular kinetics. However, the rate constant for antigen-driven
proliferation of Tscm cells (i.e., kprolif_atg_scm subplot - Fig. 4A)
varies both within and across dose groups. Within the mid-dose

Fig. 2 Workflow of T cell therapy QSP model development, calibration, and analysis. The QSP model represents cellular kinetics of T cells in
blood, tissues, tumor-draining lymph node and tumor for 5 T cell phenotypes. Model calibration used clinical data of E7 targeting TCR-
engineered T cells to generate a ‘reference virtual patient’, to demonstrate that generating a fit was feasible but cannot capture all observed
variability in cellular kinetics across patients. Subsequently, we used the same dataset to generate a set of digital twins, wherein 10 digital
twins were selected to match each patient in the clinical trial. We use the digital twins to make predictions for alternate dosing strategies and
performed parameter analyses to gain insight into biological mechanisms that might differ from patient to patient or drive persistence across
time. We simulated the digital twins with an alternative dose strategy to predict the impact of dose composition and dose amount on cellular
kinetics. Finally, we compare the digital twin predictions for a separate TCR-engineered T cell therapy targeting KRAS G12D in pancreatic
cancer patients.
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group, the digital twins for patient 5 skew to higher Tscm
proliferation rate constants, similar to values in the high dose
cohort, whereas the digital twins for patients 4 and 6 have lower
Tscm proliferation rate constants, comparable to values in the low
dose cohort. Correspondingly, patient 5 exhibits higher cell counts
than patients 4 and 6, suggesting that the propensity of antigen-
driven Tscm proliferation is a driver of interpatient variability in T
cell numbers. Other parameters and processes with high inter-

patient variability include the trafficking rate constants of Tscm,
Tcm, and Tem (Fig. 4F–H) and the proliferation rate constants of Tcm
(Fig. 4B) and endogenous cells (Fig. 4E). Thus, these biological
processes appear to be important determinants of cell kinetics
and heterogeneity.
As mentioned above, some parameters show clear inter-cohort

variability. This is further evident by plotting the parameter values
within the context of a PCA plot (Fig. 4O), where we observe

Fig. 3 Digital twins capture the variable cellular kinetics of patients treated with TCR-engineered T cells. The digital twins replicate the
multiphasic cellular kinetics in blood following treatment with HPV-16 E7 targeting TCR-engineered T cells. Each column displays experimental
measurements in blood: either Tscm, Tcm, Tem, or Teff TCR-engineered T cells, endogenous T cells (Tendo). Every row displays cell measurements
in units of cells/mL for an individual patient. A, B Patients 1 and 3 received 109 cells, (C–E) patients 4, 5, and 6 received 1010 cells and (F–J) all
other patients received 1011 cells. Data points represent the experimental data across time and curves are the 10 digital twins that best
matched the experimental data for that patient. Patients 2 and 11 were removed due to a lack of reported data.
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minimal overlap along the first principal component (PC1)
between the low and high dose groups (tan vs. orange dots,
Fig. 4). In the PCA, parameters that govern proliferation and
trafficking of T cells are important contributors of variability
across dose cohorts (see Supplementary Fig. 3 for contribution of
each parameter to PC1 and PC2). In agreement, the ridgeline
plots also reveal higher Tscm and Tcm proliferation at high vs. low
dose. These trends suggest an interplay between dose and early
memory T cell proliferation, beyond the effects explicitly included
in the model.

Stratification of digital twins in a virtual clinical trial provides
insight into key determinants of T cell persistence
While the above analysis illustrates the biological variability
inherent across the digital twin population, the digital twins also
allow the prediction of the impact of interpatient biological
variability on T cell persistence over time. A virtual clinical trial was
simulated where all the digital twins received a mid-dose of 1010

TCR-engineered T cells, at a composition of 1% Tscm, 3% Tcm, 48%
Tem and 48% Teff cells (Fig. 5A). This dose was selected as it is a
representative dose composition from the E7 clinical trial.

