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Transcriptional profiling upon T cell stimulation reveals down-
regulation of inflammatory pathways in T and B cells in SLE
versus Sjögren’s syndrome
Gino Kwon1,7, Annika Wiedemann2,7, Lisa M. Steinheuer3,7, Ana-Luisa Stefanski2, Franziska Szelinski2, Tomas Racek4,
Andreas Philipp Frei5, Klas Hatje 4, Tony Kam-Thong4, David Schubert5, Thomas Schindler6, Thomas Dörner2✉ and
Kevin Thurley 1,3✉

Systemic lupus erythematosus (SLE) and primary Sjögren’s syndrome (pSS) share clinical as well as pathogenic similarities. Although
previous studies suggest various abnormalities in different immune cell compartments, dedicated cell-type specific transcriptomic
signatures are often masked by patient heterogeneity. Here, we performed transcriptional profiling of isolated CD4, CD8, CD16 and
CD19 lymphocytes from pSS and SLE patients upon T cell stimulation, in addition to a steady-state condition directly after blood
drawing, in total comprising 581 sequencing samples. T cell stimulation, which induced a pronounced inflammatory response in all
four cell types, gave rise to substantial re-modulation of lymphocyte subsets in the two autoimmune diseases compared to healthy
controls, far exceeding the transcriptomic differences detected at steady-state. In particular, we detected cell-type and disease-
specific down-regulation of a range of pro-inflammatory cytokine and chemokine pathways. Such differences between SLE and pSS
patients are instrumental for selective immune targeting by future therapies.
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INTRODUCTION
Systemic lupus erythematosus (SLE) and primary Sjögren’s syndrome
(pSS) are systemic autoimmune diseases that share clinical,
immunological, and genetic features but present also disease-
specific traits. Our understanding of the clinical and immunological
etiology remains incomplete, but it is well established that
dysregulation of innate and adaptive immune responses leading to
breach of self-tolerance, expansion of auto-reactive B and T
lymphocytes, production of autoantibodies and a continuous
secretion of pro-inflammatory cytokines characterize pathologic
features of SLE and pSS1–3. Both diseases are considered complex
conditions in which genetic predisposition, environmental trigger
and epigenetic mechanisms contribute to disease induction and
maintenance. Even though B lineage cells are known to be key
components of the pathophysiology of these diseases4,5 no profound
knowledge is available about their cross-talk with other lymphocytes
subsets like NK cells, CD4+ /CD8+ T cells in SLE and pSS.
The impact of genetic susceptibility on the development of SLE

and pSS has been well demonstrated in a number of large-scale
genome-wide association studies6–9, uncovering a large fraction of
genetic heritability. A substantial number of major genetic
susceptibility loci are shared between both diseases, such as
variants of HLA class II and upregulation of interferon IFN
regulated genes like IRF5 and STAT4, describing another hallmark
of both diseases, referred to as IFN signature9–14. In addition,
certain risk alleles, i.e., FcR genetic variants, are considered to
explain B cell hyperactivation. More recently, both bulk and single-
cell transcriptomic sequencing studies have identified additional

distinctive blood-transcriptional signatures associated with mye-
loid inflammation and B cell-related pathways, and have revealed
huge heterogeneity also at the single-cell level, for both SLE and
pSS15–20. In particular, SLE and pSS patients exhibit changes in the
abundance and expression of IFN signature genes in various
populations of the lymphocyte and myeloid cell compart-
ments15,19. However, those studies rely on analyses of unstimu-
lated peripheral blood mononuclear cells (PBMC). Transcriptomic
data sets containing sorted immune cell populations are available
for SLE and under unstimulated steady-state conditions only21,22.
Here, following the hypothesis that transcriptomic differences in

autoimmune disease may be more pronounced under conditions of
tonic immune stimulation such as in an acute flare of the disease, we
assessed gene-expression profiles from distinct sorted populations of
B cells, NK cells, and CD4+ and CD8+ T cells at steady-state and upon
18 h anti-CD3 priming of PBMC. Using that approach, we identified a
broad range of cell-type and disease-specific molecular differences in
the expression profiles compared to healthy human donors,
culminating in a modulation of cytokine and cell-cell communication
signatures towards anti-inflammatory pathways in SLE but not in pSS.

RESULTS
Transcriptional profiling of sorted cell populations reveals
cell-type specific gene expression changes in autoimmune
disease
We selected 25 SLE and 23 pSS patients along with 24 healthy
donors, according to pre-specified inclusion criteria and disease
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classification criteria23,24 (Table 1). In particular, we only selected
patients with established diagnosis that did not receive high-dose
corticosteroids at the time of the study (median dose 5mg/d).
Peripheral blood samples from each donor were sorted for CD4+
(Th cells) and CD8+ (CTL) T lymphocytes, CD16+ CD7+ cells (NK
cells), and CD19+ cells (B cells) (Supplementary Fig. 1), and were
subjected to RNA-sequencing (Fig. 1a, “steady-state”). A large part
of the blood samples was also analyzed after ex vivo incubation in
the presence or absence of T cell stimulation by anti-CD3 (aCD3)
for 18 h, resulting in a data set comprising 581 sequencing
samples in total (Fig. 1a, “stimulation”, and Supplementary Fig. 2a).
In pre-experiments, we determined 18 h to be the optimal time
point where the cells are activated, but do not proliferate yet (data
not shown). Since in autoimmune patients, cells are thought to be
pre-activated, we did not add co-stimulatory agonists (CD28) to
the culture but rather expected the presence of co-stimulation by
means of accompanying cell types. As expected, T cell stimulation
induced up-regulation of inflammatory genes and down-
regulation of anti-inflammatory genes in T cells, including
cytokines and related signaling pathways (SYK, LYN, CD40, LCK,
STAT1, AKT1), chemokine receptors and checkpoint molecules,
such as PDCD1, BTLA, LAG3, TIGIT, ICOS, ITGAX, and CTLA4 (Fig. 1b,
Supplementary Fig. 2b). Intriguingly, gene-expression changes

