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Few-shot prediction of amyloid β accumulation from mainly
unpaired data on biomarker candidates
Yuichiro Yada 1✉ and Honda Naoki 1,2,3,4✉

The pair-wise observation of the input and target values obtained from the same sample is mandatory in any prediction problem. In
the biomarker discovery of Alzheimer’s disease (AD), however, obtaining such paired data is laborious and often avoided.
Accumulation of amyloid-beta (Aβ) in the brain precedes neurodegeneration in AD, and the quantitative accumulation level may
reflect disease progression in the very early phase. Nevertheless, the direct observation of Aβ is rarely paired with the observation of
other biomarker candidates. To this end, we established a method that quantitatively predicts Aβ accumulation from biomarker
candidates by integrating the mostly unpaired observations via a few-shot learning approach. When applied to 5xFAD mouse
behavioral data, the proposed method predicted the accumulation level that conformed to the observed amount of Aβ in the
samples with paired data. The results suggest that the proposed model can contribute to discovering Aβ predictability-based
biomarkers.
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INTRODUCTION
Prediction is a powerful approach to evaluating the association
between the input and target values. To predict a target value
based on an individual input value, it is usually necessary to
acquire paired data consisting of input and target values
obtained from the same individual. However, in biomedical
research, especially in the field of neurodegenerative diseases,
obtaining such paired data in different modalities is laborious
and often avoided. The same holds true for the research field of
biomarker discovery in Alzheimer’s disease (AD), the most
common cause of dementia1,2.
AD is a neurodegenerative disease in which neurons in the

brain gradually die, causing progressive cognitive decline
characterized by memory loss, impaired judgment and reasoning
skills, communication difficulties, and changes in personality and
behavior. Most cases of AD progress sporadically, and many
patients have no family history of AD3. The genetic background of
sporadic AD has been extensively investigated, revealing the
complex genetic architecture of late-onset neurodegenerative
disease4–7. The diagnosis or risk foresight of AD before the onset
of the irreversible progression of neuronal loss may enable the
potential treatment of the disease or the administration of
appropriate symptomatic medication. The rapidly growing popu-
lation of affected people raises an urgent demand for developing
novel biomarkers and prediction methods for AD before
irreversible neurodegeneration8–13.
In AD, the gradual accumulation of amyloid-beta (Aβ)

precedes irreversible neurodegeneration1,2,14. The Aβ accumu-
lation level, therefore, can be an indicator of disease progres-
sion in the very early phase15–17. The indirect assessment of Aβ,
Aβ imaging in the brain using positron emission tomography
(PET), and the assessment of Aβ in cerebrospinal fluid (CSF)
potentially facilitate AD onset prediction1,2,18–20. Recently,

phosphorylated plasma tau was reported as a promising blood
biomarker candidate to detect the accumulation status of Aβ in
a human cohort8,21. However, the current biomarker candidates
in AD are not pair observed with the direct quantification of Aβ;
thus, the effectiveness of the candidates in the very early phase
is unknown. During biomarker discovery, researchers usually
evaluate the binary predictability, i.e., healthy/disease, mild
cognitive impairment/AD, amyloid positive/negative, or sig-
nificant difference between groups using statistical tests.
However, the progression timing and disease dynamics may
be heterogeneous even within each group. Especially during
the accumulation process, such heterogeneity could mask the
differences researchers aim to detect (Fig. 1a). The direct
quantitative observation of Aβ can be performed only in the
brain tissue of humans after death or animals after euthaniza-
tion. Owing to the difficulty of paired observations, the
quantitative accumulation level of Aβ in the brains of
individuals, which may reflect the progression state of early
AD pathology, may have been overlooked in past biomarker
discoveries.
In the present study, to overcome this problem, we

developed a hierarchical Bayesian model that describes the
Aβ accumulation process and observation of biomarker
candidates utilizing mostly unpaired data (Fig. 1b). In the
model, Aβ deposits over time according to a logistic function,
whose parameters are unique to each sample. The effectiveness
of the biomarker candidates can be evaluated by the predict-
ability of the quantitative accumulation level of Aβ. Owing to
the Bayesian probabilistic formulation, the model can naturally
integrate mostly unpaired data through few-shot learning,
increasing the predictability of accumulation levels based on
the observed biomarkers. By applying the model to the
behavioral data sets of 5xFAD mice22, we predicted the
accumulation level of Aβ solely from behavioral data from