Fig. 4 Parameter space ridgeline plots and principal component analysis of digital twins identify sources of variability between patients
and across dose groups. A–N Ridgeline plots display the distributions for 14 parameters (1 subplot per parameter) across the digital twins of
each clinical patient. For each subplot, individual patient IDs are listed along the y axis, and the range of potential parameter values are listed
along the x axis. Each individual density plot represents the parameter values of the 10 digital twins that best matched the observed clinical
data for that patient and is colored according to the dose group (tan – low dose, yellow –middle dose, orange - high dose). O The PCA plot in
the lower right panel illustrates variability across principal components of parameter space (PC1 vs PC2). Each dot is an individual digital twin,
colored according to the dose group, with a total of 100 digital twins represented.
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Figure 5B–E displays the simulated kinetics (median and
interquartile range) of the different T cell phenotypes across the
virtual population. At this dose amount and composition, the Tscm
and Teff cells (Fig. 5B, C) undergo distribution and subsequent
expansion prior to decline across all the digital twins, while less
expansion is predicted for Tcm and Tem cells (Fig. 5C, D). The
predicted responses range over nearly an order of magnitude for
each T cell phenotype, highlighting anticipated interpatient
variability at a fixed dose composition.
Given the reported relationship between cell expansion in the

first couple of months and treatment efficacy in hematological
malignancies5,14, we stratified the digital twins based on
frequency of TCR-engineered T cells (formulated as total TCR-
engineered T cells divided by total T cells) in blood at day 50;
those with a majority of TCR-engineered T cells in the blood
exhibited persistence over time and hence were classified as
‘persisters’ under this treatment regimen, and the rest showed
decline over time and were classified as ‘non-persisters’ (Fig. 5F).
We then performed a global sensitivity analysis to propose

biological processes that might be driving persister vs. non-
persister outcomes. Rate constants for Tscm trafficking and
proliferation, Tendo proliferation, and Tcm proliferation and
trafficking were identified as key drivers of persister or non-
persister outcomes (Partial Rank Correlation Coefficient values
plotted in Fig. 5G). Interestingly, these parameters were also
identified in the inter-individual variability analysis above. We note
that non-linear relationships can exist between parameters
identified in such an analysis. For example, since overall Tscm

expansion relies on both traffic to and proliferation within the
tumor draining lymph node, digital twins with lower Tscm
trafficking rate constants require greater Tscm proliferation rate
constants to exhibit persistence and vice versa; thus, differences in
these parameters between persisters and non-persisters are more
evident in a bivariate plot (Supplementary Fig. 4). Altogether,
these parameters appear to drive interpatient variability in cell
persistence.

Altering dose composition changes cellular kinetics of
engineered-TCR T cell therapies
In addition to dose amount and patient-specific biological
variability, dose composition may impact expansion and persis-
tence of T cells19–22. To illustrate the impact of alternative dose
compositions, we simulated a different dose composition in
representative patients from the low (patient 1) and mid dose
(patient 6) groups (Fig. 6). We used a Tscm-enriched composition
(85% Tscm, 5% Tcm, 5% Tem, and 5% Teff) based on the hypothesis
that Tscm enrichment drives better expansion and persistence. The
cellular kinetics after treatment with the original dose composition
are compared with those predicted after treatment with a Tscm-
enriched dose at two different dose levels. Furthermore, we
performed a systematic variation of dose composition across all
digital twins to relate dose composition to persistence (Fig. 6C).
The predicted cellular kinetics support the hypothesis that

treatment with Tscm cells leads to greater overall expansion and
persistence of the TCR-engineered T cells. For patient 6, infusion of

