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GINv2.0: a comprehensive topological network integrating
molecular interactions from multiple knowledge bases
Xiao Chang 1,6, Shen Yan 2,6, Yizheng Zhang 3,4, Yingchun Zhang 5, Luyang Li 3,4, Zhanyu Gao 3,4, Xuefei Lin 1 and
Xu Chi 3✉

Knowledge bases have been instrumental in advancing biological research, facilitating pathway analysis and data visualization,
which are now widely employed in the scientific community. Despite the establishment of several prominent knowledge bases
focusing on signaling, metabolic networks, or both, integrating these networks into a unified topological network has proven to be
challenging. The intricacy of molecular interactions and the diverse formats employed to store and display them contribute to the
complexity of this task. In a prior study, we addressed this challenge by introducing a “meta-pathway” structure that integrated the
advantages of the Simple Interaction Format (SIF) while accommodating reaction information. Nevertheless, the earlier Global
Integrative Network (GIN) was limited to reliance on KEGG alone. Here, we present GIN version 2.0, which incorporates human
molecular interaction data from ten distinct knowledge bases, including KEGG, Reactome, and HumanCyc, among others. We
standardized the data structure, gene IDs, and chemical IDs, and conducted a comprehensive analysis of the consistency among
the ten knowledge bases before combining all unified interactions into GINv2.0. Utilizing GINv2.0, we investigated the glycolysis
process and its regulatory proteins, revealing coordinated regulations on glycolysis and autophagy, particularly under glucose
starvation. The expanded scope and enhanced capabilities of GINv2.0 provide a valuable resource for comprehensive systems-level
analyses in the field of biological research. GINv2.0 can be accessed at: https://github.com/BIGchix/GINv2.0.
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INTRODUCTION
Accumulation of evidence regarding molecular interactions in
biological processes has paved the way for the construction of
various biological networks, including signaling, Protein-Protein
Interaction (PPI), metabolic, and gene regulatory networks, among
others. These networks have found various applications, ranging
from visualizing omics data1,2 to enriching gene sets using
topology3, identifying functional modules4, conducting causal
analyses5,6, and developing computational models to understand
the effects of network perturbations on cellular states7. Moreover,
recent efforts have been directed towards associating changes in
biological networks with diseases, leading to the emergence of
“disease maps“8–11. Undoubtedly, the comprehensiveness and
accuracy of biological networks form the fundamental keys for
their successful application in network-based research.
A number of popular knowledge bases, such as KEGG12,13,

Reactome14, and BioCyc15, hold valuable information on molecular
interactions in biological processes. To represent the complex
relationships between biological molecules, several languages
have been developed, such as KGML, BioPAX16, GPML17, and
SBML18. However, converting this information into a comprehen-
sive topological network has been a challenging endeavor,
especially when dealing with different types of networks, such
as signaling and metabolic networks. These networks often utilize
distinct definitions for nodes and edges, leading to confusion and
potential misinterpretations.
For instance, in signaling networks, an edge starting from node

A and ending in node B, i.e., “node A activates node B”, typically
implies that A is an enzyme, while B is the substrate and product

of a post-transcriptional modification (PTM) reaction, resulting in
the retention of the same names for both the substrate and
product. In contrast, metabolic networks involve substantial
changes in substrates, leading to the generation of products with
new names. Therefore, in a metabolic network, an edge starting
from A and ending in B, i.e., “node A generates node B”, refers to A
being the substrate, and B being the product in this reaction,
which significantly differs from the definitions in signaling
networks. Without unifying the definitions of the nodes and
edges, direct integration of signaling and metabolic networks may
introduce confusion and misguidance.
Various tools have been developed to read and parse these

languages, with the ability to convert the information into the
Simple Interaction Format (SIF)1,2. SIF is a semi-structured format,
in which each line specifies a source node, a character string
describing the type of the edge(s), and one or more target nodes.
However, the conversions often work better for signaling
networks than for metabolic networks, as multiple substrates in
metabolic reactions can lead to the ambiguity of multiple
participants. Consequently, information regarding “who partici-
pates which reaction” can be lost during the conversion process.
To address these challenges, knowledge bases often visualize

networks with edges pointing to edges, such as KEGG, Reactome,
and Wikipathways19. Although this visualization is user-friendly, it
is not suitable to work with common network analysis algorithms
and tools. With mounting evidence suggesting the importance of
crosstalk between signaling and metabolic networks, there is an
urgent need to integrate these networks into a global integrative
network, termed “GIN”. Efforts have been made, but mainly focus
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on the visualization20 or leveraging information from PPI net-
work21, leaving the signaling and metabolic networks topologi-
cally disconnected.
In this context, we propose a visualization layout called “meta-

