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Data-driven structural analysis of small cell lung cancer
transcription factor network suggests potential subtype
regulators and transition pathways
Mustafa Ozen 1,2 and Carlos F. Lopez 1,2✉

Small cell lung cancer (SCLC) is an aggressive disease and challenging to treat due to its mixture of transcriptional subtypes and
subtype transitions. Transcription factor (TF) networks have been the focus of studies to identify SCLC subtype regulators via
systems approaches. Yet, their structures, which can provide clues on subtype drivers and transitions, are barely investigated. Here,
we analyze the structure of an SCLC TF network by using graph theory concepts and identify its structurally important components
responsible for complex signal processing, called hubs. We show that the hubs of the network are regulators of different SCLC
subtypes by analyzing first the unbiased network structure and then integrating RNA-seq data as weights assigned to each
interaction. Data-driven analysis emphasizes MYC as a hub, consistent with recent reports. Furthermore, we hypothesize that the
pathways connecting functionally distinct hubs may control subtype transitions and test this hypothesis via network simulations on
a candidate pathway and observe subtype transition. Overall, structural analyses of complex networks can identify their functionally
important components and pathways driving the network dynamics. Such analyses can be an initial step for generating hypotheses
and can guide the discovery of target pathways whose perturbation may change the network dynamics phenotypically.
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INTRODUCTION
Throughout their evolution, cells differentiate and specialize into
different subtypes, that are often controlled by underlying
molecular-level mechanisms1–3. This process is generally pictured
by the famous metaphor that is a ball rolling down a hill, called
the Waddington Landscape4. Analogous to a ball rolling down a
hill, which may change its direction by the effect of obstacles in its
way, lose its kinetic energy, slow down, and eventually reside at a
stable point, cells may change their trajectories and differentiate
to different subtypes due to some regulatory or evolutional
triggers while they are maturing. Similarly, due to abnormalities,
stochasticity, or other unknown reasons, they may diverge from
their trajectories and become cancerous cells5. Moreover,
cancerous cells may also evolve and differentiate into other
subtypes6–8. Therefore, developing effective treatments for cancer
has been a challenge due to heterogeneous cell subpopulations
that appear within a tumor. Genetic or non-genetic mechanisms
can drive the cancerous cell subpopulations via plasticity, drug-
induced selection, or state transitions between the subtypes and
have them escape the treatment or recur with a resistance to the
treatment9–11, which is the case in multiple cancer types such as
breast cancer12,13, melanoma14, and small cell lung cancer
(SCLC)15–20.
SCLC is an extremely aggressive disease with a low survival

rate21–25 (7% 5-year survival as of 202226). Although it was
characterized as molecularly homogeneous due to loss of TP53
and RB1, and neuroendocrine/epithelial differentiation27,28, SCLC
was shown to be heterogeneous29–37 by the identification of its
mixtures of transcriptional subtypes such as neuroendocrine (NE)
stem-cell-like subtype centered on the expression of the
transcription factors ASCL1 and NEUROD135 and non-
neuroendocrine (NON-NE) subtype centered on the expression of

the transcription factor YAP136. Overall, the SCLC subtypes have
been classified into four classes SCLC-A (also labeled as NE), SCLC-
N (also labeled as NEv1), SCLC-Y (also labeled as NON-NE), and
SCLC-P defined by the expression of the transcription factors
ASCL1 (A), NEUROD1 (N), YAP1(Y), and POU2F3 (P), respec-
tively29–37. Recently, the fifth subtype has also been proposed
named SCLC-A2 (also labeled as NEv2) which is driven by ASCL1
but distinct from the SCLC-A neuroendocrine subtype38. At the
early stages of the disease, the cancerous cell population contains
the NE type cells, and then over time the population begins to
include the NON-NE subtype that is more treatment-
resistant34,39,40, indicating that subtype transition is happening.
In addition to various subtypes with different levels of resistance
to treatment, such transitions between the subtypes further
complicate the treatment of the disease. Therefore, understanding
molecular heterogeneity in SCLC is essential for developing more
precise, tailored treatments to cure the pathology.
Transcription factor (TF) networks have been the focus of the

studies to understand the mechanism of the disease and to
identify different SCLC subtypes as they are associated with the
overexpression of different transcription factors30,34,37,38,41. These
networks have been mechanistically analyzed at the systems level
which led to the identification of regulators and destabilizers of
different subtypes30,34,38, and have contributed to our under-
standing of the underlying gene regulatory system. However, the
structures of these networks were barely studied about a decade
ago42. It has been shown in many studies that the structure of a
network can be as informative as its dynamical features and their
analysis may help to identify key components associated with
fundamental functional behaviors43–45. Specifically, hubs (Box 1) of
the networks are shown to have key functional properties46–51.
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In this study, we analyze the topology of SCLC TF network
(Fig. 1) provided in34,38 and has been key in the identification of
different SCLC subtypes. It comprises literature-based connections
that are verified from ChEA, a database of ChIP-seq-derived
interactions52. Overall, the network consists of 35 TFs connected
through 239 activatory and inhibitory interactions (red and green
arrows in Fig. 1, respectively). Combinational ON–OFF states of the
TFs in this network have been shown to drive cells toward
different subtypes34. Here, one of our goals is to identify the hubs
of the SCLC TF network, which are the special nodes that
interconnect several key pathways and play an important role in
collecting, processing, and distributing key signals throughout the
signaling mechanism. We hypothesize that the hubs might be
important for the overall network dynamics and perhaps may help
to identify specific TFs that regulate SCLC subtypes. Furthermore,
although the earlier studies elucidate regulators of different SCLC
subtypes, they lack mechanisms of subtype transitions whose
understanding is critical to controlling disease progression. We
also hypothesize that the pathways connecting the functionally
distinct hubs may have roles in the subtype transitions.
To identify the hubs of the SCLC TF network, we implement a