Fig. 5 Biological variability (patient-specific) impacts cellular kinetics of TCR-engineered T cell therapies leading to persister or non-
persister outcomes. A The entire set of digital twins were simulated with a dose of 1010 TCR-engineered T cells and a dose composition of 1%
Tscm, 3% Tcm, 48% Tem and 48% Teff cells. B–E The cellular kinetics of each T cell phenotype across time. The bands represent the 25th and 75th
percentiles of all digital twins and the black line displays the median. F TCR-engineered T cells, as a percentage of total T cells in the blood,
were delineated by persister (teal) or non-persister (peach) outcomes. The bands represent the 25th and 75th percentiles of each subgroup
and the colored line displays the median. G Bar plot of Partial Rank Correlation Coefficient (PRCC) scores for the relationship between each
parameter (along y axis) and outcome (persister vs non-persister). White bars represent parameters that were statistically insignificant.
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a 10-fold lower dose (109 cells) of Tscm-enriched product is
predicted to yield comparable overall cell expansion and
persistence as infusion of 1010 cells of the original dosing material,
which is mainly composed of Tem and Teff cells (Fig. 6B). For

patient 1, simulated infusion of the Tscm-enriched material at the
original dose level of 109 cells increases T cell counts in blood by
approximately 100-fold compared to the original dosing material,
which is mainly composed of Tem and Teff (Fig. 6A). The finding

Fig. 6 Dose composition impacts cellular kinetics of TCR-engineered T cells. Two sets of digital twins, those (A) matching patient 1 or (B)
matching patient 6 were re-simulated with an alternative dose composition and different dose amounts. Each row represents a different dose
composition or dose amount that was simulated. Each column displays either the dose composition or the cellular kinetics of the TCR-
engineered T cell subsets. Cellular kinetics of the digital twins treated with the original dose composition are replotted (gray curves) to
provide a baseline for comparison to cellular kinetics resulting from alternative dosing simulations (colored curves, blue - Tscm, green - Tcm,
purple - Tem, or red - Teff). C Bar plots show persistence (% TCT in blood at day 365) as a function of percent cell composition for each of the
four cell phenotypes. The bar plot height represents the average persistence metric across the 100 digital twins).
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that greater Tscm composition in the infusion product leads to
greater T cell abundance in these patients is consistent with our
findings on Tscm parameters as critical determinants of cellular
kinetics and persistence and is further supported by systematic
variation of dose composition. We simulated 5000 unique random
dose compositions and calculated the percent of TCT in the blood
365 days after infusion for each digital twin. Bar plots in Fig. 6C
display this persistence metric averaged across all digital twins,
binned by 5% intervals (Fig. 6C). When a dose composition
contains 75% Tscm, 80% of blood T cells are TCT at day 365.
Similarly, if 75% of the dose composition is Tcm, the persistence
decreases and only ~50% of the blood T cells are TCT at day 365.
Further, if 75% of the dose composition is either Tem or Teff, the
persistence metric will further drop to ~38%. These findings could
not be derived from a correlation analysis between dose
composition and persistence of the TCR-engineered T cells from
the observed clinical data in the E7 clinical trial (Supplementary
Fig. 5). More generally, the results illustrate how the QSP model
and digital twins can be used to explore optimization of dose
composition and amount to achieve greater T cell persistence.

Digital twins predict KRAS G12D T cell profiles in pancreatic
cancer patients
To explore the relevance of the QSP model structure and digital
twins for other TCR-engineered T cell therapies and indications,
we simulated the 100 digital twin virtual population at the same
dose and composition used in a clinical study of KRAS G12D
targeting TCR-engineered T cells in patients with metastatic
pancreatic cancer (Fig. 7, see Supplementary Methods for details).
The KRAS G12D clinical dataset was selected for this exercise as it
is a publicly available dataset that provides a description of dose
composition and dose amount, as well as the cellular kinetics of
this therapy across time for both patients17. In the KRAS G12D
clinical trial, both patients received a middle dose of ~1010 cells
containing a majority of Tem cells, but patient #2 received a
greater number of early memory cells. The different simulation
curves reflect both the inter- and intra-patient variability
represented in the digital twins, and interestingly, the clinical
patient data generally corresponds to the highest density of
simulated profiles. We further highlight the digital twin simulation
that best matches the clinical patient’s data to illustrate the
correspondence. These results support our broader findings on
our model structure and the importance of Tscm and Tcm cells for
persistence and suggest that the model and digital twins might

help anticipate cellular kinetics and variability for TCR-engineered
T cells targeting other antigens and indications.