were not limited to CD3 positive T cells only but also found in B
and NK cells.
To derive a first overview regarding overall gene expression

patterns before and after T cell stimulation, we performed
principal component analysis (PCA) and correlation analysis (Fig.
1c, Supplementary Fig. 2c, d, Supplementary Table 1). Under
steady-state conditions, the rather subtle disease-specific differ-
ences (correlation coefficient r > 0.88 throughout, Supplementary
Fig. 2d) were largely masked by heterogeneity among individual
donors, indicated by low variability in the PCA (Fig. 1c,
Supplementary Fig. 2c). After T cell stimulation, sample-to-
sample differences were amplified in general (r < 0.6 in many
cases, Supplementary Fig. 2d), and notable differences between
donor groups became apparent in the PCA plot, for instance in the
case of B cells compared between healthy donor and SLE samples
(Fig. 1c). That pattern of an increase in both overall sample
dissimilarity and disease-specific differences after T cell stimula-
tion was also reflected on the level of individual immune-cell
related genes (Fig. 1b and Supplementary Fig. 2b). Notably, T cell
stimulation induced a systematic change in the transcriptome
equivalent to 55% of the total variability, with substantial effects
not only in T cells, but also in NK cells and B cells (Fig. 1c, first
principal component). That change in the gene-expression
program can largely be attributed to changes in gene modules

Table 1. Donor demographics and inclusion criteria.

Patient demographics pSS SLE Healthy
donors

Group size (n) 23 25 24

Age (y, mean ± SD) 50 ± 12 40 ± 13 34 ± 11

Female % (n) 96 (22) 92 (23) 83 (20)

Current disease activity
(mean ± SD)

ESSDAI 3.6 ± 3.5 SLEDAI 4.0 ± 3.3 n.a.

Inclusion criteria pSS SLE

1. 18–75 y female/male 18–65 y female/male

2. Established diagnosis of pSS as defined by consensus critera for the
classification of pSS according to the 2016 revised ACR/EULAR classification
criteria

Established diagnosis of SLE as
defined by the 1997 update of
the 1982 ACR Revised Criteria of
SLE

3. Positive anti-nuclear antibodies (ANA) > 1:160 and positive anti-Ro/SS-A Positive anti-nuclear antibodies
(ANA) > 1:160 and/or positive
anti-dsDNA antibodies

4. At least one of the following criteria: anti-La/SS-B, hypergammaglobulinemia >
15 g/L, increased levels of serum immune-globulin, free light chains, biopsy
proven, activity in at least one domain

History of SLE symptoms ≥ 6
months

5. Oral corticosteroids ≤ 7.5 mg with stable dose of prednisone or equivalent over
4 weeks

Oral corticosteroids ≤ 15mg of
prednisone or equivalent with
stable dose during the study

6. Hydroxychloroquine, chloroquine, quina-crine, methotrexate, leflunomide,
azathio-prine, mycophenolate or sulfasalazine doses table for at least 4 weeks
prior to screening

Hydroxychloroquine,
chloroquine, quinacrine,
methotrexate, leflunomide,
azathioprine, mycophenolate, or
sulfasalazine doses table for at
least 4 weeks prior to screening

Medication pSS SLE

w/o systemic therapy % (n) 39 (9) 12 (3)

Prednisolone % (n) 17 (4) 76 (19)

median dose (mg/d) [IQR] 5 [5;5.25] 5 [3.25;5]

Hydroxychloroquine % (n) 48 (11) 56 (14)

Mycophenolate mofetil % (n) — 24 (6)

Azathioprine % (n) — 32 (8)

Methotrexate % (n) — 16 (5)

Belimumab % (n) — 12 (3)
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(Fig. 1d) representing cell-cell communication, response to
stimulation, and signal transduction.
Despite the overall similarity of gene-expression patterns in

different donor groups especially at steady-state, analysis of
differentially expressed genes (DEG) revealed ~50 genes in the

healthy donor vs. pSS and ~100 genes in the healthy donor vs.
SLE, respectively, with significant expression differences (Fig. 1e,
Supplementary Table 2). After T cell stimulation, DEG analysis was
performed by first considering the difference in gene expression
between T cell stimulation and unstimulated control, and in a
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second step comparing the increase or decrease of that
expression difference between samples derived from healthy
donors and pSS or SLE donors. Here, we detected highly
significant DEG only in the healthy donor vs. SLE and only in
T cells and B cells ( ~ 50 DEG in B cells and ~100 DEG in each T cell
subset) (Fig. 1e, Supplementary Table 2). Hence, the analysis
results were far more focused compared to steady-state condi-
tions, again pointing to an increase in overall transcriptomic
dissimilarity. Those DEG in T and B cells contained several
important chemokines (CCL2, CCL3, CCL4, CXCL3), cytokines (LIF),
and cytokine receptors (IL13RA1, IL27RA). Interestingly, IL27RA
was detected as DEG in CTL after T cell stimulation, in line with
recent findings on IL-27 signaling in T cells being associated with
development of chronic inflammation in mice25. Remarkably, in
both steady-state and T-cell stimulation conditions, DEG between
healthy donors and patient-derived samples were cell-type
exclusive, with very few exceptions.
Overall, the number of DEGs identified for pSS was much lower

than for SLE. That points to pronounced molecular differences
between SLE and pSS, which generally are considered to be both
clinically and pathogenetically (type I interferon/B cell signatures)
interrelated.