pathway” to fundamentally unify the topological structure of
signaling and metabolic networks. To convert conventional
pathways into meta-pathways, we introduce an intermediate
node for each reaction in the pathways to represent a conceptual
“intermediate” state of molecules in biochemical reactions. In
most of biochemical reactions with multiple substrates or at least
one enzyme, the substrate(s) and the enzyme need to get close
enough to each other for the reactions to proceed, which forms
the intermediate state. This intermediate state of the molecules is
temporary, and will quickly be converted into products. Therefore,
the intermediate nodes which come from the intermediate state
of the molecules capture the relationships between molecules in
real world, and enables both signaling and metabolic reactions to
be considered as chemical reactions, facilitating storage in SIF-like
format. By converting the pathways into meta-pathways and
merging them, we have successfully built GINs for 7077 species
based on KEGG22.
In addition to KEGG, multiple biological knowledge bases offer

valuable molecular interaction data across various aspects. In this
study, we have converted molecular interaction data from ten
different knowledge bases into the SIF format with intermediate
nodes (referred to as SIFI). Subsequently, we conducted a
thorough analysis of the consensus among these interactions
before integrating the GINs into a single, comprehensive network,
namely GIN for human version 2.0 (GINv2.0). Our results
demonstrate that this version of GIN is currently one of the most
comprehensive human databases of molecular interactions,
allowing for straightforward visualization and interpretation of
the crosstalk between signaling and metabolic networks, exem-
plified through a detailed examination of the glycolysis process
and the related regulative proteins.

RESULTS
Conversion of BioPAX to SIFI
In our efforts to tackle the challenges of different knowledge base
languages, we developed a R package named “SIFItools” to
efficiently convert BioPAX level 3 owl files from various databases
into SIFI format. OWL (Web Ontology Language) format is a
powerful and expressive ontology language that allows users to
define rich and complex relationships between entities. In the
context of Biological Pathway Exchange (BioPAX) language, OWL
is used to represent biological pathways and their components,
such as molecules, interactions, and cellular processes, in a
semantically meaningful way. With SIFItools, we firstly extracted

biochemical reactions from the owl files of nine databases
prepared by PathwayCommons23, including HumanCyc, Drug-
Bank24, INOH25, KEGG, NetPath26, PANTHER27, PhosphoSitePlus
(PSP)28, PID29, and Recon X30, as well as the owl file of Reactome
from its official webpage (not from PathwayCommons). This
facilitated the analysis of molecular interactions across multiple
databases and laid the groundwork for building a comprehensive
network for human cells (Fig. 1a, b). Then each of the reactions
was converted into the structure of meta-pathway, introducing an
intermediate node (Fig. 1c). After standardization of the 71 ID
formats into seven, we analyzed the overlapping genes, chemicals
and edges, then integrated all ten databases into one global
integrative network, which we refer as GINv2.0 (Fig. 1d).
Notably, although SIFItools automated much of the curation

process, manual curation was still necessary due to the diverse
naming conventions and special characters used in different
databases. In the process of manual curation, the most
complicated task involved the conversion of internal IDs from
each database’s owl file to corresponding external gene or
chemical IDs. This complexity arose from the fact that a single
gene or chemical could have different internal IDs across various
databases, each linked to one or more distinct external IDs. To
overcome this challenge, we developed a two-step approach.
Firstly, we constructed an ID mapping table using internal “XRef”
links, enabling us to convert the internal IDs to external IDs from
71 different sources. Subsequently, we aggregated the external
IDs from diverse sources into gene symbols and unified chemical
ID types (UC_IDs), which includes CID31, SID31, CAS registry
number, KEGG, HMDB32, and ChEBI33 (Supplementary Fig. 1). This
method ensured consistency and standardization across the
databases, facilitating seamless integration of the data in our
subsequent analyses.