1Laboratory of Data-driven Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Kagamiyama, Higashi-hiroshima, Hiroshima 739-8526, Japan. 2Kansei-
Brain Informatics Group, Center for Brain, Mind and Kansei Sciences Research (BMK Center), Hiroshima University, Kasumi, Minami-ku, Hiroshima 734-8551, Japan. 3Laboratory of
Theoretical Biology, Graduate School of Biostudies, Kyoto University, Yoshidakonoecho, Sakyo, Kyoto 606-8315, Japan. 4Theoretical Biology Research Group, Exploratory Research
Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan. ✉email: yuyada@hiroshima-u.ac.jp;
nhonda@hiroshima-u.ac.jp

www.nature.com/npjsba

Published in partnership with the Systems Biology Institute

1
2
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41540-023-00321-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41540-023-00321-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41540-023-00321-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41540-023-00321-5&domain=pdf
http://orcid.org/0000-0003-2277-9951
http://orcid.org/0000-0003-2277-9951
http://orcid.org/0000-0003-2277-9951
http://orcid.org/0000-0003-2277-9951
http://orcid.org/0000-0003-2277-9951
http://orcid.org/0000-0001-6816-9126
http://orcid.org/0000-0001-6816-9126
http://orcid.org/0000-0001-6816-9126
http://orcid.org/0000-0001-6816-9126
http://orcid.org/0000-0001-6816-9126
https://doi.org/10.1038/s41540-023-00321-5
mailto:yuyada@hiroshima-u.ac.jp
mailto:nhonda@hiroshima-u.ac.jp
www.nature.com/npjsba


mostly unpaired data, supporting the concept of biomarker
discovery based on predictability.

RESULTS
Hierarchical Bayesian model of Aß accumulation
To represent the pathogenesis of AD, we developed a mathema-
tical model describing the accumulation process of Aβ in the brain
and the observation process of Aβ and biomarker candidates.
Here, we assumed an AD study using model animals, and each
sample was identified as belonging to either healthy wild type

(WT) or AD model animals. In the model, Aβ accumulates over
time according to the logistic function (Fig. 1c):

zn ¼ αn
1þ exp �βn tn � τnð Þf g ; (1)

where the suffix n 2 f1; 2; ¼ ;Ng represents the index of the
sample, and tn is the age of the month in which the observation of
sample n was conducted. θn ¼ αn; βn; τnf g is a set of parameters
depending on the individual animals and αn, βn, and τn denote the
maximum level of Aβ accumulation, steepness of Aβ accumulation,
and critical period to reach half of the maximum Aβ, respectively. To
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Fig. 1 Concept and schematic representation of the proposed model. a Alzheimer’s disease (AD) model samples (sample A and B) at the
same age may have considerably different degrees of amyloid-beta (Aβ) accumulation, which may correlate with the progression stage of very
early AD. b The graphical model representation of our proposed model. c The concept of our model. Aβ accumulates in a particular brain
region according to a logistic function over time. Observed data on biomarker candidates are generated depending on the accumulation level
and the instantaneous accumulation speed of Aβ in the brain. d Learning and prediction steps of the proposed model. The model learns the
parameters that integrate mostly unpaired data and predicts the quantitative accumulation level of Aβ based on observed data. In the first
step, the distributions of hyper-parameters are inferred from the observed Aβ value. In the second step, the distributions of all parameters and
hyper-parameters were updated using the observed biomarker candidate data. Third, the quantitative predictability of Aβ accumulation based
on observed biomarker candidates was evaluated.
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express heterogeneity in the Aβ accumulation process among
animals, different values of θn ¼ αn; βn; τnf g are assigned to the
individual animals, following the distribution shared within the same
type of animals sn, i.e., WT or AD model animals.
The observed amount of Aβ, yn, is subject to noise as

yn ¼ zn þ σyξn, where σy and ξn indicate the noise strength and

Gaussian noise with zero mean and unit variance, respectively. The
observed data on biomarker candidates xn 2 RL were assumed to
reflect zn and its temporal derivative z0n, i.e., dzn=dt,

xn ¼ Wzn þ Sxεn; (2)

Y. Yada and H. Naoki

3

Published in partnership with the Systems Biology Institute npj Systems Biology and Applications (2023)    59 



where zn ¼ zn; Cz0n; 1ð ÞT, W 2 RL ´ 3 indicates the weight matrix,
Sx ¼ diagðσx1 ; σx2 ; ¼ ; σxL Þ 2 RL ´ L and εn 2 RL indicate indepen-
dent Gaussian noises with zero mean and unit variance,
respectively (Fig. 1b, c): The temporal derivative z0n indicates the
instantaneous speed of Aβ accumulation derived from the logistic
equation. C is a scaling factor common across samples. Here, we
assumed that biomarker candidate data xn were generated (Fig.
1b, c) via the same biological process among animals. W is the
shared parameter among animals sampled from the same
distribution. This model was formulated using a hierarchical
Bayesian model (see Methods).

