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Representation and quantification of module activity from
omics data with rROMA
Matthieu Najm1,2,3,7, Matthieu Cornet1,2,3,7, Luca Albergante 1,2,3, Andrei Zinovyev 1,2,3, Isabelle Sermet-Gaudelus4,5,6,
Véronique Stoven1,2,3, Laurence Calzone 1,2,3 and Loredana Martignetti 1,2,3✉

The efficiency of analyzing high-throughput data in systems biology has been demonstrated in numerous studies, where molecular
data, such as transcriptomics and proteomics, offers great opportunities for understanding the complexity of biological processes.
One important aspect of data analysis in systems biology is the shift from a reductionist approach that focuses on individual
components to a more integrative perspective that considers the system as a whole, where the emphasis shifted from differential
expression of individual genes to determining the activity of gene sets. Here, we present the rROMA software package for fast and
accurate computation of the activity of gene sets with coordinated expression. The rROMA package incorporates significant
improvements in the calculation algorithm, along with the implementation of several functions for statistical analysis and
visualizing results. These additions greatly expand the package’s capabilities and offer valuable tools for data analysis and
interpretation. It is an open-source package available on github at: www.github.com/sysbio-curie/rROMA. Based on publicly
available transcriptomic datasets, we applied rROMA to cystic fibrosis, highlighting biological mechanisms potentially involved in
the establishment and progression of the disease and the associated genes. Results indicate that rROMA can detect disease-related
active signaling pathways using transcriptomic and proteomic data. The results notably identified a significant mechanism relevant
to cystic fibrosis, raised awareness of a possible bias related to cell culture, and uncovered an intriguing gene that warrants further
investigation.
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INTRODUCTION
The use of high-throughput molecular techniques, such as
transcriptomics and proteomics, is becoming increasingly easier
with the improvement of data acquisition tools, leading to a
drastic decrease in the costs associated with such analyses. This
allows for precise measurement of the molecular profiles of
biological systems at several levels. However, the amount of data
produced during such experiments is very important and requires
the use of dedicated software and algorithms to analyze them.
Moreover, the ability to interpret the data in terms of biological
processes becomes a crucial issue. Dedicated analyses are needed
to synthesize and transform the data into valuable biological
information1.
A commonly employed approach in genomics involves

comparing measurements at the individual gene or protein level
to identify distinctive markers indicative of specific disease states
(biomarkers) or genes that play a causal role in the studied
disease2. Nonetheless, in numerous systemic diseases, the
disruption of a signaling pathway can arise from distinct genes
within that pathway, and these gene alterations may vary from
one patient to another. For example, in cancer it has become
apparent in recent years that the same pathways are affected by
defects in different genes and that the molecular profiles of
patient samples are more similar at the pathway level than at the
individual gene level3. Therefore, quantification of gene set
activity from omics measurements is now widely used to
transform gene-level data into associated sets of genes represent-
ing biological processes4. By employing gene set-based

approaches in the analysis of omics data, it becomes possible to
capture valuable biological insights that would otherwise remain
undetectable when solely focusing on individual genes.
In this study, we developed an algorithm, implemented as an R

package called rROMA, which was designed to quantify the
activity of sets of genes characterized by their involvement in a
common functional role. Gene set approaches have become very
popular to summarize individual molecular measurements into
more interpretable pathways and biological processes. Gene sets
can thus correspond to genes with the same functional activities,
genes regulated by the same motifs, genes belonging to the same
signaling pathway, target genes of a transcription factor or genes
forming a group of frequently co-expressed genes. The underlying
hypothesis of rROMA is to assess the activity of a gene set by
determining the maximum amount of one-dimensional variance,
which is represented by the first principal component (PC1)
derived from the gene within the set. This quantity is proportional
to the influence of a single latent factor on the gene expression
within the gene set and reflects the variability of this factor’s
activity across the studied samples. This setting corresponds to
the uni-factor linear model of gene expression regulation5.
The strength of our method lies in its ability to calculate a

p-value, a statistical measure that serves as a crucial indicator of
the gene set activity’s significance. This p-value enables the
prioritization of biological processes that are pertinent to the
underlying conditions in question. Another unique feature of the
rROMA algorithm and to our knowledge not implemented in any
other algorithm available in the literature is its ability to estimate
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the statistical significance of the distribution of samples along the
first component for a gene set in two ways: it distinguishes
between shifted and over-dispersed gene sets. The fact that rROMA
distinguishes these two situations is particularly useful because, in
many cases, the activity of a gene set does not correspond to
overdispersion of the genes in the global gene expression space
but to a shift of the genes in a particular direction. Therefore,
analysis of shifted gene sets will highlight findings that would not
be identified with overdispersion analysis alone.
We applied rROMA to examine pathway activities in airway

epithelial cells of individuals with Cystic Fibrosis (CF) and healthy
individuals, shedding light on the molecular processes behind CF
phenotypes. Moreover, we illustrate the use of rROMA in
estimating cell type abundance through bulk transcriptomic data
analysis. Here, rROMA enables the clear estimation in cell-type
proportions, enhancing the potential accuracy of gene signatures
that encompass both upregulated and downregulated genes.
Finally, we show application of rROMA to a mass-spectrometry-
based breast cancer proteomic dataset, showing its capability of
identifying significantly dysregulated pathways in clinical breast
cancer subtypes.