Consensus analysis of the databases
Conversion of BioPAX level3 into SIFI format generated networks
varied in the number of edges and nodes, ranging from 873 nodes
(NetPath) to 5614 nodes (Reactome) (Fig. 2a), and from 2444
edges (NetPath) to 29898 edges (Reactome) (Supplementary
Fig. 2). Notably, the ratio between the quantity of genes and the
number of chemicals exhibited variations across the databases.
These variations accurately mirrored the distinct scopes of
molecular interactions inherent to each individual database. For
example, the SIFI format of NetPath and PSP exclusively contained
human genes, while Recon X exclusively included chemical IDs
(Fig. 2a). This distinction highlights the significance of our
integrative approach in capturing a comprehensive picture of
human molecular interactions.
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Fig. 1 Construction of global integrative network for human. The workflow consists of (a, b), the extraction of reactions from the BioPAX
level3 (owl) files of 10 databases, (c) the conversion of the data into meta-pathways, and (d) the analysis of overlaps and the integration of the
databases. The upper part of (b) represents a metabolic reaction and the lower part represents a signaling reaction.
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Next, we conducted an analysis of the overlapping gene
symbols (Fig. 2b), UC_IDs (Fig. 2c), and edges (Fig. 2d) among the
ten databases. For clarity, Recon X was excluded from Fig. 2b due
to its exclusive focus on chemicals. Similarly, NetPath and PSP
were excluded from Fig. 2c. Our analysis revealed that the overlap
of gene symbols was notably larger than the overlap of chemical
IDs. For instance, in the case of Reactome, the number of unique
gene symbols accounted for only 11.2% of its total gene symbols
(445 out of 3981), whereas the number of unique chemical IDs
represented 76.1% of its total chemical IDs (1243 out of 1633).
Furthermore, we found that the overlap of interactions between
databases was limited, with over 96.8% (110202 out of 113876) of
the interactions being unique to each database for the majority of
cases. This observation underscores the distinctiveness and
database-specific nature of the interactions. The limited overlap
of interactions highlights the importance of our integrative
approach in leveraging data from multiple sources to build a
comprehensive and interconnected network.

Integration of the ten databases
We merged the SIFI files from all ten databases to construct the
raw global integrative network of human. Redundant edges were
removed before importing the network into Cytoscape for
visualization (Fig. 3a). The final GINv2.0 for human comprises
39,548 nodes and 113,876 edges, encompassing 6330 genes, 3579
chemical IDs, 3957 complexes, and 25,682 intermediate nodes. To
facilitate further analysis, we utilized the Python package
leidenalg34 to cluster the network into distinct sub-networks. In
Fig. 3a, we presented the top 20 sub-networks with the largest
number of nodes. These sub-networks exhibit diverse composi-
tions of genes, chemicals, and intermediates. Notably, most sub-

networks are a mix of genes and chemicals; however, some sub-
networks, such as clusters 3, 5, 6, 8, 11, 13, 15, 17, 18, and 19, are
predominantly gene-driven, while others, like clusters 4 and 16,
are primarily chemical-centric (Fig. 3b). This observation under-
scores the complex interplay between signaling networks and
metabolic pathways, contributing to the complexity of the
network.
Additionally, we calculated the topological network metrics,

presented in Table 1. Notably, the node with the highest degree
was water, followed by ATP and ADP. These findings indicate that
water, ATP, and ADP are central participants in biological
processes within human cells, aligning well with established
knowledge in the field. To gain deeper insights into specific sub-
networks, we conducted a focused examination of cluster 16. We
identified several nodes with high degrees, including HIF1A,
KDM1A, Succinic acid, Acetyl-CoA, Formaldehyde, CO2, NADH, and
NAD+ (Fig. 3c).
To investigate the composition of the database sources of each

cluster, we calculated the percentage of the edges contributed by
different databases to each cluster (Fig. 3d). Our analysis showed
that ReconX’s data (only consists of chemicals) mainly presents in
cluster 1 and cluster 10. For cluster 1, there are three major
sources, ReconX, INOH, and HumanCyc. In cluster 10, the major
sources are ReconX, Reactome, and HumanCyc. Similar results can
be observed for PSP and NetPath. These evidences suggest that
the databases focusing on only genes or chemicals are well mixed
with other databases. On the other hand, KEGG and Reactome
contribute the majority of edges of cluster 4 and cluster 16
respectively, which are chemical-centric, and cluster 15 which is
gene-centric by Reactome. This suggests that these two compre-
hensive databases, KEGG and Reactome, who both cover signaling
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and metabolic pathways, may have distinct scopes of signaling
and metabolic reactions.