Few-shot learning procedure to predict Aß accumulation
Based on this model, we aimed to estimate the latent Aβ
accumulation zn from the observed data on the biomarker
candidate xn. To this end, we also needed to train the model by
estimating the parameters from the data. Here, we made two
assumptions, based on the data that were actually available: first,
the animals must be sampled once as snapshots, not as a time
series, owing to the requirement of euthanization. Second, most
samples only included either Aβ accumulation or candidate
biomarker data, implying that these were observed in different
animal populations and only a small subset of the samples had
paired data for the biomarker candidates and Aβ accumulation at
the same age. Therefore, there were three types of data: unpaired
data on Aβ accumulation, unpaired data on biomarker candidates,
and paired data containing both.
Given the above assumptions, we proposed a Bayesian

probabilistic approach to train the model by integrating paired
and unpaired data via few-shot learning or semi-supervised
learning (see Methods). In the first step, using only the unpaired
dataset of Aβ accumulation, we pre-trained the model by
estimating the distribution of the logistic function parameter θ
for each of the WT and AD model animals (Fig. 1d). Next, using the
estimated distributions used in the first step as prior knowledge,
we inferred the distribution of all model parameters from the
remaining datasets; the unpaired dataset on biomarker candidates
was used for unsupervised learning, whereas the paired dataset
was used for supervised learning.
After learning the parameters, the model could predict the

accumulated level of Aβ, zn; from the observed data on biomarker
candidate xn (Fig. 1d; see Methods).

Experimental data of AD model mice
To apply our estimation method, we adopted real-world experi-
mental data from the AD model and WT mice22. The AD model
mice were 5xFAD transgenic mice with five human familial AD
mutations in APP and PSEN1 on the background of a C57BL/6J
strain, showing robust Aβ pathological accumulation and neuronal
cell death. Most of the data contained unpaired data either of the

Aβ accumulation (24 samples) or behavioral features (82 samples).
In contrast, some paired data existed (18 samples, only for 8- and
12-month-old AD model mice; Fig. 2a). Aβ accumulation was
evaluated by the insoluble fraction level of Aβ40 and Aβ42 in the
hippocampus of 42 AD model mice at 4, 8, 12, and 18 months of
age (Fig. 2d). For WT mice, the observation of Aβ was unavailable
in the dataset. We assumed that the insoluble Aβ in WT mice
remained undetectable during the mice’s lifetime based on
reports that WT mice do not develop Aβ plaque during their
normal life span23, and prepared virtual samples of the WT mice
with the unpaired observation of Aβ accumulation. Each AD
model and WT mouse were behaviorally evaluated; we selected
three types of behavioral experiments where 11 features were
obtained at 4, 8, or 12 months of age (Supplementary Table 1; Fig.
2b). These 11-dimensional data were addressed as biomarker
candidate data and visualized using principal component analysis.
The distribution of data from the samples that had the paired data
was approximately within the range of the distribution of data
from the samples that had the unpaired data (Fig. 2c).

Prediction of Aß accumulation in AD model mice
Using our method, we predicted Aβ accumulation in the
hippocampus using behavioral features as biomarker candidates.
First, we pre-trained the model to learn the distributions of the
parameters of the logistic function based on the insoluble fraction
level of Aβ. The pre-trained model generated logistic time courses,
representing the observed insoluble fraction level of Aβ40 and
Aβ42 (Fig. 2d). Next, we trained the model using an unpaired
dataset of behavioral features and a paired dataset.
Using the trained model, we predicted the accumulation level

of Aβ from the behavioral features of the paired data using leave-
one-out cross-validation (Fig. 2e). The prediction errors were
almost the same for the two types of Aβ (mean squared error
[MSE]= 0.060 for Aβ40 and MSE= 0.111 for Aβ42). Most predic-
tions followed the observed amount of Aβ both in Aβ40 and Aβ42.
However, several data were unpredictable with large errors
(asterisks in Fig. 2e). Three of the samples that were not
predictable were from 8-month-old mice and shared between
Aβ40 and Aβ42. Moreover, 8-month-old mice showed larger
prediction errors than 12-month-old mice (MSE of Aβ40= 0.083
at 8 months, 0.046 at 12 months; MSE of Aβ42= 0.214 at 8 months,
0.046 at 12 months, Supplementary Figure 1a). To identify the
cause of the large errors, we predicted the mouse type of the
samples based on the behavioral features and found that two of
the three samples from 8-month-old mice with large Aβ prediction
errors were predicted as WT rather than AD models. All samples
that were incorrectly predicted to be from WT mice were from 8-
month-old mice. (Supplementary Fig. 1a, b). We then evaluated
the importance of the instantaneous speed of Aβ accumulation,
z0n; incorporated at the hidden state, zn; of the proposed model. If
the term was excluded from the hidden state, the absolute error