Interferon-related genes show a strong SLE-specific response
to T-cell stimulation in B cells
To further characterize the observed cell-type specific differences
in gene-expression programs, we performed pathway over-
representation analysis (Fig. 1f). For this purpose, instead of
directly analyzing the DEG derived above, we implemented a
rank-based analysis protocol26,27 specifically tailored to account
for the skewed distributions that typically occur in sequencing
count data lacking a direct negative control28,29, such as our
steady-state data set. Here we applied in-sample centralization by
median and standard deviation to the steady-state data, and for
pathway analysis, we considered the top 50 up- and down-
regulated genes after ranking based on the false-discovery rate
(FDR) for each condition (cf. Methods).
Quite remarkably, at steady-state, all cell types showed an

increase in IFN-response gene activity for SLE patients, and CTL
and B cells showed such an increase also in pSS patients (Fig. 1f).
After T cell stimulation, a higher up-regulation of IFN-response
genes compared to healthy donors was only significant for B cells
in SLE patients (Fig. 1f). This observation suggests that T and NK
cells show a pronounced response to CD3 stimulation also in
healthy donors, but B cells retain a strong IFN response in the
disease group compared to healthy controls. An overall increase in
inflammatory genes as well as IFN-related genes upon stimulation
was also confirmed by functional annotation of individual samples
(Supplementary Fig. 2e). The most obvious differences in gene-
expression programs after T cell stimulation, as compared to
healthy donors, were Th cell associated down-regulation of several
pathways associated with immune responses in SLE patients and
an increase in activity of genes associated with cell cycle in
samples of pSS patients (Fig. 1f). Further, B cells showed a highly

significant up-regulation of a group of signaling pathway related
genes exclusively in pSS patients (Fig. 1f).
Taken together, functional annotation reveals a range of cell-

type and disease-specific traits, especially when comparing the
response of samples from patients and healthy controls upon T
cell stimulation.

Clustering analysis reveals fine-tuned regulation of immune-
related genes after T cell stimulation
Unsupervised clustering analysis (Fig. 2) allowed us to gain a
general overview over the two data sets, and confirmed the
picture of an increase in sample-to-sample dissimilarity in the T
cell stimulation protocol, where also a larger number of clusters
was identified. We were able to identify functional annotations for
most clusters (Supplementary Fig. 3), and the most obvious
expression differences occurred for immune-cell related clusters
between the sorted cell populations. For instance, cluster 3 was
annotated as activated NK cells by the marker genes IL6R, CCR4,
CCR6, BTLA, and indeed showed increased expression values in
the NK cell population at both steady-state and upon T cell
stimulation. Other clusters within the steady-state data indicated B
cell receptor (BCR) signaling (cluster 5: BLK, BTLA, CD22, CD19,
SYK, TLR), checkpoint molecules together with T cell activity
(cluster 7: CD28, CD40LG, CTLA4, LTA, TRAF1) and cytotoxicity
(cluster 8). After T cell stimulation, two clusters were detected with
functional annotation towards cytokines (cluster 8: IL6, IL7, IL2,
IL15, IFNG, and cluster 9: IL12, IL15, IRF6), with cluster 8 being
active in all cell types except B cells and cluster 9 in all cells except
NK cells. Interestingly, cluster 10 showed specific up-regulation in
B cells, although it was annotated towards T-cell related gene sets,
such as CD8+ TCR, T-cytotoxic, Th 1, Th17 differentiation (Fig. 2).
Other important groups of genes, such as cluster 5, 6, 7,
containing genes like IL10, ICOS, LCK, respectively, showed
homogeneous up- or down-regulation after T cell stimulation in
all analyzed cell types.
Overall, unsupervised clustering analysis confirmed that T cell

stimulation via aCD3 not only resulted in a fine-tuned re-
modulation of the immune-related transcriptional program across
T cells, but also had a strong impact on NK cells and B cells.

Interferon-related gene signatures of SLE and pSS patients
depend on the activity of the autoimmune disease
The dysregulated activation of IFN and IFN-regulated pathways is
well-known in SLE and pSS and represents a common target in
clinical studies30,31. However, cell-type specific up-regulation of
these pathways upon stimulation was not delineated so far. Here,
we found that at steady-state, a strong IFN-driven gene signature
was present across all cell types in SLE donors, but it was present
only across NK cells and B cells in pSS patients. After T cell
stimulation, that IFN-driven gene signature was only observed in B
cells derived from SLE donors, indicating that only those cells
showed a strong additional up-regulation of IFN-related genes
compared to healthy donors (Fig. 1f).

Fig. 1 Transcriptional profiling of cell-type specific gene signatures in SLE and primary Sjögren’s patients versus healthy controls.
a Overview of the study. Flow-sorted individual cell samples were subjected to RNA-sequencing at steady-state or after 18 h of cell culturing
with/out anti-CD3 stimulation. In total, we obtained RNA-sequencing data from 581 samples, which were derived from 72 donors of three
donor groups (healthy donors, pSS, SLE) and four cell types (cf. Supplementary Fig. 1a). b Expression heatmap of selected signature genes of
autoimmune disease across all donor groups and cell types. Shown are normalized expression values (steady-state) or relative expression
values as compared to control (stimulated), which were averaged across donors for each condition. c, d Principal component analysis.
c Symbols represent different donor groups and colors different cell types, as indicated, d overlap of PC1 genes with indicated gene ontology
terms, see Supplementary Table 1 for details. e Venn diagrams of differentially expressed genes (DEG) of indicated donor group comparisons.
f Pathway over-representation analysis. Instead of the DEG shown in panel D, the top 50 up- and down-regulated genes by false-discovery rate
(Supplementary Table 1) were used for the analysis in each condition. P-values were calculated using a hypergemetric test and the full list of
enriched pathways is provided in Supplementary Table 1.
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To explore the dynamics of IFN-related gene expression
signatures in relation to the underlying disease activity in more
detail, we used the disease activity indices EULAR Sjögren’s
syndrome disease activity index (ESSDAI)32 and Systemic lupus
erythematosus disease activity index (SLEDAI)33, respectively.
Disease stages were classified as either “Low” (ESSDAI or SLEDAI
of 1–3), “Moderate” (4–7) or “High” (8 and higher) (Supplementary
Fig. 4a). In contrast to the CD3-stimulated condition (Supplemen-
tary Fig. 4b), we found that in steady-state conditions, both type I
and type II IFN-response genes were strongly and significantly
correlated with disease activity indices (Fig. 3a, b). In particular,
type I IFN-response genes were among the top 5 pathways
regarding association to disease activity (Supplementary Table 1).
That strong disease-activity association of IFN-related genes was
also present for instance in BCR genes, but not in other immune-
related pathways including NK cell genes and cytokine receptor
activity (Fig. 3a). Interestingly, the intensity of the IFN response
consistently increased with disease activity among pSS patients,
but had a maximum at “Low” and “Moderate” disease activity of
SLE. Such a “bell-shaped response curve” has previously been
noted for other systems, such as CD22 treatment with epratuzu-
mab in SLE34,35. That pattern of either consistent increase with
disease activity or of a maximum at “Low” and “Moderate” was
also reflected in the level of individual IFN-related genes (Fig. 3c
and Supplementary Fig. 4c), often in a cell-type specific manner.
Next, to further explore the implications of the association of