Regulation of glycolysis by signaling proteins
To demonstrate the practical application of GINv2.0 in analyzing
signaling and metabolic networks, we extracted nodes represent-
ing the metabolites, intermediates, and protein enzymes involved
in glycolysis, along with the proteins that regulate these enzymes.
Subsequently, we visualized the network in Cytoscape (Fig. 4).
Glycolysis is a fundamental cellular metabolic process that
converts glucose to pyruvate, generating ATP and NADH. The
GINv2.0 visualization of glycolysis clearly illustrates how enzymes
are linked to metabolites through intermediate nodes. Moreover,
each intermediate node represents a specific reaction, effectively
circumventing ambiguity arising from multiple isozymes catalyz-
ing the same reaction.
Subsequently, we focused on the incoming nodes of the

enzymes involved in glycolysis, which provided insights into the
proteins regulating this crucial metabolic pathway. Our analysis
revealed that, out of the ten steps comprising glycolysis, seven
steps were regulated by various kinases, including SRC35,36,
ULK137,38, AKT139, AKT240, PRKAA141, PRKCD42, PAK143, MAPK144,

MAPK845, GSK3B46, PIM247, EGFR43, and CDK648. These findings
highlight the complicated control mechanisms governing glyco-
lysis, ensuring its harmonious coordination with the activation and
inhibition of other cellular pathways, ultimately balancing energy
production.
Notably, we found that ULK1 is a prominent positive regulator

of HK137, PFKM37, and ENO137,38, making it a pivotal protein in
governing glycolysis based on the number of controlling enzymes.
While SRC is known for its broad involvement in various cellular
processes, ULK1 is well known for its essential role in initiating
autophagy49. Building on this intriguing clue, we deeply explored
the relationship between these kinases and autophagy regulation.
Remarkably, seven out of the thirteen identified proteins were
found to exhibit direct or indirect regulatory effects on autophagy.
Protein Kinase AMP-Activated Catalytic Subunit Alpha 1 (PRKAA1),
the catalytic subunit of AMPK, plays a crucial role in autophagy
initiation under glucose deprivation by directly phosphorylating
ULK141. Additionally, AKT suppresses tuberous sclerosis complex
proteins 1/2 (TSC1/2) through phosphorylation, leading to
mTORC1 activation and subsequent autophagy inhibition50.
Reports have shown that GSK3B promotes ULK1 acetylation by
mediating KAT5/TIP60 phosphorylation during starvation51.
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Furthermore, MAPK8 activates autophagy by mediating BCL2
phosphorylation, facilitating the dissociation of BCL2 from
BECN152. Finally, emerging evidence suggests that PIM2 is capable
of phosphorylating HK2, thereby promoting autophagy under
glucose deprivation53.
Collectively, these findings indicate a synergistic regulation of

glycolysis and autophagy, particularly under glucose-starved
conditions, enriching the understanding of cellular adaptation to
varying nutrient availability. In summary, our comprehensive
network analysis empowers researchers with fresh perspectives on
the cross-talk between metabolic and cellular regulatory networks,
paving the way for deeper investigations into the underlying
molecular complexities.

DISCUSSION
In this work, we compiled a much more comprehensive GIN for
human compared with the previous version. The previous GIN22

for human was built only upon KEGG, which includes 5145 genes
and 1501 metabolites. In the present work, we compiled a new
GIN for human from ten different databases, which involved 6330
genes and 3579 metabolites, with 23.0% and 138.4% increase,
respectively. The new GIN for human is much more useful than the
previous one, as the integration of various databases greatly
enhances the comprehensiveness of the network. This is
exemplified by the demonstration of the orchestrated regulation
of autophagy and glucose metabolism under stress, which
leveraged information from multiple databases.
We also offer a new tool for the conversion of BioPax level3 files

into SIFI format. In our previous work, we built the GIN by a
pipeline of perl scripts specifically written to parse KGML files.
Since the use of KGML format is currently limited to KEGG, our

Table 1. Top 20 nodes with highest degrees.

Id Name Degree

CID962 Water 3179

CID1038 H+ 2925

CID6022 Adenosine-5’-Diphosphate 1933

CID5957 Adenosine-5’-Triphosphate 1498

SID8148096 ATP(4-) 655

CID977 Oxygen 524

CID87642 Coenzyme A 499

CID1004 Phosphoric Acid 490

CID5884 NADPH 486

SID85646635 ADP(3-) 397

CID1061 Phosphate Ion 383

SRC SRC Proto-Oncogene, Non-Receptor Tyrosine
Kinase

379

SID99319226 NAD(1-) 345

SID111978360 Nucleoside Triphosphate(4-) 344

PRKACA Protein Kinase CAMP-Activated Catalytic Subunit
Alpha

343

CID923 Sodium Ion 342

CID4995 Diphosphate(2-) 336

CID21604869 beta-NADH 325

AKT1 AKT Serine/Threonine Kinase 1 324

CID280 Carbon Dioxide 299

The IDs in bold are protein kinases.