Fig. 2 Application of the proposed model to 5xFAD mice data. a Components of the experimental data. The accumulation levels of Aβ were
observed in 42 samples. The biomarker candidates, 11 features from three different behavioral experiments, were observed in 100 samples.
The two groups partially overlapped: 18 samples included Aβ and biomarker candidate data. The paired data samples were all from 5xFAD
mice. The predictability was evaluated using leave-one-out cross-validation. b Time course of the behavioral features. The black points are
from WTmice, and the red points are from 5xFAD mice. c PCA of the behavioral features obtained from the experiment. The red and magenta
points correspond to 5xFAD samples, and the black points correspond to WT samples. In the scatter plot (left), the point shape represents the
sample months for age (circle: 4, triangle: 8, inverted triangle: 12) and the magenta points indicate 5xFAD samples that had the paired data.
d Inference of hyper-parameters of a logistic function. The data points are scaled insoluble fractions of Aβ40 and Aβ42 in the hippocampus [no
unit]. Red points indicate 5xFAD mice and black points denote WT mice. The lines represent the example logistic functions with hyper-
parameters randomly sampled from the learned distribution (red: 5xFAD, black: WT). e Accumulation levels of Aβ40 and Aβ42 at the
hippocampus of the samples that had paired data (only for 8- and 12-month-old AD model mice) were predicted by the trained model based
on behavioral features. f The comparison of the absolute errors by the originally proposed model and the model without the z0 term in the
hidden state. Samples with Aβ40 accumulation levels lower than 0.66 were evaluated. g (Left) The mean prediction errors according to the
ratio of supervised samples. The black circles represent the results for each number of supervised samples, and the red dots represent the
mean for each condition. MSE: mean squared error. (Right) The representative prediction results at the respective conditions.
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increased in some samples with observed Aβ accumulation level
lower than 0.66 in Aβ40 (Fig. 2f). Here, the threshold was set such
that all the 8-month-old samples were included below the
threshold. The Aβ of the samples may still be in the process of
accumulating, suggesting the importance of the term in the very
early phase of AD. The accumulation level of Aβ in the cortex was
predicted, though the prediction performance was not as good as
that in the hippocampus (Supplementary Fig. 2).
We also evaluated the prediction performance when changing

the ratio of the paired and unpaired data. We divided the paired
data into two equal parts and examined the prediction accuracy
when only one of them was used as paired data and the other was
used as unpaired data. Similarly, we examined the prediction
accuracy of dividing the data into three equal groups, using only
one group as paired data and the other as unpaired data. On
average, the prediction accuracy did not change much even when
only 1/2 or 1/3 of the paired data was used (Fig. 2g).

Selection of biomarkers to predict Aß accumulation
To assess the importance of each behavioral feature in predicting Aβ
accumulation, we removed each behavioral feature and evaluated
the prediction error for each feature (Fig. 3a). We then found that
predictive performance was considerably decreased by removing
“time in the center” in the open-field experiment and “time spent in
the open arm” in the elevated plus maze experiment, which
exhibited significant differences between WT and 5xFAD mice22.
Next, we ranked the features by their impact on the prediction error
and assessed the prediction performance by including features
individually from the top of the ranks (Fig. 3b). The prediction error
decreased considerably until the top five features of the ranks were
recruited, which comprised features from three different experi-
ments. The results show that multivariate features from different
experiments could be potential AD biomarkers.
We also evaluated the number of features required for the

proposed model to determine its predictability. Here, we
randomly selected several behavioral features by varying their
number, trained the model, and made a prediction (Supple-
mentary Fig. 3a). Statistically significant differences were
detected between predictions using 1–7 and 11 features
(Mann–Whitney U-test with Holm’s correction for multiple
comparisons, p < 0.05). In contrast, there was no significant
difference between the predictions using 10 and 11 features
(Supplementary Fig. 3b), suggesting that as many diverse
features as possible are preferable to achieve better prediction
performance.

Prediction of Aß accumulation by conventional machine
learning methods
The predictive performance of the proposed model was compared
with that of conventional machine learning techniques, namely
ordinary linear and random forest regressions. To fairly compare
prediction performance, we virtually created paired data from
randomly selected WT mice and used the mice as a training or test
sample for the prediction. We then demonstrated that our
proposed model outperformed standard machine learning
techniques both in the prediction of Aβ40 and Aβ42 in the
hippocampus (Fig. 4a, b, Supplementary Table 2). The predicted
values of Aβ accumulation with the ordinary linear regression
overlapped in WT and 5xFAD mice, and the predicted values in
some WT mice were negative (Fig. 4a, b). Moreover, the random
forest regressor failed to predict the level of accumulation (for
instance, large or small) in 5xFAD mice (especially as shown in Fig.
4b). Indeed, the proposed model showed a smaller median
absolute prediction error than that of standard models (Supple-
mentary Table 2).