IFN-related genes with disease activity, we sought to identify
genes that show co-expression with IFN-related genes across all
analyzed donors in the respective patient cohorts. For this
purpose, we selected genes showing high similarity to IFN-
related genes across all samples per cell type and disease
condition, following an approach previously described for natural
product screening36. Pathway over-representation analysis of the
resulting gene set indicated that gene signatures revealing a
change in metabolic and immunologic phenotype are strongly
associated with the observed IFN response across pSS and SLE
disease activity (Fig. 3d and Supplementary Fig. 4d). The strongest

association with disease activity was observed for B cells in highly
active pSS, where IFN alpha expression was associated with a
range of the analyzed cell-signaling and immune-response
pathways (Fig. 3d). That association was detected across all
donors over a range of highly relevant pathway annotations,
indicating that highly active pSS patients have an immune
response that is strongly associated with upregulation of IFN
alpha. After T-cell stimulation, we found strong association of IFN
expression in particular with the NK cell response in pSS patients,
across immune response and cell signaling, but also apoptosis
related pathways (Fig. 3e).
Overall, analysis of IFN-related genes revealed pronounced cell-

type and disease-specific traits already at steady-state condition.
We detected a strong association of IFN-related genes with
disease activity, which was connected to up-regulation of cell-
signaling and immune-response pathways especially in B cells in
pSS. Conversely, SLE patients showed a maximum in IFN-related
genes at lupus activity considered Low or Moderate, and gene
expression in B cells did not show strong correlation with IFN-
related genes.

Cell-cell communication analysis after T cell stimulation shows
distinct interaction signals
Cell-cell communication pathways are known to have a pivotal
role in autoimmune disease. Accordingly, we found evidence for
differential regulation of cell-cell communication pathways in
over-representation analysis of differential gene regulation (Fig. 1f)
as well as disease-stage association (Fig. 3d). Moreover, we found
that genes coding for cytokines and cytokine receptors were
significantly enriched within the genes that were up- or down-
regulated in disease compared to healthy donors after T cell
stimulation, across all donors and cell types investigated (Fig. 4a
and Supplementary Fig. 5a).
To explore disease-associated changes in cell-cell communica-

tion pathways more systematically, we employed two comple-
mentary approaches, the CellphoneDB database and the CytoSig
package37–39 (Fig. 4b). CellphoneDB is a curated list of known cell-

Fig. 2 Clustering analysis reveals fine-tuned regulation of immune-related genes after T cell stimulation. Shown are gene-expression
heatmaps sorted by gene similarity across indicated conditions. The left-hand side of each heatmap lists cluster numbers and annotations (see
Supplementary Fig. 3 and Supplementary Table 1 for details), and the right-hand side labels highly relevant individual genes.
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cell communication pathways, which we employed to identify
potentially active signaling pathways by co-regulation in the
analyzed patient cohorts after T cell stimulation. For instance,
considering Th cells as sender cells and B cells as receiver cells, we
identified the CCL4 to CNR2 receptor pathway in 5 out of 13
healthy donors and 8 out of 9 SLE donors, which is a significant
increase in occurrence (Fig. 4c). Overall, we identified 33 up-
regulated and 2 down-regulated cell-cell communication path-
ways comparing healthy donor to SLE patient samples, and 10 up-
regulated and 14 down-regulated pathways in pSS patients (Fig.
4d and Supplementary Fig. 5b). Notably, activation-induced IL-6
signaling was down-regulated in SLE patients especially in CTL
and B cells, in line with a previous report on TLR9 activation of SLE

B cells40. Further, pSS patients showed a broad increase in IL-15
and SCF_KIT signaling (Fig. 4d). Quite interestingly, SLE patients
up-regulated the rather anti-inflammatory BMP pathways, while
pSS donors showed widespread remodeling of chemokine
signaling (Fig. 4d, Supplementary Fig. 5b).
The CytoSig tool quantifies the increase or decrease in

expression of cytokine-induced genes in potential target cells of
cell-cell communication (Fig. 4b). Apart from identification of
target cells, this method also serves to detect cytokine signaling
activity with higher sensitivity compared to direct analysis of
cytokine transcripts in sender cells, since cytokine transcript levels
are typically low and expression of cytokine genes does often not
fully reflect cytokine release activity. Not surprisingly, the CytoSig

