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Asking the right questions for mutagenicity prediction from
BioMedical text
Sathwik Acharya 1, Nicolas K. Shinada1,2, Naoki Koyama3, Megumi Ikemori4, Tomoki Nishioka5, Seiji Hitaoka5, Atsushi Hakura3,
Shoji Asakura3, Yukiko Matsuoka1,2 and Sucheendra K. Palaniappan 1,2✉

Assessing the mutagenicity of chemicals is an essential task in the drug development process. Usually, databases and other
structured sources for AMES mutagenicity exist, which have been carefully and laboriously curated from scientific publications. As
knowledge accumulates over time, updating these databases is always an overhead and impractical. In this paper, we first propose
the problem of predicting the mutagenicity of chemicals from textual information in scientific publications. More simply, given a
chemical and evidence in the natural language form from publications where the mutagenicity of the chemical is described, the
goal of the model/algorithm is to predict if it is potentially mutagenic or not. For this, we first construct a golden standard data set
and then propose MutaPredBERT, a prediction model fine-tuned on BioLinkBERT based on a question-answering formulation of the
problem. We leverage transfer learning and use the help of large transformer-based models to achieve a Macro F1 score of >0.88
even with relatively small data for fine-tuning. Our work establishes the utility of large language models for the construction of
structured sources of knowledge bases directly from scientific publications.
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INTRODUCTION
Mutagenicity assessment of chemicals (drug products) is an
important step in drug development process. Usually, the
mutagenicity potential of chemical substances is assessed using
in vitro gene mutation assays such as Ames test1 and the mouse
lymphoma Tk mutation assay (MLA). Specifically, the Ames test is a
bacterial assay that assesses the mutagenic potential of a chemical
substance by using it on different strains of bacteria (Salmonella
typhimurium) such as TA98, TA100, TA102, etc., and Escherichiacoli
WP2 uvrA and WP2 uvrA/pKM101, and examining if they result in
changes in the DNA of the organism (base-pair substitutions,
frameshifts, insertions, and deletions). A positive test indicates that
a chemical is mutagenic. Usually, regulatory guidelines such as
those by OECD, and International Conference on Harmonization
(ICH) guidelines are followed for genotoxicity testing methods
that help evaluate the effect of chemical substances on human
health. Also, ICH M7 guidelines for the assessment and control of
mutagenic impurities in pharmaceuticals require mutagenicity
tests to be an important prerequisite for regulatory approvals.
Owing to the ever-expanding repertoire of chemicals/virtual

libraries and practical issues in keeping pace with their growth
combined with the difficulty of isolating pure forms of chemicals
(without impurities), regulatory authorities/researchers often turn
to in silico methods such as Quantitative Structure-Activity
Relationship (QSAR) 2 for mutagenicity assessment of chemicals.
While these methods do not rely on conducting (the often time-
consuming and expensive) experimental tests such as Ames, they
rely on previous Ames mutagenicity results and chemical structure
properties of the chemical for predicting the mutagenic potential
of chemicals. Computational and machine learning models have
played a key role in advancing this discipline3,4 by focusing on
understanding the chemical, structural, and functional properties
of chemicals that contribute to mutagenicity.

Most of the QSAR based tools often look up previously known
mutagenicity results of chemicals which in turn are obtained from
previously published scientific literature. Often, scientific publica-
tions in this field discuss the mutagenicity of chemical(s) in Ames
assay in natural language. Consequently, an expert would
comprehend the publications and compile them into data
repositories that are used in the QSAR softwares. Keeping such
information updated as more publications get added is a
challenge in addition to manual effort in comprehending and
making such structured data repositories. Machine learning
models, especially from the disciple of natural language proces-
sing (NLP) can help in this regard. In fact NLP has seen several
breakthroughs in the last few years and can be optimally adapted
and leveraged for applications in bio-medicine5,6.
With this background, we first formulate the problem of