Application to synthetic data
In the 5xFAD experimental data used in this study, the paired data
with Aβ accumulation and behavioral features were limited only
to the phase when Aβ accumulation has vastly progressed, i.e., in
8- and 12-month-old mice. Thus, the predictive performance of
the proposed model for the earlier phase of Aβ accumulation
remains unknown. To evaluate this, the model was applied to
synthetic data that contained earlier phase samples.
To this end, we prepared synthetic unpaired and paired data at

various ages, including the early phases, by simulating the model.
The synthetic data were composed of 20 samples of Aβ accumula-
tion alone, 50 samples of biomarker candidates alone, and 50 samples
of paired data for each AD model and WT (Fig. 5a). First, we pre-
trained the model using the synthesized unpaired data on Aβ
accumulation, representing the variation in the observed accumula-
tion level of Aβ (Fig. 5b). We then trained the model using unpaired
data on biomarker candidates and paired data in the manner of few-
shot learning. We confirmed that the estimated parameters followed
the ground truth used for the synthesized data (Fig. 5c), indicating
that our estimation method was efficient. Using the trained model,
we predicted z�, the Aβ accumulation level of unknown samples
from the observed biomarker features x� (Fig. 5d, top left). We
evaluated the prediction accuracy by changing the ratio of
supervised paired samples for training. The MSE changed slightly
with varying ratios, suggesting that not many supervised samples
were required for prediction (right and bottom left in Fig. 5d).
Finally, we evaluated the predictive performance dependency

of the samples on age. When assessing whether the true mouse

Fig. 3 Evaluation of the behavioral features based on the predictability of the Aβ accumulation level. a Prediction error in the case of
excluding a particular behavioral feature from the observation. b Variation of the prediction performance when the number of the observed
features increases; the features are sequentially included from the top of the list in Fig. 3a.
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type was consistent with whether the predicted Aβ accumulation
levels of zero or non-zero, the presence or absence of Aβ
accumulation was predicted relatively accurately in the samples
from older mice as compared to those from younger mice, i.e.,
zero Aβ in the WT mice and non-zero Aβ in the AD model mice
(Fig. 5e). The predictive performance of Aβ accumulation in the AD
model samples did not change significantly with age (Fig. 5f,
Mann–Whitney U-test with Holm’s correction for multiple
comparisons). The results suggest that the model can predict Aβ
accumulation levels in samples in the early phase of the
accumulation process, while it may fail to predict the type of
sample in the same phase.

DISCUSSION
Herein, we proposed a hierarchical Bayesian model that describes
how biomarker candidates are generated in response to the
accumulation of Aβ in the brain. By integrating mostly unpaired
data on Aβ quantification and the behavioral features obtained in
behavioral experiments with 5xFAD mice, our model predicted the
quantitative accumulation level of Aβ based on behavioral
features in most samples. The instantaneous accumulation speed
introduced at the hidden state of our model was suggested to
play an important role in the prediction, especially during the early

phase. Based on the effect of each biomarker candidate on
predictability, we revealed that multiple behavioral features from
three different behavioral experiments could be important
biomarkers for predicting Aβ accumulation level. This study may
demonstrate the proof-of-concept of Aβ-predictability-based
multivariate AD biomarker discovery.
The proposed model can naturally integrate information from

paired and unpaired data. The inference of the distribution of the
logistic function parameters from Aβ-observed unpaired data
constrains the dynamic range of Aβ accumulation level. The
information from unpaired data that lack an observed amount of
Aβ provides the generation process of biomarker candidates and
their variability. Learning information from the paired supervised
data further helps calibrate the generation process. Notably, as the
simultaneous observation of biomarker candidates and Aβ from
the same sample is labor-intensive, expensive, and technically
challenging, most samples usually lack information on either
biomarker candidates or Aβ accumulation. In this scenario, the
proposed model makes it possible to make such incomplete
datasets available for Aβ predictability-based biomarker discovery.
The predictive performance of the proposed model was found

to be inferior in young mice than that in older mice. The nature of
the analyzed biomarker candidates and the proposed model
limitations could have affected the results. The principal
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component space of the 5xFAD mouse behavioral test data
showed little difference between WT and AD model mice in the
younger samples (Fig. 2c), which probably caused “misclassifica-
tion” of some of the 5xFAD mice as WT mice resulting in large
prediction errors (Fig. 2e, Supplementary Fig. 1). Such “misclassi-
fication” of the two samples was avoided in the prediction by a
random forest regressor (Fig. 4a, b). Therefore, the proposed
method could be improved by adding a nonlinear process, such as
the kernel method, to the process of generating the observed
data. We confirmed whether the model with nonlinear transfor-
mation yields better prediction performance by adopting a 3-layer
neural network at the generation from z to x. However, the
prediction performance only improved slightly (data not shown).
Since the goal of this study is to contribute to the discovery of
biomarkers, we believe that discovering biomarker candidates
more suitable for prediction, is also important.