DISCUSSION
The expansion and persistence of adoptively transferred T cell
therapeutics have been linked to anti-cancer efficacy. However,
understanding, predicting, and optimizing cellular kinetics remain
a challenge, as numerous factors can impact cellular kinetics. In
early clinical trials, dose levels range several orders of magnitude
and manufacturing considerations make it difficult to supply
patients with identical dose compositions. Additionally, patient
heterogeneity can significantly impact cellular kinetics, via both
the quality of the harvested and engineered T cells in autologous
therapies and the interaction of the administered T cells and the
host. Clinical trial data highlight characteristic behaviors such as
expansion, contraction and persistence, but the most critical
determinants of expansion and persistence are not well under-
stood and determining which patients may achieve those cellular
kinetics poses a significant challenge. Mechanistic modeling
approaches offer a way to leverage biological knowledge to
quantitatively deconvolute the mechanisms underlying data and
provide insights and predictions about the biological processes
behind diverse outcomes.
To better understand biological drivers of variability in cellular

kinetic profiles, we developed a QSP model that describes T cell
memory phenotypes across multiple physiologically relevant
compartments, including blood, tumor, tumor-draining lymph
nodes, and other healthy tissue. We include each of the
aforementioned compartments in order to capture the distinct
phases of cellular kinetics and represent the biological mechan-
isms that contribute to the observed dynamics. In particular, the
tumor and TDLN represent sites of antigen-driven differentiation
and proliferation, and the healthy tissue compartment is key to
capturing margination and endogenous T cell expansion following
lymphodepletion. A “reference virtual patient” parameterization of
the generalized model captures the clinical trial data of four
different TCR-engineered T cell phenotypes in the blood across
three different dose amounts and various dose compositions. For
each clinical patient, we further generated multiple digital twins
that reproduce the patient’s observed T cell kinetics in response to
treatment with their unique dosing material. Analysis and
simulation of all digital twins allowed us to identify the biology
most strongly influencing cellular kinetics and interpatient
variability and to explore alternative dosing scenarios.

Fig. 7 Predictive simulations of digital twins capture observed profiles in pancreatic cancer patients treated with TCR-engineered T cells
targeting KRAS G12D. TCR-engineered T cells, as a percentage of total T cells in blood, for (A) patient #1 and (B) patient #2 are displayed
across time. All 100 digital twins (gray curves) were re-simulated with the dose amount and dose composition outlined in the KRAS G12D
clinical trial and plotted within the same graph. Black curves show the single digital twin that best recapitulate the observed data of each
patient according to RMSE.
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To our knowledge, this is the first systems model of T cell
therapy that addresses TCR-engineered T cell therapy solid
tumors, represents multiple memory subsets of T cells, and
includes multiple tissue compartments. The latter is especially
important for TCR-engineered T cells, for which trafficking to
tumor-draining lymph nodes and tumor is required for antigen-
induced cell expansion, differentiation, and tumor cell killing
respectively. Furthermore, we believe this is the first use of
patient-matched digital twins in the T cell therapy context.
Digital twins broadly refer to a model and accompanying

parameterizations that capture the behavior of a “system” of
interest for a single patient. Digital twins have been used across
the fields of immunology and immunotherapy23,24, including to
assess infectious disease outcomes25, to simulate the dose-
response of bispecific antibodies in virtual clinical trials16, and to
provide the control arm of clinical trials via disease progression
modeling26. As the calibration data in this study came from a
phase 1 clinical trial, the data included a limited number of
subjects across multiple dose groups with high levels of variability.
The digital twin approach has previously been shown to be useful
to address these challenges16. Further, these digital twins provide
a novel approach to investigating cellular kinetics profiles and
predicting the impact of varying dose and phenotype ratios of
TCR-engineered T cell therapies, through virtual simulation of
alternate treatment protocols.
In this work, we used digital twins to provide quantitative,