predicting the mutagenicity of a chemical given the text that
describes its mutagenicity as an NLP task. Given the lack of prior
training data/ benchmarks, we first start by creating a golden
standard data set for the task. After this, we create an end-to-end
pipeline for training a model that can predict the mutagenicity of
a chemical given the text which describes it. To do so, we have
proposed a question-answering model based on transfer learning
on large language models. These large language models are often
based on transformers pretrained on large-scale natural text. We
tried multiple language models before getting the best results on
the model trained on the Stanford BioLinkBERTbase model7, a
model pre-trained on large-scale scientific text from sources such
as PubMed. Our final trained model, named MutaPredBERT can
achieve an accuracy of >88 percent with a macro average F1 score
of >0.88.
Our final goal with this study is for machine learning models to

be able to continuously update the mutagenicity results from
publications into high-quality data sources. We also hope that
fellow researchers would leverage on the generated data set and
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our methodology to further improve the accuracy of this task. The
big picture that springs from this task is that it paves the way for
the construction of structured biomedical knowledge repositories
from unstructured text that would ultimately help in the creation
of an engine for scientific discovery. This engine is part of the
endeavors of the Nobel Turing Challenge8 whose grand goal is to
use such AI-based engines to generate new hypotheses in the
biomedical sphere.

RESULTS
Problem definition and formulation
Our goal is to determine the mutagenic potential9 (mutagenicity) of
a chemical entity from text which is described as its mutagenic
potential. Typically, we could formulate this as a classification
problem, where given a context text (passage) C= {c1, c2, . . , ce, . . , cm}
and the chemical entity ce, we need to ascertain if ce is mutagenic,
yes or no. The problem is illustrated in Fig. 1.
While this problem can be tackled in multiple ways, we

formulate it as a question-answering (QnA) task with a “yes", “no"
outcome. For this, our setup consists of first synthesizing a
question Q, for the context passage C such that the answer to the
question Q will tell us if the compound ce is mutagenic or not. The

overview of this approach is shown in Fig. 2. Additionally, owing to
the limited training data set available, we resort to transfer
learning. We considered multiple domain-independent and
domain-specific models as the base model which are then fine-
tuned using the training data we collected for this task. Finally, our
trained model MutaPredBERT performs well for the task.

Performance
Our proposed pipeline of a question-answering system for
mutagenicity prediction can be divided into the following parts.
First, we collect the training data, and formulate the QnA problem
as described previously, followed by fine-tuning of a large
language model and further analysis. The pipeline is schematically
represented in Fig. 3.
As for the results, we start our experimental setup by first

considering the performance of domain-specific models without
any fine-tuning, i.e., using the model as is and checking the
predictions. Our performance evaluations of the models were
based on a 5 fold cross-validation strategy. The metrics used were
the accuracy, the macro average F1 score and the weighted
average F1 score.
As expected domain-specific models without any fine-tuning

did not perform well as shown in Table 1. It showed that using

Fig. 1 Overview of workflow used for abstract collection and annotation.

Fig. 2 Graphical illustration of the problem formulation for mutagenicity classification.
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large language models as is did not work and that fine-tuning was
an essential step for improved accuracy.
Next, we wanted to check the efficiency of transfer learning

based on fune-tuning using the golden standard data set for
performance improvements. For this, we tried several large
language models ranging from generic models (BERT10,
DeBERTa11) to bio-medicine domain-specific models (BioMega-
tron12, PubMedBERT13, and BioLinkBERT-base). We followed the
pipeline as described in the previous sections.
Domain-specific fine-tuned models show much better perfor-

mance. For instance, BioMegatron and BioLinkBERT models which
were pre-trained on PubMed abstracts and other biomedical
related tasks show much better performance when fine-tuned on
our task. Apart from the way in which these model were
constructed, the other reason for the better performance lies in

their ability to capture the domain information in their pretrained
layers. This performance is in stark contrast with transformer-
based models such as DeBERTa and BERT which were pre-trained
on the general domain of SQUAD14 data set. Within the domain
specific models, there are key aspects which could explain the
variations of the performance of these models. PubMedBERT and
BioLinkBERT are originally pre-trained on the PubMed corpus.
PubMedBERT uses Masked Language Modeling (MLM), while
BioLinkBERT employs MLM and Document Relation Prediction
(DRP) to enhance pretraining, leading to improved performance.
In contrast, BioMegatron, based on the Megatron-LM architecture,
utilizes a large language model optimized for efficient distributed
system training. Despite being pretrained on domain-specific data,
BioMegatron uses a general vocabulary from Wikipedia and Books
corpus, possibly explaining its slightly lower performance

Fig. 3 Graphical overview of our solution strategy and corresponding model flow.