In humans, the accumulation of Aβ may initiate 10–20 years
before the recognized cognitive decline1,2. However, in model
animals, behaviors and cognitive abilities were altered before the
saturation of Aβ accumulation. For instance, 5xFAD mice showed a
decline in memory function before 6 months of age, when Aβ was
still in the accumulation process22,24,25. These facts suggest that a
probabilistic model sensitive to an earlier stage of Aβ accumula-
tion is preferable to discover biomarkers in model animals.
Furthermore, the gradient term of accumulated Aβ at the
generation of biomarker data in the model might bestow such
specificity to the proposed model when analyzing data that
contain phase-specific biomarkers (Fig. 2f).
Whether Aβ acts upstream in the cascade leading to cell death,

as in the amyloid hypothesis, is controversial26,27. However, Aβ
indeed accumulates in the initial stages of AD. Even if there is no
causal relationship between the accumulation of Aβ and AD
progression, Aβ may be a useful precursor for predicting AD.
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Notably, studies have reported alterations in the phenotypes of
AD model mice that appear earlier than the onset of Aβ
accumulation28. Such lesions may allow for an earlier definition
of the latent state of AD progression.
Machine learning approaches for identifying the latent progres-

sion states of AD have recently attracted attention. Probabilistic
models, such as mixed effect29–33 and hidden Markov models34–36,
found the latent trajectories of disease progression from long-
itudinal data of clinical cohorts in unsupervised learning. Our
approach differs from those of previous studies in that the
proposed model assumed the quantitative accumulation level of
Aβ as “the latent progression state” and estimated the state via a
few-shot learning approach and directly describes the relationship
between Aβ levels and biomarkers. These characteristics should
be advantageous in predicting Aβ levels from biomarkers,
especially when the number of samples available for training is
limited. Furthermore, Aβ may propagate from a brain region to
other regions37,38, which suggests that the spatial distribution of
accumulation could be the hidden state. The molecular biological
observation or the direct quantitative observation of Aβ is
challenging in humans. Nevertheless, the proposed framework is
potentially beneficial for discovering non-invasive convenient
biomarkers8,9,39,40 that are relevant to the amount of PET-detected
Aβ or CSF Aβ in human data.
In other neurodegenerative diseases, such as Parkinson’s

disease, Lewy body dementia, multiple system atrophy, Hunting-
ton’s disease, amyotrophic lateral sclerosis, and frontotemporal
lobar degeneration, abnormal proteins accumulate in specific
brain regions, possibly leading to neuronal death41–43. The
modeling approach presented herein is also potentially applicable
to such neurodegenerative diseases. The risk of neurodegenera-
tive diseases is a growing concern in an aging society.
Predictability-based biomarker discovery using the proposed
model may contribute to identifying biomarkers that make
available predictions and potential interventions for diseases.

METHODS
Generative model of Aß and biomarker candidates
Serial PET scans of humans used for the imaging of Aß44 and
in vivo imaging of Aß plaques45 have demonstrated that the
temporal progression of Aß accumulation can be characterized by
a sigmoid-shaped trajectory. Based on these previously reported
findings, our model assumes that Aß accumulation follows a
logistic function:

zn ¼ αn
1þ exp �βntn þ γnð Þ ; (3)

where θn ¼ αn; βn; γnf g is a set of parameters, and n is the animal
index. This equation can be rewritten from Eq. (1), where
γn ¼ βnτn. Accordingly, the temporal derivative of the Aβ
accumulation is

z0n ¼ βnzn 1� zn
αn

� �
: (4)

The parameter θn depends on the individual, following
distributions as

P αnð Þ ¼
Y

k2 1;2f g
Nþ αnjμα;k ; σ2

α;k

� �sn;k
; (5)

P βnð Þ ¼
Y

k2 1;2f g
Nþ βnjμβ;k ; σ2

β;k

� �sn;k
; (6)

P γnð Þ ¼
Y

k2 1;2f g
N γnjμγ;k ; σ2

γ;k

� �sn;k
; (7)

where Nðxjμ; σ2Þ and Nþðxjμ; σ2Þ indicate normal distribution
with mean μ and variance σ2 and truncated normal distribution
with a range of x > 0, respectively; sn is a one-hot vector
representing the type of the samples, i.e., WT as 1; 0ð ÞT or AD
model mice as 0; 1ð ÞT; μϕ;k and σ2

ϕ;k (ϕ 2 fα; β; γg) indicate
parameters of WT (k ¼ 1) or AD model mice (k ¼ 2).
The observed amount of Aß, yn, is generated from zn as

P ynjznð Þ ¼ N ynjzn; σ2
y

� �
: (8)

The observed data on L-dimensional biomarker candidates xn 2
RL was generated from zn and z0n as

P xnjznð Þ ¼ N xnjWzn; Σxð Þ; (9)

where zn ¼ zn; Cz0n; 1ð ÞT, W 2 RL´ 3 indicates the weight matrix,
and Σx ¼ diagðσ2

x1 ; σ
2
x2 ; ¼ ; σ2xL Þ. C indicates a scaling factor

common among samples that calibrates the range of z0.