Fig. 4 Illustration of glycolysis and its regulative proteins. The regulative protein kinases which are associated with autophagy were
clustered in a light-yellow box.
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previous pipeline lacks the ability to process the files of other
databases. In our present work, we construct a R package
(SIFItools) which can convert BioPax level3 files into SIFI format
with minimum manual curations required. Because many biolo-
gical databases share their data in BioPax level3 format, our new
package, SIFItools is more convenient and have much more
potential applications when building GIN from databases.
Also in this work, we compared the overlapping information

between the 10 databases. We were not able to conduct such
analysis in our previous work since we only converted KEGG
database into GIN. In our present work, we compared the
molecular interactions of the 10 databases and surprisingly found
that the overlaps between the databases were rare. Although this
could partly due to the different focus of the databases, there is
still a great proportion of unmatched ids, especially for
metabolites. This could lead to confusing results when applying
over-representation analysis (ORA) of pathways, as pointed out by
another work54.
The knowledge bases of pathways serve as repositories for

capturing molecular interactions in both physiological and
pathological contexts. While each database emphasizes distinct
molecular interactions, synthesizing the collective insights from
various sources can outline the comprehensive scope of these
knowledge bases. However, the exploration of consensus among
diverse knowledge bases has been limited, in part due to the
varying data formats used by each database. Despite Pathway-
Commons’ efforts to standardize data formats, the inherent
features of XML format have posed challenges for direct cross-
database comparisons. For example, in BioPAX level3, key
information about a given reaction may be dispersed across
properties such as “left”, “right”, “product”, “controlled”, “con-
troller”, or “cofactor.” This distribution necessitates the extraction
of reaction details from multiple attributes to facilitate compar-
ison, thereby complicating and impeding the efficiency of the
process. The introduction of meta-pathways and SIFI format has
alleviated this predicament by structuring reaction information
into a SIF-like three-column configuration. This transformation
enables rapid comparisons between reactions, streamlining the
comparative analysis.
We noticed that there are overlaps between the concepts of

meta-pathway, SIFI format and GIN. To clarify the definitions of the
three concepts: (1) Meta-pathway is the way of displaying
pathways using intermediates to connect the substrates and
products. (2) The GIN (Global Integrative Network) is a network
combining the molecular interactions from all pathways. (3) SIFI
(Simple Interaction Format with Intermediates) is a format we use
to store the molecular interactions of meta-pathways and GIN. The
differences between the three concepts are: meta-pathway is the
component of GIN, while they can be both stored in SIFI format.
The consensus analysis of GINs generated from different

databases highlighted significant diversity across the databases,
particularly concerning the edges and nodes related to metabo-
lites. This observed diversity could potentially rise from variations
in the specific focus of each database or disparities in naming
conventions. Such variations raise valid concerns regarding the
reliability of metabolite enrichment analysis, aligning with findings
from a recent investigation into the ORA of pathways leveraging
metabolomics data. Notably, the authors of this study revealed
significant disparities in ORA results when employing distinct
databases, such as KEGG, Reactome and BioCyc54, which may
partially due to the inconsistency we found in our consensus
analysis.
The credibility of the edges is also important for network

analysis, since questionable edges will create misleading path
when conducting path-related network analysis, as evidenced in
our previous work22. In the comparative analysis of different
databases, repeated edges may be more credible since it has been
repeatedly validated by different databases. In fact, one of our

original goals to compare the edges from different databases was
to score the edges based on the number of repeats. However, with
the analysis of the databases, we found that a large number of the
non-redundant edges are the results of the variations of the
scopes of databases. For example, in Fig. 4, the edges extracted
from the PSP database are not found in any other databases, but
all of these edges have credible sources of publications. This
means that a large proportion of non-redundant edges may be
credible. Based on this consideration, we excluded the analysis of
the credibility of edges in our current work.
By analyzing GINv2.0, we found that the number of inter-