Fig. 3 Interferon signatures show strong correlation with clinical activity among SLE and Sjögren’s patients, respectively. a Regulatory
gene-expression dynamics alongside with clinical activity. Shown are regulatory levels of the indicated gene-sets in terms of the cumulative
distance of the KS-test. Disease activity was classified based on the patient disease index scores ESSDAI for pSS and SLEDAI for SLE,
respectively (see Table 1, Supplementary Fig. 4a and text for details). b Detailed analysis and statistical comparison of gene-expression
dynamics for Interferon type I and II responses. c Driver genes of the type I interferon response dynamics. Genes were selected from the top
10% of sensitivity between activity levels. Type II interferon genes are shown in Supplementary Fig. 4c. d, e Co-expression analysis with
respect to interferon-related genes for indicated conditions in steady-state d and after stimulation e, see Supplementary Table 1 for details.
Co-expressed genes were calculated by permutation tests across all samples in the respective patient cohorts, and were subject to pathway-
overrepresentation analyses. After stimulation, samples were analyzed without disease-activity resolution. For color code of cell type
annotation, see the legend in Fig. 1b.
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analysis revealed moderate activity of many cytokine signals at
steady-state (Fig. 4e and Supplementary Fig. 5c). Nevertheless, we
found significant differences between pSS or SLE patients and
healthy donors for a range of inflammatory cytokines including
interferons and TNF-alpha (Fig. 4f). Accordingly, the type II
cytokine IL-4 and cytokines of the anti-inflammatory TGF-beta
and BMP family showed decreased activity in disease, while the

pleiotropic cytokine IL-6 showed increased activity in Th cells and
decreased activity in NK cells, for both pSS and SLE patients as
compared to healthy donors.
As expected, upon T cell stimulation we found strong increase

in the activity of gene signatures related to inflammatory
cytokines, including IFNs, IL-2, and IL-15, while we found down-
regulation of genes related to anti-inflammatory cytokines, such as

Fig. 4 Cell-cell communication analysis reveals widespread re-modulation of cytokine and chemokine activity in SLE and primary
Sjögren’s Syndrome. a Enrichment of cell-cell communication molecules in up- and downregulated genes after CD3 stimulation. Shown is
the number and relative abundance (gray-scales) of detected genes as indicated, p-values indicate significant enrichment of cell-cell
communication-related genes (Fisher’s exact test) among expressed genes (*p < 0.05, **p < 0.01, ***p < 0.001). b Workflow of cell-cell
communication analysis. In CellPhoneDB analysis, we considered all interactions in the CellPhoneDB database for which ligand expression of a
potential sender cells was in the top 10% of up-regulated genes after TCR stimulation, and receptors of a potential receiver cell were detected
as expressed genes, for all donors and cell types. CytoSig analysis was carried out directly on the expression values of TCR stimulated relative
to control samples (Fig. 1a), for all donors and cell types. c, d CellPhoneDB analysis. c Selection of ligand-receptor interactions between CTL
and B cells in healthy donors and SLE b, shown is the fraction of donors where a potential interaction is detected for this condition. Asterisks
correspond to up- and down-regulated ligand-receptor interaction between SLE and healthy donors fully depicted in d. d Comparison of
healthy donors with SLE and pSS patients, respectively for selected cell-cell interaction pathways in the CellPhoneDB analysis. See
Supplementary Fig. 5b for full data analysis. FDR-corrected p-values were calculated using Fisher’s exact test. e–h CytoSig analysis.
e, g Predicted cytokine activity according to CytoSig for selected gene sets in CTL and B cells at steady-state and after stimulation, see
Supplementary Fig. 5c, d for full analysis. For color code of cell type annotation, see legend in Fig. 1b. f, h Differences in cytokine activity
between disease and control samples (steady state: Wilcoxon- test, aCD3-stimulated: T-test), see FDR legend in d.
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TGF-beta (Fig. 4g and Supplementary Fig. 5d). Similar to the
CellphoneDB approach, we next analyzed differences in the
response to T cell stimulation between healthy donors and
patients by comparing the cytokine activity values across samples
from all donors (Fig. 4h). Quite interestingly, in contrast to IFN-
related genes, where the expression signature already found in
our more general over-representation analysis was confirmed (Fig.
1f), many other cytokine-related gene signatures were down-
regulated in disease (Fig. 4h). In line with that, several anti-
inflammatory TGF-beta related pathways showed up-regulation
especially in SLE donors.
Overall, we found that T cell stimulation has profound effects on

the transcriptome not only in T cells, but also in NK cells and B cell
(Fig. 5a) (Figs. 1b, c and 2). Moreover, our systematic analysis of
cell-cell communication pathways revealed substantial re-
modulation of gene regulation and cell-cell communication within
the two autoimmune diseases in a cell-type and disease-specific
manner (Fig. 5b). While up-regulation of IFN-related genes
primarily in B cells of SLE patients was confirmed, we also
detected down-regulation of a range of important pro-
inflammatory cytokine pathways and up-regulation of anti-
inflammatory pathways in disease.

DISCUSSION
This study has undertaken a functional transcriptional analysis of
isolated immune-cell subsets in SLE and pSS compared to
controls, both at steady-state and upon T-cell stimulation via
aCD3, which served as a surrogate of a T cell specific immune
activation. In this study, we focused on B cells, NK cells, and CD4+
and CD8+ T cells, although changes in abundance and gene-
expression signatures in SLE and pSS patients have also been
reported for other populations such as plasma cells and
monocytes15.
At steady-state, all 4 analyzed lymphocyte subsets from SLE

patients displayed a pronounced IFN-response gene activity,
which was also found in CTL and B cells in pSS, in line with
previous bulk PBMC analyses13. The high degree of transcriptional
similarity between donor groups in all four cell types exacerbated
direct conclusions regarding other functional transcriptomic
differences in disease, yet further analysis of IFN-response genes
revealed a series of partially unexpected results. First, by detailed
assessment of expression similarity with IFN-response genes, we
detected a range of significant functional differences in disease,
most notably regarding cell activation and immune response for B
cells in pSS at high disease activity. Second, by tracking the
cumulative distance across samples, we found a strong and