Table 1. Performance metrics of different models and fine-tuning.

Model Accuracy score Macro Average F1 score Weighted Average F1 score domain-specific model

BioMegatron-uncased (no finetune) 50.238 0.494 0.5006 Yes

PubMedBERT (no finetune) 44.949 0.355 0.329 Yes

BioLinkBERT-base (no finetune) 55.367 0.357 0.395 Yes

Bert-large-uncased (fine-tuned) 75.882 ± 0.105 0.719 ± 0.182 0.727 ± 0.169 No

Deberta-large (fine-tuned) 55.650 ± 0.019 0.357 ± 0.008 0.398 ± 0.023 No

PubMedBERT (fine-tuned) 72.418 ± 0.0805 0.6982 ± 0.093 0.7038 ± 0.094 Yes

BioMegatron-uncased (fine-tuned) 86.028 ± 0.027 0.856 ± 0.026 0.859 ± 0.027 Yes

MutaPredBERT* BioLinkBERT-base (fine-tuned) 88.513 ± 0.025 0.8815 ± 0.025 0.8837 ± 0.026 Yes

Our model, MutaPredBERT, produced the best in class accuracy (as highlighted in bold in the above table).
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compared to MutaPredBERT. Please refer to Table 1 for details.
Specifically, fine-tuned models based on BioMegatron and
BioLinkBERT-base produced the best results, among them we
used the model trained on BioLinkBERT-base as the base for our
final model (MutaPredBERT).
For training the MutaPredBERT model, to find the optimal

learning rate hyper-parameter, we employed a hyper-parameter
search using Optuna before being applied in the fine-tuning stage
(please see methods section for more details). The hyper-

parameter, being a continuous parameter was sampled from the
range [1e−5, 5e−5] in the log domain. The process of hyper-
parameter tuning was subject to 5 ‘trials’ or 5 different
experiments and the optimal learning rate was 1.3818e−05 and
the optimal number of epochs(the other hyper-parameter that
was subject to optimization) was 9. Next, we started with the
above-mentioned learning rate for the top layer and using LLRD,
as described in the previous section, sequentially decrease it as we

Fig. 4 Plot showing the progression of the learning rate in each layer of the MutaPredBERT model with successive epochs. The initial
learning rate set in the top layer is 1.3818e-05.

Fig. 5 visualization of per-layer embedding space reduced to 2 dimensions.

S. Acharya et al.

4

npj Systems Biology and Applications (2023)    63 Published in partnership with the Systems Biology Institute



progress down each layer. Figure 4 shows the decay of the
learning rate for each layer of the model.

Explainability via per-layer embedding visualization
To further validate the proposed methodology, we visualize the
embedding space of each layer in the best performing
MutaPredBERT model as training proceeds. The idea here is to
see how well each of the stacked encoders in each layer
successively builds upon the patterns highlighted by the previous
layer and how it extracts different features from the input. As the
default embedding dimension of the BioLinkBERT-base model is
768, it is necessary to use a feature reduction algorithm such as
PCA15 or T-SNE16. We have used T-SNE here to reduce this
dimension space to 2 dimensions and visualize the same. As can
be seen in Fig. 5, with the progression of training, the model can
capture well the semantics of the text and task at hand and
gradually separate the embedding space into two possible
clusters which indicate the two labels of the task at hand -
exhibits mutagenic property or does not exhibit mutagenic
property.