RESULTS
Review of existing methods
Over the past decades, numerous tools have emerged to perform
gene set analysis from omics data to explore pathway activity.
Sample-wise pathway activity computation and global pathway
enrichment scoring are two distinct approaches used in the
analysis of biological pathways. The primary goal of sample-wise
pathway activity analysis is to assess the extent to which a
particular biological pathway is active or dysregulated in each
individual sample. Methods for sample-wise analysis provide a
quantitative measure of pathway activity for each pathway in each
sample that can then be interpreted in terms of pathway activity
profiles. Global pathway enrichment scoring, on the other hand,
condenses the information from all samples into a single
enrichment score, providing an overview of the pathway’s
significance or activity across the study. This approach is
commonly used in over-representation analysis (ORA) of differen-
tially expressed genes6, gene set enrichment analysis (GSEA)7 and
similar methods that provide an aggregated score of pathway
enrichment between two biological conditions.
A simple method for sample-wise pathway activity quantifica-

tion consists of calculating the mean or median of the expression
of genes annotated in a given pathway in each sample.
Alternatively, one can rely on the expression of a single marker

gene that represents the overall activity of the pathway in
different samples. A more sophisticated gene set quantification
method, called PLAGE (Pathway Level Analysis of Gene Expres-
sion) was introduced by Tomfohr and colleagues8 to compute the
activity of a gene set by calculating the first principal component
(PC1) of the expression matrix restricted to the genes in the gene
set. In the study by Bild et al.9, this PCA-based strategy was
exploited to define activity of several cancer-related pathways on
a large collection of human cancer transcriptomes. This PCA-based
method is efficient in modeling situations in which individual
genes within the pathway display different expression patterns
across samples, either due to their unequal contributions to
pathway activation or to their involvement encompassing both
upregulation and downregulation. This is particularly relevant
when some genes have stronger or opposite expression variation
than others, such as transcription factors. However, the PLAGE
algorithm has some limitations. Specifically, it does not provide a
statistical assessment of whether the observed activity in a
particular pathway is statistically significant or merely occurring by
random fluctuations. Moreover, the standard PCA calculation
implemented in PLAGE lacks the capability to identify pathway
activation when dealing with a specific gene configuration, which
is referred to here as a shifted gene set.
Many other methods have been developed to estimate

pathway activity from transcriptomic data. A recent comprehen-
sive and systematic comparison of existing computational tools
evaluates different approaches10: (i) ranking-based methods such
as single sample GSEA (ssGSEA)11, GSVA12, (ii) PCA-based methods,
(iii) pathway topology-based methods such as PARADIGM13 and
many others. In this study, PCA-based methods have been shown
to perform best in preserving characteristics of the original gene
expression data while transforming the transcriptome data at the
pathway level whereas ranking-based methods show high
robustness against noise. In Table 1, we reported a feature-wise
comparison of rROMA to existing bulk-based pathway analysis
tools. This table comprises methods that quantify pathway activity
on a sample-wise basis, considering only the expression matrix.
Other methods exist that necessitate further input such as prior
knowledge or inferred networks to infer pathway activity, such as
PARADIGM13, VIPER14, PROGENy15.
Recently, multiple algorithms for pathway activity analysis of

single cell transcriptomic data have been proposed, including
PCA-based methods such as PAGODA16 and MAYA17. Benchmark
studies18,19 comparing their performances in interpreting sparse
and noisy single cell transcriptomic datasets in terms of functional
pathways suggest that bulk-based pathway analysis tools can be

Table 1. Feature-wise comparison of rROMA to existing tools.

Method Type of algorithm Overdispersed gene-
sets

Shifted gene-
sets

Statistical
significance

A priori fixed
gene weights

Outlier
detection

Code
availability

Ref

z-score Standardized
expression

X R 43

GSVA Ranking-based X R 12

ssGSEA Ranking-based X Java, R 11

PLAGE PCA-based X R 8

GO-PCA PCA-based X X Python 44

PCGSE PCA-based X X R 45

rROMA PCA-based X X X X X R

Pathifier Principal curve X X Java, R 46

This table shows the feature comparison of methods that quantify pathway activity on a sample-wise basis. It covers algorithm type, the ability to identify
overdispersed and/or shifted gene sets, the provision of statistical assessment for pathway activity measurement, the capacity to assign gene weights a priori
within a pathway, the capability to detect outlier genes, and information on code and publication availability.
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applied to single cell datasets, partially outperforming dedicated
single-cell tools.