Fig. 5 Summary of cell type-specific modulations in pSS and SLE patients after T cell stimulation. a Graphical synopsis of the experimental
design. After T-cell stimulation via aCD3, disease-specific characteristics became apparent, especially within cell-cell communication patterns
between healthy donors (HD), pSS, and SLE patients. b An overview of altered, cell type-specific processes after aCD3 stimulation. (top)
biological processes, (bottom) and differentially regulated cyto- and chemokines.
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significant correlation of IFN-related genes with disease activity.
For pSS patients, a positive correlation with disease activity as
assessed by the ESSDAI was detected, whereas in SLE patients, IFN
signatures were increased at low and moderate disease activity
but dropped again at high disease activity, for all cell types except
NK cells. That finding is somewhat paradoxical in the light of the
otherwise stronger IFN-association observed for SLE compared to
pSS patients, and can potentially be attributed to exhaustion or
chronification mechanisms occurring in high-stage SLE immune
cells41,42. Interaction between type I IFN and B cell parameters in
SLE patients were previously observed in response to Jak blockade
(baricitinib), where decrease of anti-dsDNA antibodies was
associated with reduced IFN gene signatures43. Moreover,
lymphocytes from SLE patients were described to carry the most
pronounced status of anergy compared to pSS as well as
rheumatoid arthritis patients42, which may further contribute to
the observed differences between SLE and pSS.
Upon T cell stimulation, both healthy donors and pSS as well as

SLE patients up-regulated IFN-dependent genes. Intriguingly,
activated T cells provided signals for B cells without the presence
of any exogenous antigenic stimuli and co-stimulation. That
finding is in line with previous work suggesting antigen-
independent activation of B cells by activated T cells as a
potential mechanism for the development and maintenance of
autoreactive germinal centers and extrafollicular activation,
ultimately leading to and maintaining chronic autoimmune
diseases44.
Importantly, we found that the T cell stimulation protocol

emphasized transcriptomic differences between both patient
groups and healthy controls, in many cases unmasking expression
signatures that could not be detected in the steady-state
condition. In the interpretation of these results, it is important to
consider the methodological differences: in contrast to the steady-
state situation, the stimulation protocol allowed us to assess gene
expression in terms of relative expression values compared to PBS
controls from the same donors. That work-flow contributed to
avoiding the common problem of skewed distributions of
expression values in directly processed transcriptomic sequencing
data28,29, and therefore lead to an increase in statistical power in
subsequent analysis steps. Hence, the observed increase in
dissimilarity between samples after applying the T cell stimulation
protocol goes along with a higher sensitivity for detecting such
differences. Here, the better resolution obtained from the T cell
stimulation protocol became apparent already by PCA on the
global transcriptomic scale, and gave rise to ~100 highly
significant DEG for Th cells and CTL and ~50 DEG for B cells.
Further, T cell stimulation revealed a number of functional
transcriptomic differences, in particular increased DNA stress in
Th cells and decreased signaling activity in B cells in pSS, and
decreases immune response activity in Th cells in SLE.
Our analysis of cell-cell communication genes further empha-

sized the finding that cells from SLE and pSS patients have many
common properties at baseline, whereas T cell stimulation
revealed disease-specific differences. CytoSig analysis at steady-
state revealed strong up-regulation of signaling through IFNs and
other inflammatory cytokines, as well as down-regulation of IL-4
and anti-inflammatory TGF-beta and BMP pathways, across both
SLE and pSS for most of the analyzed conditions. CellphoneDB
analysis after T cell stimulation revealed for instance CCL4 to CNR2
receptor pathway interaction exclusively in SLE. This pathway was
found in 8 out of 9 SLE donors, and has so far not been delineated
in either disease. Further, anti-inflammatory BMP pathways were
elevated primarily in SLE, consistent with earlier studies45, and
chemokine signals such as CXCL9-CXCR3 were down-regulated
primarily in pSS. CytoSig analysis after T cell stimulation confirmed
that picture, and in addition revealed selective down-regulation of
a number of cytokines including IL-12, IL-22, IL-36 in only one of
the diseases and primarily for specific cell types. Hence, a distinct

pattern of up- and downregulated pathways for SLE and pSS
patients further substantiated the notion of distinct pathogenic
drivers. Further, our data is consistent with previous reports
indicating reduced cytokine levels in SLE40, which may represent a
part of the immune abnormalities of the entities studied here.
Single-cell sequencing technologies have the benefit of

unbiased cell-type classification and therefore offer the opportu-
nity to discover disease-specific cell types or states, but that
comes at the cost of substantially lower sequencing depth
compared to bulk transcriptomic sequencing. Indeed, previously
conducted single-cell studies of pSS and SLE patients have
revealed high levels of heterogeneity as well as differences in the
abundance of immune cells between patient groups, but could
detect only a limited range of expression differences. Moreover, it
proved challenging to unambiguously separate lymphocyte
subpopulations especially for T cells15,16. Transcriptomic analysis
of sorted immune-cell populations is a complementary approach
with a high potential for discovery of transcriptomic differences
within specific cell types21,22,46, yet at the cost of limiting the
analysis to a set of predefined cell types. Our analysis suggests
that in addition to deep sequencing using an appropriate sorting
strategy, a perturbation protocol such as the here applied T cell
stimulation is instrumental to gain molecular insight into
heterogeneous diseases such as SLE and pSS.
Taken together, our data highlight individual variations of

transcriptional activity between cell types as well as diseases. At
steady-state, the different cell types are characterized by
autoimmune response, signaling, and activation, possibly repre-
senting the underlying disease-related tonicity. After T cell
stimulation, these regulatory signatures revealed footprints for
early cell-type differentiation and an autoimmune-disease related
response pattern, suggesting subtle differences in the T helper cell
response between SLE and pSS. Therefore, the gene-expression
context and its functional impact underlying SLE and pSS needs to
be delineated in detail in future research, as an important step
towards improved understanding of the pathogenic function of
individual immune cells, and to improve clinical applications.