mediate nodes was substantially larger than the combined count
of both genes and metabolites. Since each intermediate node
represents a distinct biochemical reaction, the number of genes/
metabolites involved in a pathway, which is often used in
conventional enrichment analysis such as GO, may not truly
reflect the number of reactions associated with the pathway. For
instance, consider a scenario where five genes are shared between
the input gene set and a pathway gene set. While ORA and
GSEA55,56 might not distinguish whether these five genes
participate in one single reaction or five distinct ones, the
possibilities of significant associations between the input and
pathway gene sets are distinct, judging by instinct. Thus, the
intermediate nodes are likely a hidden layer reside between the
genes/metabolites and pathways, which has not been investi-
gated for enrichment analysis. The construction of GINs is
therefore, a starting point for building the relations between
genes/metabolites, intermediate states, and pathways, and further
promote the improvement of gene set/pathway analysis.
The illustration of the glycolysis process and the regulative

proteins underscores the benefits of the integration of multiple
knowledge bases. Notably, we found that the core nodes and
edges of the glycolysis process was primarily derived from KEGG,
Reactome, HumanCyc, and INOH, while the regulatory interplays
between kinases and glycolytic enzymes were from PSP. Individual
GINs of any single databases were not able to provide such
comprehensive view of molecular interactions. This demonstrates
the necessity of database integration to forge a comprehensive
and unified network.
In the current version of GIN (v2.0), the intermediate nodes are

built for metabolic reactions and PTM reactions, but not for PPI.
The reason for excluding PPI is that the GIN we built is a directed
graph, but PPI networks are undirected, therefore, current PPI data
does not fit for GIN we built. However, we are working on the
solution to generate appropriate intermediate nodes for
the complexes with multiple protein participants in PPI. With the
flexibility of the meta-pathway’s structure, other types of data
regarding molecular interactions in cells, including the relations of
transcription factors (TFs) and their targets, miRNAs and their
targets, will soon be incorporated in GINs as well.

METHODS
Construction of the Global Integrative Network from ten
databases
The owl files of BioPAX level 3 prepared by PathwayCommons
were downloaded from https://www.pathwaycommons.org/
archives/PC2/v12/. Specifically, we selected DrugBank, HumanCyc,
INOH, KEGG, NetPath, PANTHER, PID, PhosphoSitePlus (PSP), and
Recon X from PathwayCommons, which contain sufficient number
of biochemical reactions extracted from the owl files. The BioPAX
level 3 owl file of Reactome was acquired through https://
reactome.org/download-data. The owl files were parsed by
function “readBiopax” from R package rBiopaxParser57, which
generated a dataframe for each of the databases.
We built a R package to extract the reactions from the

dataframe and convert them into SIFI format. Specifically, we first
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extracted the reactions from classes of TransportWithBiochem-
icalReaction, Transport, BiochemicalReaction, ComplexAssembly,
Degradation, and Conversion. Then we extracted the information
of the enzymes from the classes of Catalysis, Control, and
Modulation, and linked the enzymes with the reactions. These
information was finally organized into one temporary table.
Subsequently, we created a component matching table

designed to capture the relationships between proteins and
complexes. We did not use the conventional name of the
complexes; instead, we adopted a distinct approach wherein the
complexes were systematically deconstructed into constituent
proteins through recursive processes. Then the name of the
complexes were given by concatenation of all the names of the
components in alphabetical order, separated by underscores (“_”) .
Next, we replaced the complex IDs in the reaction table with the

name generated from the component names, and convert the
reactions into SIFI format. The intermediate nodes were intro-
duced during this conversion step. The names of the intermediate
nodes were the concatenation of all the substrates and enzymes,
separated by semicolon (“;”). Note that the result of this step still
used the local ID system for each owl file specifically which cannot
be shared with other owl files.
Since the owl file of each database provides mapping relations

between local IDs and commonly used (external) IDs, we replaced
the local IDs with the external IDs suggested by each database.
However, each databases has its own preference on the use of the
ID sources, thus we had to uniform the sources of the IDs to
ensure that the same gene/chemical got the same ID in different
databases. Uniprot IDs were converted to gene symbols by R
package biomaRt58. For metabolite IDs, We constructed a
mapping table using R package metaboliteIDmapping59, and
used the strategy in Supplementary Fig. 1 to uniform the IDs with
a preference of the sources. A tutorial for the conversion of KEGG’s
owl file to SIFI format can be found at https://github.com/BIGchix/
SIFItools.
Finally, we concatenated all the SIFI files into one single file, and

removed the redundant edges. The edges containing gene IDs of
other species were removed.

Network analysis of human GINv2.0
The intersection results of genes, metabolites and edges were
visualized by R package UpSetR60. The total network and the
network of glycolysis were visualized by Cytoscape1,2. The
community detection was performed by python package leide-
nalg34, to efficiently work with large directed graph using the
Leiden algorithm34.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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