Implementation of rROMA
The rROMA algorithm expands the repertoire of existing PCA-
based methods for pathway activity quantification by introducing
unique functionalities, notably (i) a statistical assessment of
pathway activity measurement, enabling the determination of
the biological relevance of the results and facilitating their
prioritization; (ii) a PCA computation with a fixed center which
allows to detect two different configurations of pathway genes in
the global gene expression space, referred to as shifted and over-
dispersed gene sets.
The package rROMA is an evolution of the algorithm ROMA, a

program originally developed in Java20. The new rROMA software,
developed in R language, incorporates significant improvements
including an automatic procedure to not only distinguish between
shifted and over-dispersed gene sets but also automatically detect
outlier genes that can affect the PCA computation. Moreover, the
new software includes several novel functions for user-friendly
downstream statistical analysis and graphical visualization of
results that are documented in a software accompanying vignette.
These additions greatly expand the package’s capabilities and
offer valuable tools for data analysis and interpretation. The
rROMA software is open-source and available on github at:
www.github.com/sysbio-curie/rROMA. The workflow of the rROMA
algorithm is schematized in Fig. 1. A detailed vignette to
reproduce an example of analysis is available on the github
containing the source code of the algorithm.
The algorithm requires as input a genome-wide expression data

matrix and a gene set annotation file in GMT (Gene Matrix
Transposed) format. Optionally, it is possible to incorporate prior
knowledge about the significance of certain genes within a pathway
by initially assigning gene weights in a given pathway within the
GMT file. These “adjusted weights” will then substitute the weights
acquired from the PC1 calculation for those specific genes.
The rROMA algorithm starts by imputing missing values in the

data matrix and centering values, if not done beforehand. Then,
each gene set is analyzed separately. A multistep procedure is
implemented for (i) extracting the expression submatrix corre-
sponding to a given gene set, (ii) quantifying the PC1-based
activity values robust to outlier samples and outlier genes and (iii)
assessing the statistical significance of the activity values.
First, the algorithm extracts the expression submatrix corre-

sponding to a given gene set. On this submatrix, it computes the
PCA in the sample space via the SVD algorithm21. Two measures of
interest are then considered: the percentage of variance explained
by the PC1 (referred to as L1) and the median value of the gene
projections onto PC1 (referred to as Median Exp). Based on these
two values, pathway activity significance is estimated in two
distinct ways through the definition of shifted and overdispersed
gene sets (Fig. 2). A shifted set of genes corresponds to the case
where the median expression (Median Exp) of all the genes in the
gene set is significantly different from the one of all the genes
studied, i.e. that the gene set shows a particularly high expression
in at least one sample (Fig. 2a). Over-dispersion of a gene set
corresponds to the situation where the amount of variance
explained by PC1 (L1) calculated for only the genes in that gene
set is significantly greater than the variance of a randomly
selected set of genes of the same size. Thus, overdispersion means
greater variability in a set of genes among the considered samples
(Fig. 2b). An automatic procedure for the identification of outlier
genes and samples is applied to increase robustness of the PC1
computation (see Methods).
The same measures L1 and Median Exp are computed for N

randomly generated gene sets of the same size, which will
constitute the reference null distribution. The Median Exp value is

compared to the distribution of Median Exp values obtained for the
random gene sets. If less than 5% (value defined by a tunable
hyperparameter) of the values obtained in the null distribution are
lower than the one obtained for the gene set under study, the latter
is said to be shifted (ppv Median Exp <0.05). If less than 5% (value
defined by a modifiable hyperparameter) of the L1 values obtained
in the null distribution are lower than the one obtained for the gene
set under study, then the latter is said to be overdispersed (ppv
L1 < 0.05). The ppv L1 and ppv Median Exp values are corrected for
multiple testing by the Benjamini and Hochberg method22.
As output, the rROMA software generates an R object including

multiple results: (i) a module matrix detailing L1 and Median Exp
values and their corresponding p-values and q-values for each
pathway, (ii) a sample matrix that presents the activity level of
each pathway across samples derived from PC1 and (iii) a gene
weight list for each gene set, which reports the gene projections
in the PC1 space.
For a shifted gene set, the measurement of sample activity level

is particularly important. It determines which samples are
responsible for the shift of the gene set. If the samples were
already separated into several conditions prior to the analysis, it is
possible to verify that this separation into groups is indeed
responsible for the shift, by checking that the activity levels are
significantly different between the conditions. Conversely, if the
conditions are not known a priori, it is possible to determine new
groups by performing a hierarchical clustering analysis on the
pathways that are shifted, and thus determine potential new
groups of interest from the analysis.
The analyses mentioned above for the case of shifted gene sets

are also valid for over-dispersed gene sets. However, in the case of
the latter, the analysis of gene weights, meaning the loadings
from the PC1, also becomes interesting: the genes associated with
the highest weights are the driving force in the activity scores of
the gene sets. They summarize the information of the gene sets,
which can be particularly useful for assessing the importance of
some genes. They can further be used as an input for systems
biology approaches.
The analysis of the sign of the gene weights is also particularly

relevant. For example, gene sets containing both activators and
inhibitors can be highlighted by rROMA by being overdispersed,
and the associated genes highlighted. Such gene sets would not
be detected as overdispersed by methods based on the average
expression of genes in the samples.