METHODS
All methods were carried out in accordance with relevant
guidelines and regulations.

Study participants
Lithium Heparin (LiHep)-anticoagulated blood was withdrawn
from a total of 24 healthy donors, 25 SLE patients and 23 pSS
patients. All patients fulfilled the disease classification criteria23,24.
We assessed the disease activity using SLE disease activity 2000
[SLEDAI-2K] for SLE33 and EULAR Sjögren’s syndrome disease
activity index [ESSDAI] for pSS32. Low disease activity was applied
to ESSDAI or SLEDAI of 1–3 following the definition of low lupus
disease activity score47. High disease activity was defined as
ESSDAI or SLEDAI > 8, as often used to classify active patients in
clinical studies. Patients with ESSDAI or SLEDAI 4–8 were
considered moderate active. The study was approved by the local
ethics committee of Charité Universitätsmedizin Berlin in accor-
dance with the declaration of Helsinki and written informed
consent was obtained from all patients and controls. Information
on patient demographics and medication as well as inclusion
criteria are collected in Table 1.

Cell culture
PBMCs were isolated from LiHep-anticoagulated blood: blood
from two 9ml LiHep tubes were combined and PBS (Thermo
Fisher Scientific) was added up to a volume of 35 ml. This mixture
was layered over 15ml Ficoll Paque Plus (GE Healthcare) and
subjected to density gradient centrifugation (20 min at 600 × g,
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room temperature, without brake)41. The collected mononuclear
cells were washed twice with PBS and counted for further
experiments. After isolation of PBMCs, cells were rested for 30 min
at 37 °C in ImmunoCult-XF T cell expansion medium (Stemcell).
Wells of a 96-well plate were coated with 0.1 µg/ml anti-CD3
(OKT3, eBioscience) for 2 h at 37 °C or PBS as control, washed two
times with PBS, blocked with PBS/1% BSA for 30 min and washed
two times with PBS. 1 × 106 PBMCs were seeded per well and
incubated at 37 °C and 5% CO2 in a humidified incubator for 18 h.
Cell viability after stimulation was above 95%.

Fluorescence-activated cell sorting
For baseline sorting, 3–5 × 106 PBMCs were used. For cell sorting
after 18 h incubation, cells from wells with same conditions were
pooled and stained. The following anti-human antibodies (clone,
manufacturer) have been used: Brilliant Blue (BB)515-conjugated
anti-CD3 (UCHT1, BD Biosciences), Phycoerithrin (PE)/Dazzle594-
conjugated anti-CD4 (SK3, Biolegend), Brilliant Violet (BV) 510-
conjugated anti-CD7 (M-T701, BD Biosciences), Peridinin-
chlorophyll-protein complex (PerCp)-conjugated anti-CD8 (SK1,
Biolegend), BV421-conjugated anti-CD14 (M5E2, Biolegend),
Allophycocyanin-Fire750 (APC/Fire750)-conjugated anti-CD16
(3G8, Biolegend), PE-Cyanine 7 (PE-Cy7)-conjugated anti-CD19
(SJ25C1, BD Biosciences), APC-conjugated anti-CD25 (2A3, BD
Biosciences), PE-conjugated anti-CD127 (HIL-7R-M21, BD Bios-
ciences). 4,6-Diamidine-2-Phenylindole (DAPI) (Molecular Probes)
was added to stained cells to identify dead cells prior to
acquisition. Cells were subsequently sorted with a BD FACS Aria
I or II (BD Biosciences). A detailed gating strategy for sorting can
be found in Supplementary Fig. 1. Briefly, lymphocytes and single
cells were identified by their scatter properties. For baseline
sorting, CD127+ CD25− conventional T cells of both CD4+ and
CD8+ T cells were sorted in addition to CD19+ B cells and
CD16+ CD7+ NK cells. After 18 h, total CD4+ and CD8+ T cells,
CD19+ B cells and CD16+ CD7+ NK cells were collected. Cells
were sorted into Arcturus PicoPure Extraction Buffer (Thermo
Fisher Scientific) and stored at −80 °C until processing for
transcriptome analyses.

RNA sequencing
The PicoPure RNA Kit (Thermo Fisher) was used for the purification
of total RNA from cells according to the manufacturer’s protocol.
Library generation has been completed using the SMARTer cDNA
Synthesis and Nextera XT chemistry. With 500 pg total RNA, cDNA
pools were prepared using the SMART-Seq v4 Kit (Clontech
Laboratories) to generate full-length cDNA from total RNA. The
resulting cDNA was then amplified via long distance PCR of 10
cycles. Sequencing libraries are then created using the Nextera XT
method (Illumina) with 150 pg of cDNA as input. Cluster
generation and sequencing of libraries will utilize Illumina HiSeq
V4 chemistry and instrumentation.

Data processing procedures
The BCL (Base calling) files were converted to FASTQ (raw
sequence reads) files using the bcl2fastq v2.17.1.14 tool provided
by Illumina (https://support.illumina.com/downloads.html). In
order to estimate gene-expression levels, paired-end RNA-
sequence reads were mapped to the reference of the Homo
sapiens genome assembly GRCh38 (hg38) with the STAR aligner
version 2.5.2a using default mapping parameters48. Aligned reads
were subsequently quality checked with FastQC and MultiQC
version 1.749 tools. Then the numbers of mapped reads for all
Reference sequence transcript variants of the genome were
combined into a single value by the SAMTOOLS package50. Raw
read counts were normalized to the FPKM (Fragments Per Kilobase
Million) standard. Within each batch, bad quality samples were

excluded based on three measures. While the number of uniquely
mapped reads was not allowed to be below 50%, weak or wrong
cell type signature enrichments inferred by the BioQC package51

were excluded. Lastly, outliers detected by principal component
analysis (PCA) were removed from downstream analysis. Solely
PCA outliers were kept, if no evidence for a technical issue was
found. Further, we restricted the analysis to protein-coding genes
with total read-counts across samples within the 45–99.5
percentile range, in order to include 19 candidate genomic
markers. The expression profile of aCD3-stimulation was calcu-
lated as relative gene expression, that is FPKM values of stimulated
samples were normalized by FPKM values of the PBS control per
each sample independently. Steady-state samples were processed
using a slightly different method, since the steady-state samples
were not derived from negative control samples, and therefore
the resulting gene-expression distributions are subject to skew-
ness28,29. Thus, we applied in-sample centralization by median and
standard deviation from normalized FPKM counts for reducing
bias effects. Overall, gene-expression profiles consist of 10,835
genes across samples both from the steady-state and the T cell
stimulation protocol.