Prior distribution of parameters
For parameter estimation in a Bayesian manner, we introduced
the prior distributions of parameters. The hyper-parameters P αnð Þ,
P βnð Þ and P γnð Þ are sampled from the following distributions:

P μϕ;k
� �¼N μϕ;k

��mϕ;k ; v
2
ϕ;k

� �
; (10)

P σ�2
ϕ;k

� �
¼ Gamma σ�2

ϕ;k

���aϕ;k ; bϕ;k� �
; (11)

where ϕ 2 fα; β; τg, Gamma xja; bð Þ indicates a Gamma distribu-
tion with shape parameter a and rate parameter b.
The prior distribution of W was

P wlð Þ¼N wlj0; σ2
wl
I

� �
; (12)

where wl indicates the l-row of the weight matrix W . The prior
distribution of its hyper-parameter σ2

wl
was hierarchically intro-

duced as

P σ�2
Wl

� �
¼ Gamma σ�2

Wl

��aw ; bw� �
: (13)

The prior distribution of σ2
xl was

P σ�2
xl

� �
¼ Gamma σ�2

xl

��ax ; bx� �
(14)

In the Markov chain Monte Carlo (MCMC) sampling algorithm,
we used vα;k ¼ 0:1, aα;k ¼ 25, bα;k ¼ 0:5; vβ;k ¼ 0:1, aβ;k ¼ 100,
bβ;k ¼ 1, vγ;k ¼ 1, aγ;k ¼ 10, bγ;k ¼ 1, aw ¼ 100, bw ¼ 1000,
ax ¼ 0:5, bx ¼ 1 and σy ¼ 0:05.
When the model learned the distributions of the hyper-

parameters from the Aß observation (step 1), we set mα;k , mβ;k
and mγ;k as the values estimated by the least square method.

Bayesian inference of parameters
The model parameters were learned in two steps. In the first step
(step 1), we inferred the posterior distributions of the parameters
of a logistic function and those of hyper-parameters, given the
data on Aβ accumulation as follows:

P θ1:Ny ; μθ; σ
2
θ jy1:Ny

; t1:Ny ; s1:Ny

� �
/ Q

n2Sy
P ynjθn; tn; σ2y
� �Q

k2 1;2f g P θnjμθ;k ; σ2θ;k; sn
� �sn;k

P μθ;k
� �

P σ2θ;k

� �
;

(15)

where μθ ¼ fμθ;1; μθ;2g, μθ;k ¼ fμα;k ; μβ;k ; μγ;kg, σ2θ ¼ fσ2θ;1; σ2
θ;2g,

σ2θ;k ¼ fσ2α;k ; σ2
β;k ; σ

2
γ;kg, and Sy is the set of samples with Aβ

accumulation in the training data, and Ny is the number of
samples in Sy . We assumed that the observed level of Aβ at time
t ¼ 0 in all the samples would be yn ¼ 0. This posterior
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distribution was estimated using the MCMC sampling algorithms.
No-U-Turn samplers (NUTS) were used in this step because it is
difficult to derive the closed form of the posterior distribution.
From the posterior samples, we estimated the parameters of the
Gaussian and Gamma distributions for μθ;k and σ2

θ;k , respectively;
these distributions with the estimated parameters were used as
priors for the hyper-parameters. In the first step, MCMC sampling
was performed across three independent chains, where 3000 sam-
ples were drawn for burn-in, and another 3000 were drawn to
estimate the distribution.
In the second step (step 2), we inferred the posterior

distributions of all parameters in the model, given the unpaired
data on biomarker candidates and the paired data on Aβ
accumulation and biomarker candidates. We used the NUTS-
within-Gibbs approach for the inference. The weight matrix W , the
variance of the weight matrix SW ¼ fσ2

W1
; σ2

W2
; ¼ ; σ2

WL
g, and the

variance of the observation noise σx were sampled using Gibbs
sampling as follows:
The Gibbs sampler for weight matrix W :

P Wjx1:Nx ; y1:Nx
; t1:Nx ; s1:Nx ; Σx ; SW ; θ1:Nx ; μθ; σ

2
θ

� �
/ Q

n2SX
P xnjW; zn; Σxð ÞP WjSWð Þ ¼ Q

l¼1 N wljeμwl
; eσ2

wl
I

� �
;

(16)

where SX is a set of samples with at least biomarker candidates in
the training data, NX is the number of samples in SX , and

eμwl
¼ eσ2

wl

X
n2SX

znxn;l
σ2
xl

; (17)

1eσ2
wl

¼
X
n2SX

znzTn
σ2
xl

þ 1
σ2wl

: (18)

The Gibbs sampler for observation noise of biomarker
candidates Sx :

P S�2
x jx1:Nx ; y1:Nx

; t1:Nx ; s1:Nx ;W; SW ; θ1:Nx ; μθ; σ
2
θ

� �
/ Q

n2SX
P xnjW; zn; Σxð ÞQl¼1 P σ�2

xl

� �
¼ Q

l¼1 Gamma σ�2
xl jeaxl ;ebxl� �

;

(19)

where

eaxl ¼ axl þ
2
NX

; (20)

ebxl ¼ bxl þ
X
n2SX

1
2

xn;l �wT
l zn

� �2
: (21)