Uncovering active pathways in cystic fibrosis with rROMA
We applied rROMA to investigate the activity of pathways in
airway epithelial cells from CF patients and healthy donors. More
precisely, we compared the transcriptomes of primary cultures of
airway epithelial cells from patients (N= 6) with those of healthy
controls (N= 6), based on RNAseq data publicly available in the
NCBI’s GEO database, under the accession ID GSE17612123. rROMA
was run by specifying the pathway database to use and the
expression matrix to analyze, as shown in the accompanying
vignette. Here, the Molecular Signature Database MsigDB hallmark
gene set collection24 was used, a gene set collection of 50 gene
sets specifically curated to represent core biological processes and
pathways that are commonly dysregulated in cancer. However, to
provide a more complete view of the biological processes involved
in a study, rROMA can be used with different reference databases.
The results of rROMA highlight pathways that are provided in

the ModuleMatrix output. Pathways with a ppv Median Exp lower
than a given threshold were deemed as shifted, while those with a
ppv L1 lower than this threshold were overdispersed. The
Plot.Genesets.Samples function allows for the visualization of
activity scores of significantly shifted and overdispersed pathways
across samples, in the form of a heatmap representation (Fig. 3).
rROMA identified two shifted pathways, APICAL_SURFACE which is
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found to have higher activity scores in healthy controls than in CF
patients, and FATTY_ACID_METABOLISM which has higher scores
in CF patients than in controls, and an overdispersed pathway,
COAGULATION, with higher activity scores in healthy controls than
in CF patients.
When sample groups have been pre-defined, as CF or control

groups in our case, these groups can be compared based on the
activity scores of the gene sets observed in the samples specific to

the two groups. Boxplots of the activity scores based on
predefined groups can facilitate the interpretation and comple-
ment a typical differential analysis. In our study, shifted and
overdispersed pathways behaved differently in CF patients versus
healthy controls, as shown in Fig. 3. Alternatively, when the groups
are not predefined, analyzing the shifted and overdispersed
pathways can reveal clusters of samples exhibiting similar
pathway activity.
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Fig. 1 rROMA workflow. Schematic diagram illustrating the workflow of the rROMA algorithm.
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The analysis of top contributing genes in each pathway also
provides crucial information. The weights assigned to each gene
in the PC1 vector allow to identify the key genes that most
contribute to variations in pathway activities as those with the

higher weights. For each pathway, gene weights are provided by
the PlotGeneWeight function. For example, plotting the gene
weights for the COAGULATION pathway (see Fig. 4) highlighted
the GSN gene, encoding the protein Gelsolin, as the highest
contributor to the activity score. Notably, Gelsolin has been
previously reported to play a role for CFTR activation25,26, and to
promote mucus fluidification in CF27.
Finally, many hyperparameters can be specified and changed to

modify rROMA speed, precision, or behavior regarding outlier
detection. Details about all available hyperparameters are
described in the vignette accompanying the software. The
computational time required to run the algorithm typically
depends on the number of considered pathways and their
relative sizes. It also depends on whether parallelization is
enabled. In the present work, the algorithm ran in about 3 min
and 15 s on a MacBook Pro equipped with a 2,6 GHz Intel Core i7 6
cores processor. A single analysis 60 pathways took roughly 5 s.
Parallelization was not used, but this would have increased the
speed of the analysis.

Comparison with state-of-art methods
We compared rROMA with four sample-wise pathway quantifica-
tion methods implemented in the GSVA package12 that cover
different types of algorithms, namely GSVA, PLAGE, ssGSEA and
z-score. We conducted a comparison of these methods using the
RNAseq data from the same transcriptomic study (GSE176121) on
airway epithelial cells. We selected the samples to simulate two
distinct analysis scenarios. In the first scenario, as previously
described, we compared CF and healthy control samples. Our goal
was to explore a pathway database to identify pathways that
could differ between these two conditions without any a priori
hypotheses of the specific pathways involved. In the second
scenario, we compared the gene expression data of six healthy
control samples before and after treatment with IL17+ TNFα. In
this case, our aim was to assess whether the different methods
would effectively reveal the activation of the IL17 and TNFα
pathways.
Although only rROMA provides a statistical significance of the