Explainability via SHAP values (SHapley Additive
exPlanations)
With the advent of transformer-based models, a well-known
drawback of them is the black box nature of their working. To
validate the question-answering approach we had proposed here
for this task, it became essential to provide explainability of these
models. To do this, we use SHAP values17 which were born out of
cooperative game theory concepts where SHAP values are used to
calculate the marginal feature importance over different
coalitions.
When it comes to textual data (as it is here), the importance of

each token is calculated by overlaying the original text that
corresponds to that token. In our case when a chemical name and
the corresponding abstract were passed to the model, the SHAP

values indicate the portions of text that played a crucial role in the
model’s predictions.
As for the explainability using SHAP values for MutaPredBERT

model predictions (shown in Fig. 6), the abstract along with the
chemical of interest is passed to the model with the QnA
formulation. It must be noted that the regions of text highlighted
in red indicate that it favors the prediction of mutagenic activity.
Similarly, the regions of text highlighted in blue indicate that it
favors the prediction of non-mutagenic activity. We picked three
representative examples, Nitrobenzene, p-Rosaniline, and Retinol
acetate to showcase. For p-Rosaniline, it can be seen that the
correct context (such as direct acting mutagenic activity) was
identified which helped in the model’s prediction. Similarly, for
retinol acetate which non-mutagenic activity, we can note that the
right phrases were identified. Another interesting case was
nitrobenzene. This is an example where the MutaPredBERT model
makes an incorrect prediction. Upon further examination, it can be
seen that this chemical exhibits mutagenicity only in the presence
of norharman. The model falters on this as the question that is
prompted only asks whether nitrobenzene is mutagenic in the
TA98 strain or not and does not mention norharman(which is
unique to this abstract alone). Therefore, these SHAP values justify
the proposed QnA methodology for mutagenicity prediction.
More importantly, the model files and the data set used in this

paper have been made available on our supplementary website
(more details in the supporting information section). Researchers
and the community are invited to further improve the accuracy of
models.

METHODS
This section details the different methodologies employed in the
paper including preparation of training data,

Training data preparation
Given that we did not have prior “gold-standard" training data for
this task, we detail the steps of preparing the training data for this

Fig. 6 Demonstration of explainability via SHAP values. The chemicals of interest here are Nitrobenzene,p-Rosaniline, retinol acetate.
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problem. In summary, we used a benchmark data set from Hansen
et al. where each molecule structure is described using SMILES
code and mutagenicity outcome defined as binary outcome
(mutagens or non-mutagens)18. This data set was manually
curated from a large collection of publications and safety agency
reports and remains one of the most comprehensive public
collections of empirical mutagenicity data collection to date. With
each molecule’s structure described through its SMILES code in
the dataset, we leveraged the Chemical Identifier Resolver (CIR)
API from the NCI/CADD group to retrieve the different names,
synonyms, and identifiers of the corresponding molecule. As such,
for every molecule with Ames test results, we collect publication
abstracts from which at least one of the molecule’s identifiers and
mutagenicity-related keywords appears using the PubMed search
APIs. After this, a manual review and re-annotation of all the
collected abstracts is carried out to double-check the validity of
the labels. In the end, the data set consists of publication
abstracts, the chemical and bacterial species it describes, and their
mutagenicity (labeled 0 for non-mutagens, and labeled 1 for
mutagens). The following section details the steps.

Data collection
Collection of relevant abstracts. We started by procuring relevant
abstracts which describe chemical entities and their AMES
mutagenicity. For this, we used the help of eutils services of
PubMed19. The Ames mutagenicity benchmark data set for the
chemicals and their mutagenicity comes from the publication by
Hansen et.al., where the column “CAS identifier" were extracted
and subsequently, a synonym search was performed for each

molecule using the Chemical Identifier Resolver API provided by
the NCI 20. For each synonym retrieved, we first query the PubMed
database using the following query:

● ((Ames[TIAB] OR Mutagenicity[TIAB] OR Genotoxicity[TIAB]) AND
(test[TIAB] OR assay[TIAB]))AND ((Bacteria OR “Salmonella
typhimurium" OR “Escherichia coli") AND (TA100 OR TA98 OR
TA1537 OR TA1535 OR TA102 OR WP2uvrA OR (WP2uvrA AND
pKM101))) AND (synonym)

to retrieve the corresponding abstract, we then assess that every
element of the query is present in the AbstractText tag of the
PubMed xml. The resulting abstract is matched with the
mutagenicity outcome from the Hansen dataset. The backend
module that facilitates this is the Taxila framework21. Taxila is an
end-to-end analysis and intelligence platform which combines
state-of-the-art natural language processing and natural language
understanding (NLP/NLU) algorithms to analyze text in context. A
total of 2,127 abstracts were retrieved using this step.