Pathway annotation
Differentially expressed genes in the steady-state data and after
aCD3 stimulation were identified using standard statistical
procedures (see section Statistics below). A pathway over-
representation analysis of the C2 MSigDB entries was performed
on the top 50 as well as the bottom 50 genes according to false-
discovery rate, rather than directly on the DEGs. In the first step,
the gene-sets were reduced to the genes expressed in our data
set. To measure the significance of a pathway annotation, we
applied the hypergeometric test, and we manually set the p-value
to 1 if the input gene set contained less than three or more than
300 entries, to focus on biologically meaningful results and
thereby enhance statistical power.

Co-functional analysis
Following the well-known gene-set enrichment analysis (GSEA)
protocol52, we considered the C2 MSigDB gene-sets reduced to
genes expressed in our data, and removed gene-sets containing
fewer than three and more than 500 entries. Again following the
GSEA work-flow, similarity was then quantified using the
cumulative distance with respect to gene-sets, that is the maximal
difference between the cumulative distribution functions of the
gene-set of interest and of the relevant control group. That
measure is also often used in the context of the Kolmogorov-
Smirnoff (KS) test. To systematically analyze genes showing a co-
functional behavior towards IFN responses as well as immune
related gene-sets, we applied guilt-by-association (GBA)53,54 to the
similarity between gene-sets. The GBA approach is common for
dissecting genomic associations such as protein interaction and
predicting unknown functions by expression profile. Here, we first
computed the Euclidean distance of gene-expression values of
selected IFN response gene-sets (MSigDB C2) to all other genes for
all samples included. Second, to define a group of genes
expressing similar IFN responses, a random permutation test
(n= 10,000, FDR adjusted) was performed to detect genes that
show a significantly lower distance to a particular IFN response
gene, for a particular experimental condition (e.g., CD4+ Th cells
in SLE) as compared to the full set of genes across all conditions.
Finally, the union of detected genes along the selected set of IFN
response genes, for each condition, was taken as input for
pathway over-representation analysis (see above).
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Cluster annotation
We aimed to identify gene-modules by using a k-means clustering
approach. After unsupervised clustering, we heuristically selected
clusters containing less than 500 genes to ensure the statistical
viability of the pathway annotation. Based on the expression
patterns of clinically relevant markers, we manually annotated the
gene clusters. The used marker genes are annotated in
Supplementary Fig. 3. See Supplementary Table 1 for detailed
results of unsupervised clustering.

Cell-cell communication analysis
In order to dissect communication patterns between different cell
types after aCD3 stimulation, two different approaches were used.
For the first approach, we used the curated list of ligand-receptor
interactions (Interaction Input) collected in the CellPhoneDB
database38. After sorting the columns for ligands and receptors,
respectively, we extracted CC-signals per donor. Here solely donor
samples were considered where all sorted bulk-data sets passed
the QC step. Generally, all cell types were allowed as receivers,
whereby only T cells (CD4 and CD8) were included as sender cells.
Using the CellPhoneDB database, we focused on the ligands
which were expressed within the top 10% of the genes based on
the distribution of the steady-state normalized transcription data.
On the receptor site, only expressed genes were included. After
collecting all the possible interaction signals across all sender-
receiver pairs, statistically significant differences between disease
(SLE and pSS) and healthy donors were calculated using a Fischer’s
Exact test per detected ligand-receptor pair. To allow for a
functional assignment of the different CC-signals, we grouped the
results based on the following order: Cytokines, TGF and related
entries, TNF and related entries, chemokines, growth factor, and
others. In a second approach we employed the CytoSig tool39 to
predict cytokine target activity after aCD3 stimulation. Using the
steady-state normalized expression data as input, we extracted
the Z-score activity from the CytoSig online tool. In order to also
state significant differences between disease states and healthy
donors across target cell types, t-test statistics per cytokine were
calculated. Due to the distribution of Z-score values, a Wilcoxon
test was calculated for the steady state data. Similar to the
previous approach, the entries were ordered according to:
interferons, cytokines, TGF and related entries, TNF and related
entries, chemokines, growth factor, and others.

Software and biotypes
R (Version 4.1.3) was used for all statistical analyses, mainly relying
on packages such as: Tidyverse, Plyr, Pheatmap, RColorBrewer,
VennDiagram, org.Hs.eg.db, EnsDb.Hsapiens.v86, iGraph, Biocon-
ductor, ggplot2. All gene symbols were updated by the
org.Hs.eg.db Version 3.14.0 and the Biotypes were collected from
the EnsDb.Hsapiens.v86 Version 2.99.0. Key matching variable is
the ENTREZID.

Statistical analysis
Functional enrichments within gene sets were calculated using a
hypergeometric test, whereby the regulatory score was calculated
using a one-side Kolmogorov–Smirnov. Differentially expressed
genes as well as different cytokine activities were inferred using a
Wilcoxon test. The obtained p-values were adjusted for multiple
testing using the Benjamini-Hochberg method. If not indicated
otherwise, all analyses were conducted at the 10% FDR level.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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