pathway activity scores, for the other methods significance with
respect to a phenotype can be evaluated using conventional
statistical models. Therefore, for each method we compared the
distributions of the pathway activity scores between the two
groups with a Student’s t test and considered dysregulated
pathways between the two groups as those with adjusted p-
values for the statistical test less than 0.05.
In the first scenario, the GSVA, ssGSEA, and z-score methods did

not reveal any pathways as dysregulated between CF and non-CF
samples based on the statistical test. In contrast, PLAGE identified
dysregulation in 45 out of 50 pathways, i.e. a large number of
pathways which prevents meaningful interpretation with respect
to the IL17+ TNFα treatment. However, rROMA detected eight
pathways with significant activity differences between CF and
healthy samples, shedding light on potential biological mechan-
isms that could play a role in the disease.
In the second scenario, the TNFα signaling pathway was found

significantly active in the samples treated with IL17+ TNFα
compared to the control ones with all methods. We then
compared the ranking of this pathway among the significant
results for the different methods. The results obtained for the
different methods are provided in Supplementary Tables 1–10.
The TNFα pathway’s ranking among significantly dysregulated
pathways based on the t-statistics was as follows: 5 out of 24 for
GSVA, 5 out of 27 for ssGSEA, 7 out of 17 for the z-score and 18 out
of 45 for PLAGE. In contrast, the rROMA algorithm highlights TNFα
signaling pathway as the top significantly shifted pathway, thus
providing the most consistent result with the expected output.
Among the rROMA results in this scenario, we pointed out an

a

b

sample 2

sample 1

sample 2

sample 1

PC1

PC1

Genes associated with factor A

Median
PC1

coordinate

Genes associated with factor A

Fig. 2 Representation of shifted and overdispersed gene sets.
Representation of gene sets in the case of two samples. Each dot
represents one gene, its horizontal (resp. vertical) value correspond-
ing to its expression in sample 1 (resp. sample 2). Genes associated
with latent Factor A are plotted in blue and the corresponding PC1
direction is plotted in red (a). This example corresponds to a shifted
pathway, as assessed by a median of gene projections onto PC1
direction far from the origin of the distribution. Genes associated
with latent Factor B are plotted in green (b) and the corresponding
PC1 direction is plotted in red. This example corresponds to an
overdispersed pathway, as the PC1 is well aligned with the dots’
distribution. Genes in yellow are neither overdispersed nor shifted,
as PC1 explains a relatively small fraction of variance (not
represented on the figure) and the median of projections onto
PC1 is close to the origin for this group of genes.
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example in which the P53 pathway exhibits significant over-
dispersion, with target genes being affected in opposite directions
by the transcription factor (Supplementary Fig. 1).
All results obtained for the two scenarios with the different

methods are provided in Supplementary Tables 1–10 and can be
reproduced using the codes publicly available in the following github
repository: https://github.com/sysbio-curie/rRoma_comp.git.

rROMA estimates cell type abundances from bulk
transcriptomic data
Furthermore, we showcase how rROMA can be utilized to explore
cell type abundance using bulk transcriptomic data. Saint-Criq
et al.28 investigated the impact of two differentiation media on
primary cultures of CF and non-CF airway epithelial cells, as
determined by transcriptomic data. They built a gene signature for
each cell type using the 50 most expressed markers derived from
a single-cell RNA sequencing (scRNAseq) dataset29. They observed
a significant overexpression of genes belonging to the signature
of the secretory cell subtype in cultures grown in one of the media
(referred to as UNC), compared to the other medium (referred to
as SC). Conversely, gene markers of the ciliated subtype were
overexpressed in primary cultures grown using the SC medium
compared to UNC medium.
We applied rROMA to the Saint-Criq RNA seq dataset to

estimate cell type abundance in CF and non-CF samples. More
precisely, the Plasschaert signature29 for each cell type was used
and gene reference gene sets, and the activity scores of these
gene sets across the samples were represented in the form of a
heat map. Samples were found to be clustered according to the
differentiation medium in which they were grown, and our results
confirmed the higher abundance of the ciliated cell subtype in
UNC medium and higher abundance of the secretory cell subtype
in SC medium (Fig. 5A). We repeated the rROMA analysis using an
alternative signature from Okuda and colleagues30. In contrast
with the Plasschaert signature, the Okuda signature includes the
most differentially expressed genes in each cell type, encompass-
ing both overexpressed and underexpressed genes. As illustrated
in Fig. 5B, rROMA analysis using the Okuda signature consistently

revealed the same relative abundances of secretory and ciliated
subtypes between UNC and SC growing media, as observed with
the Plasschaert signature. Thus, rROMA allows us to clearly
highlight differences in cell-type abundances, facilitating the use
of gene signatures that contain both upregulated and down-
regulated genes and thus potentially more accurate.