The Gibbs sampler for the variance of the coefficient matrix SW :

P S�1
W jx1:Nx ; y1:Nx

; t1:Nx ; s1:Nx ;W; Σx; θ1:Nx ; μθ; σ
2
θ

� �
/ p WjSwð ÞQl¼1 P σ�2

wl

� �
¼ Q

l¼1 Gamma σ�2
Wl
jeawl ;

ebwl

� �
;

(22)

where

eawl ¼ awl þ
3
2
; (23)

ebwl ¼ bwl þ
1
2
wT

l wl: (24)

The posterior distribution of other parameters was sampled by
MCMC using NUTS as

P θ1:Npair ; μθ; σ
2
θ jx1:Nx ; z

o
1:Nx

; t1:Nx ; s1:Nx ;W; Σx ; SW
� �

¼ P μθð ÞPðσ2
θÞ

Q
n2SXY

Pðxn zn;W; Σxð ÞP ynjzn; σ2
z

� �
P θnjμθ; σ2

θ; sn
� �h i

´
Q

n02SX
Pðxn0 zn0 ;W; Σxð ÞP θn0 jμθ; σ2

θ; sn0
� �h i

;

(25)

where SXY and SX are sets of samples with paired data on Aβ
accumulation and biomarker candidates and unpaired data on
biomarker candidates, respectively. We adopted the distributions
estimated in Step 1 as P μθð Þ and Pðσ2

θÞ. In the second step, MCMC
sampling was performed across three independent chains, where
5000 samples were drawn for burn-in, and another 5000 were
drawn to estimate the distribution. The inference program was
implemented in Python using the NumPyro framework.

Prediction of Aß accumulation from biomarkers
In the prediction of Aß accumulation in the test data (step 3), we
computed a conditional posterior predictive distribution of y�
given x� using the following equation:

P y�jx�;Dð Þ / P x�; y�jDð Þ / 1
2NtI

X
i¼1

X
t

X
s

P x�jt; s;W ið Þ; Σ ið Þ
x ; S ið Þ

W ; θ ið Þ
� �

P y�jt; s; θ ið Þ
� �

;

(26)

where D is the learned training data, W ið Þ, ΣðiÞx , SðiÞW , and θðiÞ are the
posterior samples of the parameters, I is the number of posterior
samples, and Nt is the number of time points considered in the
prediction t ¼ f2; 3; ¼ ; 18g.
Similarly, in the mouse type prediction in the test data, we

computed a conditional posterior predictive distribution of s�
given x� using the following equation:

P s�jx�;Dð Þ / P x�; s�jDð Þ
/ 1

2Nt I

P
i¼1

P
t
P x�jt; s�;W ið Þ; Σ ið Þ

x ; S ið Þ
W ; θ ið Þ

� �
:

(27)

Behavioral experiments with 5xFAD mice
We used the dataset previously described in Forner et al.22,
obtained from a public repository (AD Knowledge Portal; https://
adknowledgeportal.synapse.org/). Eleven features from three
experiments were analyzed using our proposed model. In the
open-field experiment, the velocity and time ratio in the center
(the time in the center divided by the time in the arena) was used
in the analysis. In the elevated plus maze experiment, the amount
of time a mouse spent cumulatively in the open arm, closed arm,
and center area of the maze was used in the analysis. In the
contextual fear conditioning experiment, the activity level, inactive
freezing frequency, and cumulative duration of inactive freezing
were monitored for each mouse during 2-min habituation and
exploration in a chamber. Subsequently, an electrical shock was
applied to the mouse. After 24 h, the same behavioral features
were monitored for 5 min in the chamber.

Preprocessing
Preprocessing was performed to analyze 5xFAD mouse behavioral
data. Behavioral features were standardized such that the mean
and standard deviation of each feature were 0 and 1.0,
respectively. The observed amount of Aβ was scaled so that the
maximum observed value for 12-month-old mice equaled 1.0.
Based on the assumption that insoluble Aβ in the brain of WT
mice remains undetectable throughout their lives, we virtually
generated unpaired-Aβ-observation WT samples at 8, 12, and
18 months of age, where the observed amount of Aβ at each time
sample was 0.0. A 5xFAD mouse “individual ID= 572” was
excluded from the paired-data samples because the measurement
of insoluble Aβ in the sample may have failed.

Comparison with linear regression and a random forest
regressor
To fairly compare the prediction performance of the proposed
method and conventional machine learning methods against
both WT and 5xFAD mice, we prepared supervised samples of the
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WT mice and 5xFAD mice. We randomly selected 18 WT mice, all
of which had unpaired behavioral data, and provided paired data
in which the Aβ level was observed to be zero using them as
samples with the paired data. The standard machine learning
methods were implemented using the scikit-learn module in
Python. The number of trees in the random forest regressor was
set to 100.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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