analysis-based hypotheses for why some patients show robust T
cell expansion and long-term persistence while others do not.
Analysis of digital twins stratified according to persister or non-
persister outcomes suggests that the proliferation and trafficking
of Tscm cells is an important determinant of persistence that differs
from patient to patient. These parameters are interrelated as
antigen-driven proliferation of cells occurs in tumor-draining
lymph nodes, which requires trafficking from the blood. Addi-
tionally, proliferation of endogenous T cells was identified as
impacting persistence of the TCR-engineered T cells, indicating
competition between cell types. Finally, apoptosis of Tem cells
impacts cellular kinetics by determining the persistence of the Tem
subset. These results were consistent with analyses comparing
parameter differences between dose groups and between
individual patients.
Taken together, these analyses emphasize the potential of

optimizing treatment regimens to maximize cell expansion and
persistence. The predicted importance of endogenous T cell
proliferation on engineered T cell persistence underscores the role
of competition between the administered and endogenous T cells.
Further, it highlights the value of lymphodepletion regimens,
which are often administered prior to the TCR-engineered T cell
therapy to lower Tendo cell counts prior to treatment27–31. Similarly,
as Tscm proliferation was identified as an important determinant of
cell kinetics and persistence, optimizing cytokine co-
administration may improve cell expansion. In this study, IL-2
was administered and while there was no clear relationship
between cell expansion and the amount of IL-2 dosed (data not
shown), we implicitly captured the effects of IL-2 administration in
the patient-specific proliferation rates. However, the importance of
these proliferation rates in our analysis suggests other cytokines
could be co-administered with T cell therapy including IL-7, IL-15,
or IL-21 to facilitate the production of Tscm and Tcm cells, as these
cells may offer greater persistence and therefore more robust anti-
tumor activities in vivo across time22,32–40.
Our work additionally supports the hypothesis that altering the

dose composition of T cell therapy can have a profound impact on
the cellular kinetics across time. Simulated treatment of digital
twins with a dose composed of primarily Tscm cells rather than Tem
cells improved cell expansion and persistence. Again, this is
consistent with the in silico exploration of mechanistic drivers of
cellular kinetics that highlighted Tscm related parameters.

Importantly, a simple correlation analysis between cell composi-
tion and persistence in the clinical data does not readily suggest a
relationship between Tscm and persistence which could be due to
different confounding sources of variability (Supplementary
Fig. 5). Given the observed, complex relationship between dose
amount, safety, and efficacy of T cell therapy in hematological
malignancies41, altering the dose composition may provide a
method of mitigating adverse events while still providing the
necessary dose for efficacy.
While early work in CAR T cell therapies focused on establishing

relationships between overall quantities of administered T cells
and clinical response, recent work has acknowledged the key role
of different phenotypes within the T cell products. Increasingly,
preclinical and clinical studies have drawn correlations between
stem-like capabilities of T cells and outcomes such as expansion,
persistence, and efficacy42–45. Consistent with our model predic-
tions and analysis for TCR-engineered T cell therapies, Tscm CAR
T cells were recently shown to exhibit a proliferative advantage
over conventional CAR T cells in in vitro and in vivo settings9,22,32.
While research continues on optimizing ex vivo T cell processes to
increase Tscm abundance, the model enables exploration of the
predicted kinetics for dose compositions achieved, and can be
used to help set minimum dose material requirements for desired
kinetics.
Using digital twins to make prospective predictions assumes

that the kinetics observed in the clinical patients in the HPV-16 E7
clinical trial are representative of T cell therapy more broadly, and
that the model and key features of the digital twins are relevant to
other T cell therapies and indications. We showed that a
retrospective, predictive simulation of the digital twins captured
the cellular kinetics observed for KRAS G12D TCR-engineered T
cell therapy in pancreatic cancer patients. This work provides
increased confidence in the utility of the QSP model and digital
twins for simulation and exploration of other adoptive T cell
therapies, even in other cancer indications. Further, it illustrates
the applicability of the digital twin approach for future investiga-
tions. However, observed quantitative responses to T cell
therapies are expected to be patient, therapy (e.g., target-antigen,
affinity), and indication dependent.
In this work we focused on capturing autologous CD8+ T cells