Functional analysis of proteomic data with rROMA
Finally, we applied rROMA to study a mass-spectrometry-based
proteomic dataset of 9771 proteins quantified in 122 treatment-
naive primary breast cancers31. Individual samples were char-
acterized by their activity levels computed by rROMA for 50
pathways in the MsigDB hallmark gene set collection24. We
identified 34 shifted and 6 overdispersed pathways with p-value
lower than 0.05. The samples were clustered based on their
activity profiles across the significant pathways, using unsuper-
vised hierarchical clustering and Euclidean distance.
Overall rROMA achieved satisfactory results with the proteomic

dataset. Unsupervised clustering divided breast cancer samples
into six clusters (Fig. 6), showing a higher heterogeneity of the
disease compared to the clinical stratification based on five
intrinsic PAM50 subtypes32 (Fig. 6). Cluster 1 predominantly
contains basal tumors, whereas the Luminal B tumors are mainly
associated with cluster 5. These two clusters are characterized by
high activation of TNFα signaling via NFK-β, epithelial to
mesenchymal transition and inflammatory pathways. These
observations are consistent with known facts about inflammatory
and basal breast cancer33,34. Luminal A tumors are segmented
mainly in two clusters, namely cluster 4 and cluster 6, both
showing high activation of estrogen response, which is consistent
with the fact that ER is the defining and driving factor in luminal
breast cancer.

DISCUSSION
Quantifying the activity of biologically related gene sets is a
commonly employed approach to extract valuable biological
insights from high-throughput data. The use of gene sets as
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aggregated variables from molecular data enables the capture of
biological information that may not be detectable when solely
focusing on individual genes. To address this challenge, we
introduced the rROMA algorithm, a PCA-based approach for
quantifying pathway activity. Based on a gene expression data
matrix, this algorithm implements a linear model of gene
regulation and efficiently and reliably quantifies the activity of
gene sets by computing the first principal component (PC1), while
also evaluating the statistical significance of this approximation.
Importantly, the algorithm provides the activity level of the

gene set for each individual sample and does not require a

predefined labeled classification of the samples into various
conditions or groups. These activity levels can be subsequently
compared, bringing to light the heterogeneity present in the
dataset in relation to the analyzed gene sets. This may be useful to
define groups of samples or patients when such stratification is
unknown. Furthermore, the algorithm capability of identifying
shifted and over-dispersed gene sets is very peculiar compared to
existing methods.
We applied rROMA to CF transcriptomic datasets, highlighting

some biological mechanisms potentially involved in the initiation
or progression of the disease, and their associated genes. In our
study, out of the 50 hallmark pathways tested, 3 were significantly
active: FATTY_ACID_METABOLISM, APICAL_SURFACE, and COA-
GULATION. The FATTY_ACID_METABOLISM pathway has signifi-
cantly different activity scores between CF patients and healthy
donors. This pathway has been extensively studied in CF, and
essential fatty acid deficiency is a well-known CF phenotype (for a
review, see ref. 35). The APICAL_SURFACE can be related to
another well-known hallmark of CF, i.e. a perturbation of airway
surface secretory mucus content. Finally, the COAGULATION
pathway, the only overdispersed pathway in our study, seems to
be highlighted due to one specific gene with a very high
associated weight, that is by far the most contributing gene to the
activity score of this pathway: gelsolin (GSN). Gelsolin has been
reported as playing a role for CFTR activation25,26, which suggests
that the role of this gene in CF disease may be interesting to study
in more detail. The goal of this use case was not to undertake a
detailed systems biology approach of CF, which is beyond the
scope of the present paper. In particular, it would require us to
include additional transcriptional dataset to take more samples
into account and increase the statistical power of our analyses,
and to test several reference databases of gene sets. Overall, this
case study illustrates that rROMA can identify disease-associated
pathway deregulations from transcriptomic data, allowing a more
comprehensive and functional interpretation of the data. It is also
a versatile tool that can shed light on various biological questions
such as highlight the key genes driving these deregulations,

a b

GSN

Gene set

Null distribution

Fig. 4 Gene weights for the COAGULATION pathway. Plots illustrating the contribution of genes to the COAGULATION gene set activity
score. The weights in panel a indicate the gene projections on PC1, limited to the genes that have the greatest contribution to the observed
variation in the COAGULATION gene set. In panel b the genes of the COAGULATION gene set are represented in the PCA space. Red dots are
genes from the gene set, blue dots show randomly selected genes used to generate a null distribution.
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Fig. 5 Estimated cell type abundances from CF transcriptomic data.
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(b) signatures of cell types in the Saint-Criq RNA seq dataset.
Samples are in columns, gene sets corresponding to cell types are in
rows. Horizontal sidebar color encodes true class labels.
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identify clusters of samples, study samples’ cell-type composition,
or other cellular changes in a broader biological perspective.
Indeed, the output of rROMA, in particular the top weighted genes
of significantly active pathways, can be interpreted as nodes
comprising genes and proteins of importance in the system under
investigation, which can be used as inputs to construct
mathematical models.
Finally, we showcased the application of rROMA for functional

analysis of proteomic data. In this study, rROMA was applied to a
proteomic dataset consisting of 9771 proteins from 122
treatment-naive primary breast cancer samples. The results
showed that rROMA performed well with the proteomic dataset,
revealing distinct clusters of breast cancer samples and higher
disease heterogeneity compared to clinical stratification based on
the PAM50 subtypes. Furthermore, the pathways identified as
active by rROMA within these clusters are consistent with
established knowledge regarding signaling pathways relevant to
the subtypes, such as high activation of TNFα signaling via NFK-β,
epithelial to mesenchymal transition and inflammatory pathways
in the basal subtype and high activation of estrogen response in
the luminal subtype.