Expert review and re-annotation. Next, to ensure that the data set
is of good quality, we manually reviewed each of the 2127
abstracts along with the assigned chemical name and its
mutagenicity label. We used the annotation software Doccano22.
We discarded abstracts that either do not refer to the query
compound or do not give a proper indication of Ames test result.
For mutagenic compounds, at least one sentence in the abstract
should refer directly to the query compound’s mutagenicity. In the
case of different outcomes that were tested in different
conditions, we prioritize mutagenicity outcomes if any. For the

Fig. 7 Overview of the pipeline used for the mutagenicity prediction task.
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non-mutagenic case, we looked for a clear textual relationship
between the query compound and its lack of mutagenicity (or
anti-mutagenicity property). Following this, our refined data set
consisted of 1646 abstracts that were labeled with a 0 (730
abstracts) for non-mutagenic or a 1 (916 abstracts) for mutagenic,
the remaining abstracts were discarded for further steps.

Generating questions from abstracts
Given that we formulated the mutagenicity prediction as a
question-answering task, it was important to annotate the
obtained abstracts with the right questions to facilitate the
question-answering model. With this in mind, a few samples were
taken and manually annotated by experts with the right questions.
A typical question can be seen in Fig. 2. The question usually
follows the following format:

Is (chemical name) mutagenic for (test name) in (strain
names)?

It is worth mentioning that we could use text generation
models such as T523 to generate the right questions given the
abstract as context and speed up the annotation process. The
workflow of the above two steps in the pipeline is illustrated in
Fig. 7.

Distributed training of the QnA model using the Accelerate
framework
The crux of the entire training process relies on the ability to fine-
tune large pre-trained language models for our task. Such large
language models are usually based on transformer architecture
and are usually trained on strategies such as masked learning on
vast amounts of natural language data which opens up avenues
for fine-tuning them for the task at hand. A Transformer works by
performing a small, constant number of steps. In each step, it
applies an attention mechanism24 to understand relationships
between all words in a sentence, regardless of their respective
position. In essence, it dynamically provides importance to a few
key tokens in the input sequence by altering the token
embeddings. Attention depends on three main concepts i.e the
query weights (Q), the key weights (K) and the value weights (V)

which leads to the attention formula as shown below:

AttentionðQ; K ; VÞ ¼ softmax
QKT

ffiffiffiffiffi

dk
p

� �

V (1)

Most BERT based models such as DistilBERT25, ALBERT26 build
upon this to usher in the concept of Multi-Head Attention. A Multi-
Head Attention Layer can be considered a stack of parallel
Attention Layers. Each head in the Multi-Head Attention Layer
intakes the new embedding (Positional Encoding generated in the
last step). The output from all heads is then concatenated to
produce a single output as shown below:

MultiHeadðQ; K ; VÞ ¼ Concatðhead1; ¼ ; headhÞWO (2)

where headi ¼ Attention ðQWQ
i ; KW

K
i ; VW

V
i Þ (3)

The optimizer used in this study was the Adam27 optimizer. This
optimizer is usually the preferred one in deep learning applica-
tions due to its parameter initialization robustness, low memory
requirements, efficiency, and convergence speed. In the typical
fashion, the transformer-based models are loaded using the
popular HuggingFace library28. Figure 8 shows the mechanism in
which the abstract-question are taken in pairs for fine-tuning
purposes. In our study, we have trained a variety of models
including BERT (large), DeBERTa, PubMedBERT, BioLinkBERT. This
phase has the typical tokenizing procedure done for the question-
abstract pair which produces the token IDs and the attention
mask. A maximum sequence length of 512 is maintained as this is
what BERT based models are limited to. The truncation of the
question-abstract pair is done to this maximum length. Since
these models are very large (millions of parameters) and training
would take longer in a single GPU setting, we have used a
Distributed Data Parallel (DDP) mechanism using the Accelerate29

framework to divide the computational load between two GPUs
thereby reducing the training time.