as the majority of TCR-engineered T cell therapies in clinical
studies utilize CD8+ T cells. With appropriate data, the model can
be modified to separately capture CD4+ and CD8+ T cell kinetics,
as potentially both cell types influence therapeutic efficacy.
Further, with appropriate data, the model could capture allogenic
T cell therapies, which may exhibit some advantages to
autologous T cells46. A limitation of this work is that we did not
focus on tumor response, but rather on T cell expansion and
persistence, which have been related to efficacy of CAR T
therapies. Although the model includes equations and parameters
for T-cell mediated tumor killing, absolute tumor size was not
reported in the study and tumor-killing relies on the relative
number of T cells to target cells47,48. Quantitative data on T cell
exhaustion markers or gene expression, target antigen availability,
and ideally engineered T cells in post-treatment tumor biopsy
would also be valuable for linking cellular kinetics to tumor killing
(i.e. therapeutic efficacy) for solid-tumor indications. Currently, we
have modeled a theoretical “effective antigen load” that decays
exponentially across time to represent various biological processes
that might reduce the immune response as time progresses
following treatment (Supplementary Fig. 6). This includes known
mechanisms beyond tumor burden, such as T-cell exhaustion49,50,
poor antigen presentation or immune escape mechanisms51 that
have not been explicitly included in the model but are implicitly
captured by our empirical representation. With appropriate
datasets, future work could link cell kinetics, antigen availability,
and tumor burden and response.
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Despite limitations, the QSP model and digital twin methodol-
ogy may have considerable applications beyond those presented
herein. Currently, the QSP model integrates clinical data with
mechanistic understanding in a unified and quantitative repre-
sentation of cellular kinetics and variability for TCR-engineered T
cell treatment in solid tumor indications. However, modification to
address CAR T cell therapies or hematological malignancies is
straightforward. Additionally, while beyond the scope of the
current work, the digital twin methodology provides an opportu-
nity for personalizing the model to patient characteristics and
measurements (e.g. age, previous treatments, or baseline biomar-
ker data) in order to predict and optimize treatment for each
unique patient.

METHODS
QSP model structure
We constructed a mechanistic QSP model composed of ordinary
differential equations to describe the underlying cellular kinetic
processes governing the in vivo dynamics of T cells during TCR-
engineered T cell therapy in solid tumor indications. The model is
designed to reproduce clinical measurements of the kinetics of
different subsets of T cells, specifically: stem-like memory T cells
(Tscm), central memory T cells (Tcm), effector memory T cells (Tem),
and effector T cells (Teff) from the TCR-engineered T cell therapy
alongside endogenous T cells (Tendo), following lymphodepletion
and adoptive T cell transfer. As illustrated in Fig. 1, the model
includes four physiologically relevant compartments – blood,
tumor-draining lymph node (TDLN), a lumped compartment
representing normal tissues including lymph nodes (Tissue/LN)
and tumor. Lymphodepletion and adoptive T cell infusion are
simulated by specifying baseline values of Tendo, Tscm, Tcm, Tem, and
Teff cells in the blood based on the extent of initial lymphodeple-
tion and the dose amount of infused T cells.
Each T cell subset undergoes homeostatic proliferation and

apoptosis, which can occur in blood, TDLN and Tissue/LN
compartments. Due to the lack of clinical measurements in tumor
and peripheral tissues and given the focus on circulating cell
dynamics, for each cell subset, we use a common trafficking rate
constant for all tissues, although the partition coefficient differs
across tissues. Furthermore, while Tscm and Tcm cells can traffic
into the tumor-draining lymph node, Tem and Teff cells cannot, due
to their lack of CD62L, which assists early-differentiated memory
T cells extravasation into the lymph node environment52–54.
Conversely, as effector cells, Tem and Teff can traffic from blood to
tumor. Within TDLN, all TCR-engineered T cells undergo antigen-
driven proliferation and differentiation, with the exception of Teff
cells, as they are a terminally differentiated phenotype. Antigen
load (antigen presented within the context of HLA) is represented
as ‘tumor’ within the model and decreases following the start of
the simulation to simulate the loss of antigen in TDLN after
treatment (Supplementary Fig. 6). All compartment volumes and
partition coefficients were based on literature values55–65. Further
information on the model details, equations and parameter values
are included in the Supplementary Methods.