METHODS
First principal component and the simplest uni-factor linear
model of gene expression regulation
The main idea of rROMA is based on the simplest uni-factor linear
model of gene regulation in which it is assumed that the expression
of a gene G in sample S is proportional to the activity of one latent
biological factor F (which can be a transcription factor or any other
endogenous or exogenous factor affecting gene expression) in
sample S with positive or negative (response) coefficient. Within this
model, the expression of a gene G in a sample S is proportional to
the activity of a factor F, so that we can write:

Expression geneG; sample Sð Þ � αFGActivity
F
S (1)

where αFG is the response coefficient of the gene G to the factor F
and Activity F

S is the activity of factor F in the sample S. These two
values can be easily determined by considering the first component
of the PCA of the genes of the considered gene set in the space of
the samples. In this case, the vector containing the activities of the
different samples corresponds to the first eigenvector, i.e. the first
column of the weight matrix. The vector containing the response
coefficients of the different genes in the considered gene set
corresponds to the projection of the genes onto the first component.
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The uni-factor model underlying rROMA presumes that an
unobserved factor (i.e. a latent factor) acts on the gene expression
variables observed in the gene set and that this action is
characterized by the calculated weights. The weights indicate
the strength and direction of effect, and can have opposite signs,
as in the case in which a transcription factor has an activating
action on some genes of the set and a repressor action on others.
As many other applications of PCA, rROMA uses SVD21 to speed

up the calculation. rROMA uses the R irlba package36,37, which
allows to focus on the first principal component, by computing
only the first column of V and the first value of S. However, if the
data are not centered, the simplification is no longer valid, and we
must now consider the fact that the mean is not zero. The rROMA
algorithm therefore starts by centering the data of the global
matrix.

Pre-processing of data for rROMA analysis
The input format for gene or protein expression for rROMA is a
tab-delimited text file with columns corresponding to biological
samples, and rows corresponding to genes or proteins. The first
row is assumed to contain the sample identifiers while the first
column is assumed to contain the non-redundant gene or
protein names.
If the data table contains missing values, they can be imputed

using an approximation of the data matrix with missing values by
a full matrix of lower rank. To do this, the user must specify the
rank of the approximate full matrix that he wants to use. Then, the
principal components are calculated up to the specified rank,
using an algorithm capable of working with missing data38. This
PCA decomposition is used to construct the full approximate
matrix of lower rank, from which the missing values of the original
data are imputed. In the rest of the algorithm, the full imputed
matrix is used.

Orientation of the PC1
In standard PCA, all components are calculated with a sign
ambiguity: there is mirror symmetry, which makes it difficult to
determine whether a given set of genes is over- or under-
activated. In rROMA, several methods exist to solve this ambiguity.
If knowledge exists about the role of a gene in a given gene set,

we recommend using it by associating a sign with the effect of the
gene in the gene set: negative for an inhibitor, and positive for an
activator, for example. rROMA then uses the information about
these signs to choose the orientation that maximizes the number
of genes associated with a positive sign whose projection in PC1 is
positive, and the number of genes associated with a negative sign
whose projection in PC1 is negative.
Although less efficient, other methods of orienting the first

component exist in the case where there is no a priori knowledge
about the genes in the reference gene sets. The most efficient
method consists in considering only the genes associated with the
most extreme weights according to the first component (accord-
ing to a percentage defined by a modifiable hyperparameter), and
then multiplying these weights by the expression level of the
corresponding genes. If the result is negative, then the orientation
of the PC1 is reversed. The principal behind this method is to
orient the first component to maximize the positive correlation
between the expression of genes and the PC weight.

Filtering of outlier samples
Measurements may have been performed incorrectly in some
samples and keeping them may lead to erroneous results from
rROMA. By default, in the algorithm, no sample filtering is
performed, as the matrix in input is assumed to contain only
correct samples. However, outlier sample detection can be
activated by a hyperparameter, and a filtering procedure in two

steps is then applied based by (i) checking the samples for a
similar number of detected genes and (ii) PCA computation and
projection of samples in the gene space for identifying data points
(samples) that deviate significantly from the data distribution.
Here, the number of PCs used to perform the filtering and the
distance threshold for defining outliers are defined by two
hyperparameters. It is also possible to apply only one of the two
filtering steps.