Hyper-parameter tuning using Optuna
Hyper-parameter tuning is another essential task as we can boost
the performance of our model with slight modifications in the
training parameters. To do this with transformers models, we use
the Optuna30 library to easily execute multiple runs in parallel and

Fig. 8 Demonstration of the Question-Answering approach used for fine-tuning purposes. The evidence (PubMed-abstract) and the
corresponding question are passed as sequence pairs and separated by the [SEP] token. They are subsequently broken down into respective
tokens by the tokenizer and fed to the transformer model wherein the prediction is made on the [CLS] or classifier token.
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leverage different state-of-the-art tuning algorithms with minimal
code changes. Although there are different strategies such as Grid
Search31, and Bayesian optimization32, Optuna follows a technique
called Tree-Parzen estimator33 which selects the hyper-parameters
from the search space based on the history of trials conducted.
This dynamic construction of search space coupled with efficient
sampling and pruning algorithms and easy parallelization makes it
ideal for this use case. The two main hyper-parameters that were
tuned are the learning rate and the number of epochs. The
objective function that was chosen to maximize here was the
validation accuracy.

Increasing few-sample fine-tuning stability via optimization
techniques
Considering the low number of samples we have in our data set
(1635 samples), we tried different optimization techniques to
boost the performance. One such technique is the Layer-wise
Learning Rate Decay (LLRD). LLRD34 is a method that applies
higher learning rates for top layers and lower learning rates for
bottom layers. This is accomplished by setting the learning rate of
the top layer and using a multiplicative decay rate to decrease the
learning rate layer-by-layer from top to bottom. The goal is to
modify the lower layers that encode more general information less
than the top layers that are more specific to the pre-training task.
This technique of LLRD has been used in all the models that are
bench marked during the fine-tuning stage.

DISCUSSION
In this work we have proposed the mutagenicity prediction
problem from scientific publications (natural language). The
problem comprises of predicting the mutagenicity of a chemical
given the text that describes its mutagenicity. We have prepared a
golden standard data set for this challenge. We also formulated
the problem as a question-answering problem. Next, we leveraged
pretrained large language models and a relatively small training
data set to train a model, MutaPredBERT which achieves a very
good accuracy for the task. The model was fine-tuned from the
BioLinkBERT− base model using transfer learning. We utilize
multiple optimization strategies for optimal learning outcomes
in this work. We hope that this paper will further lead to research
progress on bettering the accuracy of such models. In addition, for
the field of toxicology, such models can be used to constantly
update and build structured knowledge bases that can be used for
crucial tasks in the drug development process.
In terms of future work, there are several possible improvements.

For instance, for generating questions in our pipeline we used a
template-filling approach in this work since it achieved good
accuracy, however, we could leverage natural language generation
models such as T5 to generate the right questions given the abstract
as context and speed up the annotation process. Similarly, to increase
the data set size for training, data augmentation strategies such as the
paraphrasing method and the back translation method can be tried.
For instance, pegasus35 T5 backbone can be used for paraphrasing
whereas the back translation method relying on translating text data
to another language and then translating it back to the original
language can be tried. This technique allows generating of textual
data of distinct wording to the original text while preserving the
original context and meaning.
One could also look into the avenues of using an ensemble of

models for better accuracy scores in the inference stage.
Techniques such as Stochastic Weighting Average (SWA)36, and
mix-out regularization37 also seem promising to combat the
problem of over-fitting, especially when dealing with smaller data
sets for learning tasks. In addition, one crucial area of improve-
ment is to look at full text of publications, rather than just
abstracts of publications.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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the supplementary website here.
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