HPV-16 E7 TCR-engineered T cell therapy clinical data
For model calibration and digital twin generation, we used
previously published data15. Briefly, in a first-in-human, phase 1
clinical trial, 12 patients were treated with T cells engineered with
a TCR targeting HPV-16 E7 for the treatment of metastatic human
papilloma virus-associated epithelial cancers. Patients were
grouped into 3 separate cohorts, wherein patients received 109,
1010, or 1011 engineered T cells in the low, medium and high dose
cohorts, respectively. All patients were dosed a single time, at day
0, via intravenous infusion. Seven days prior to administration of
the TCR-engineered T cell therapy, patients underwent a

lymphocyte depletion regimen of cyclophosphamide (half of all
patients received 60mg/kg, the other six patients received a
reduced dose of 30 mg/kg). All patients had received previous
systemic anti-cancer treatments.
For the purposes of this study, two patients (patient IDs 2 and

11) were removed from the dataset due to lack of observed
measurements. Reported measurements for the other 10 patients
include cell concentrations (cell/mL) of Tscm, Tcm, Tem, and Teff TCR-
engineered T cells, as well as Tendo cell concentration across time.
The timepoints of measurement differ from patient to patient.
When running patient-specific simulations, we simulated dosing
with the reported dose amount as well as the reported dose
composition of TCR-engineered T cell phenotypes for that
individual patient.

KRAS G12D TCR-engineered T cell therapy clinical data
To show the utility of the digital twin methodology for another
TCR-engineered T cell therapy, we used clinical data described
previously in a study of two pancreatic cancer patients who
received KRAS G12D TCR-engineered T cell therapy17. Both
patients received doses of CD8+ TCR-engineered T cells that
were comparable in total count to the middle dose cohort in the
HPV-16 E7 clinical trial. One patient received a dose of 14.8 × 109

cells and the other patient received a dose of 29.6 × 109 cells. Both
doses contained a majority of effector memory T cells, and patient
#2 received more central memory T cells than patient #1 (see
Supplementary Table 2). For both patients, total TCR-engineered T
cell kinetics data is reported as a percentage of the total number
of T cells in the blood.

Model calibration, digital twin generation
For model calibration and digital twin generation, we used the
previously published data HPV-16 E7 TCR-engineered T cell
therapy clinical data15. We selected this dataset for calibration as
it is publicly available clinical data that includes dose amount and
dose composition for each patient in addition to the cellular
kinetics of each T cell phenotype across time. We first generated a
“reference virtual patient” (Supplementary Fig. 1), a simulation that
reasonably describes the cellular kinetics of each dose level in the
blood following treatment with TCR-engineered T cells. Across
three dose cohorts (low dose - 109 cells, middle dose - 1010 cells,
high dose - 1011 cells), simulation of the reference patient at each
dose reproduces the cellular kinetics from patients in the
corresponding dose cohort. See Supplementary Methods for more
details. Using the reference virtual patient alone, it can be difficult
to capture the individual patient profiles and explain the
heterogeneity present within the HPV E7 clinical trial. Therefore,
digital twins were generated (Supplementary Fig. 2) to match the
TCR-engineered T cell memory phenotypes and endogenous T cell
measurements for each individual patient in the trial. The digital
twin methodology is a relatively new approach for calibrating QSP
models when observed data is limited in a given dosing scenario
and there is high degree of variability. It is preferable to other
approaches (such as non-linear mixed effects modeling) in these
situations; wherein a large number of mechanistic, biologically
relevant parameters are calibrated to data containing a few
observations at each time point, as often encountered in QSP
models16,24,66. Detailed explanation of model calibration, digital
twin analysis and a summary of all datasets is provided in
Supplementary Methods.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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