Filtering of outlier genes
The calculation of PC1 can be affected by the presence of an
outlier gene in the dataset. This outlier could indeed artificially
affect the PC1. To increase the robustness of the PC1 calculation,
we use in rROMA the “leave-one-out” cross-validation approach39

working as follows:

I. for each gene in the selected gene set, the method
calculates the percentage of variance explained by the first
principal component (PC1) when that gene is removed from
the dataset. This value is denoted as L1, and each gene is
associated with its L1 value;

II. the distribution of these L1 values is normalized by
centering and scaling to obtain z-scores for each gene;

III. those genes whose associated z-scores exceed a specified
threshold value are identified as outliers and removed from
the analysis.

The idea behind this method is to identify genes that have too
much impact on the PC1 on their own: if the percentage of
variance explained by PC1 increases significantly in the absence of
a single gene, this means that this gene does not follow the
alignment of all the others. It is then considered as an outlier gene.
When a gene is considered an outlier for a given gene set, it is

only removed from that gene set. This default behavior can be
modified by a hyperparameter, so that genes are completely
removed from all analyses, as soon as they are considered outliers
in at least one gene set. However, in some cases, these genes may
still be of interest for analysis. Additional analysis steps for these
genes are therefore available in rROMA. In particular, the greater
the number of gene sets analyzed containing a given gene, the
more likely it is that the gene will be considered as an outlier in at
least one gene set, and therefore be removed from the analysis.
To avoid such abusive withdrawals, a Fisher test is performed. This
consists of comparing the average proportion of collections in
which the genes in the analysis are considered as outliers to this
same proportion for a particular gene. If the proportion of outliers
is close to the average proportion for all the genes, then it is no
longer considered an outlier. Conversely, if the proportion of
aberrations is significantly higher (threshold determined by a
modifiable hyperparameter), then it is still considered an outlier.
Instead, a gene present only in a small number of gene sets may

be important for the understanding of these gene sets. In such
cases, it is not desirable to remove it, even if it is considered an
outlier. Thus, if a gene is present in less than a defined number of
gene sets (set by a modifiable hyperparameter), then it is not
considered an outlier, regardless of the results of the “leave-one-
out” approach for it.
Finally, it is possible that a significant proportion of genes are

considered outliers for a given gene set. However, removing too
many genes can totally distort the detectable activity for a gene
set. A final filter therefore exists to limit the maximum proportion
of genes that can be considered as aberrant for a given gene set
and removed from the analysis (the proportion is set by a
modifiable hyperparameter). In this way, only genes with the most
extreme leave-one-out behavior are effectively considered outliers
for this gene set.
The rROMA algorithm uses PCA calculations at different stages

of its workflow, each serving a specific purpose. These stages
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include imputing missing values, identifying outlier samples and
genes, and computing pathway activity. For missing value
imputation, rROMA utilizes the iterative PCA method implemen-
ted in the mice package40 on the global expression matrix,
imputing any missing values within the dataset. To detect outlier
samples, PCA is performed on the global expression matrix with
imputed missing values. Samples are treated as observations, and
genes serve as variables in this space, allowing for the
identification of observable sample outliers. To identify outlier
genes and calculate pathway activity, PCA is carried out within a
submatrix that exclusively contains genes related to the specific
pathway of interest. In this context, genes are treated as
observations, and samples serve as variables for PCA analysis.

Optimization of the calculation of null distributions
The p-value is computed as the probability of obtaining the
observed activity measure for a specific gene set by chance. The
rROMA algorithm uses a random gene set procedure to generate a
null distribution for the L1 amount of variance explained by the
PC1 and calculates the p-value by comparing the observed L1 to
the null distribution. Usually, a p-value threshold of 0.05 is
employed to determine the significance of the gene set’s activity.
In practice, it is often necessary to test many different gene sets

available in large reference databases such as KEGG41 or
MSigDB42. Estimating the null distribution for each set of genes
can lead to very time-consuming calculations. In the rROMA
algorithm, there is an option to avoid calculating overdispersion
and shift significance scores for all gene sets using the
ApproxSample parameter. When this parameter is set to zero,
the calculation is conducted for the null distribution without any
approximation for all gene sets. Instead, when the ApproxSample
parameter is different from zero, these scores can be approxi-
mated based on a predefined grid of values, which depends on
the size of the gene set under consideration. Indeed, since these
two values are dependent on the size of the gene set, it is not
possible to use the same null distribution for all gene sets. To
rapidly estimate the importance of the over-dispersion and
shifting scores, rROMA constructs null distributions for a
representative list of gene set sizes. These are selected to be
uniformly distributed in the logarithmic scale between the
minimum and maximum size of the reference database. For a
given gene set, the null distribution that is closest in size in the log
scale is then chosen.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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