graph theory concept called Dense Spanning Tree (DST, see
Box 1), which can be found by solving an optimization problem
(Methods Section Dense Spanning Trees of the unbiased SCLC TF
network)53–55. We initially analyze a relatively unbiased network
structure by considering the undirected and unweighted network.
In other words, we only consider whether two nodes are
interacting and do not consider the type and direction of
interaction. Later, we integrate previously published RNA-seq
data into our analysis, which is the probability of each interaction
occurring34,38, assigned to each interaction as weights. To identify
the hubs given the weighted network graph, we extend the DST

concept into Minimum Dense Spanning Tree (MDST, see Box 1)
concept for which the DST optimization problem is extended into
a multi-objective optimization problem (Methods Section Inte-
grating data into the structural analysis: Minimum Dense
Spanning Tree). Interestingly, all the found hubs are either
regulators or destabilizers of the previously identified SCLC
subtypes as elaborated in the Results section. Next, we test a
pathway connecting the two functionally distinct hubs via
simulations and observe a transition from the NON-NE to NE
subtype. Furthermore, running and tracking several asynchronous
NON-NE to NE transition simulations suggest additional TFs other
than the hubs that may have a role in this transition.
The paper is organized as follows. First, we present the results of

the DST and MDST analyses of the SCLC TF network in the Results
Sections Structural analysis of the unbiased SCLC TF network
identifies some of the known SCLC subtype regulators and
destabilizers and Data-driven structural analysis of the SCLC TF
network highlights MYC as a hub in addition to those previously
identified as subtype regulators and destabilizers. Then, we
present the results of the asynchronous subtype transition
simulations in the Results section The pathways connecting the
SCLC TF network hubs may have a role in SCLC subtype
transitions: NON-NE to NE transition occurs when
FLI1–ASCL1–MITF pathway is active. Next, we provide the
mathematical details of DST and MDST analyses as well as the
details of the transition simulations in Methods Sections Dense
Spanning Trees of the unbiased SCLC TF network, Integrating data
into the structural analysis: minimum dense spanning trees, and
SCLC TF network subtype transition simulations, respectively. In
addition, we compare the dst and mdst analysis results in the
supplementary information. Finally, we conclude the paper with
some concluding remarks.

Box 1: Brief Definitions

● Graph is a collection of objects (points) linked together based on some pairwise relations. Figure B1–1 is an example of a graph (G) with the vertex set V= {a, b, c, d, e}.
Some random weights are assigned to the edges for exemplary purposes.

● Tree is an acyclic graph, i.e., a graph that do not contain any cycles (loops). Figure B1–2 is an example of a tree.
● Node (Vertex) is an individual object (point) in a graph. “a” in Figure B1–1 is an example of a node in the graph.
● Edge is a link connecting two nodes in a graph. The link connecting “a” and “b” in Figure B1–1 is an example of an edge.
● Node Degree is the number of edges connected to the node.
For more details on basic Graph Theory definitions, please see67.
Given a graph G with a vertex set V:

● Spanning Tree (ST) is a subset of G that contains all the vertices in V with minimum number of edges (N-1 edges for a graph with N nodes) connecting all the nodes54.
They are not unique and known as the basis of the graph. Figure B1–2 is an example of ST. It contains all the vertices in G with minimum number of edges.

● Minimum Spanning Tree (MST) is a spanning tree that minimizes the total weights assigned to the edges. Figure B1–3 is an example of MST. It is a ST and it minimizes the
total edge weights.

● Dense Spanning Tree (DST): is a special spanning tree that minimizes the total distances between the vertices54. Figure B1–4 is an example of DST. It does not care about
the edge weights, but it minimizes the total distances between the nodes. Note that the distance between two nodes here is defined as the number of edges in the
shortest path between the nodes, e.g., the distance between “a” and “e” in Figure B1–1 is two.

● Minimum Dense Spanning Tree (MDST): is a special spanning tree of a weighted graph that minimizes the total distances between the vertices while minimizing the total
weights assigned to the edges. Figure B1–5 is an example of MDST. It minimizes both total distances between the nodes and the total weights assigned to the edges.

● Hub: is a node (component) of a graph (network) that has the number of connections above average66. Node “b” in Figure B1–4 is an example for hubs, which has
higher node degree and connects multiple nodes.

Figure B1. Examples for the introduced concepts. (1) An example of a weighted graph with random weights assigned for exemplary purposes. In a real network, the weight
of an edge could be the likelihood (or strength) of the connection or other values such as mutual information, etc. (2) An example of a spanning tree. (3) An example of a
minimum spanning tree. (4) An example of a dense spanning tree. (5) An example of a minimum dense spanning tree introduced in this paper (see Methods Section
Integrating data into the structural analysis: minimum dense spanning trees).
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RESULTS
In our analyses, given the SCLC TF network (Fig. 1), we search for
hubs of the network by finding the substructure DSTs (Box 1). The
DST of a given network contains hubs that are known to be
structurally important nodes interconnecting several pathways. Due
to their high and strategic connectedness, they are very likely to
have functional importance as well. This concept has many
applications in different areas such as telecommunications networks,
social networks, resource allocation, and biological networks55.
In biological networks, the DSTs of the network are substruc-

tures that preserve the shortest pathways between the nodes
(TFs) and hence they preserve the maximum influence among the
individual components while highlighting a few nodes as the
hubs. Since the identified hubs connect several pathways, they
receive so many signals from their peripherals, process them, and
distribute them to multiple other nodes. Therefore, in general,
they have functional importance as well46–51. Also, depending on
the size of the initial network, the identified DSTs may contain
multiple hubs. Due to their individual importance, the pathways
connecting the hubs might also be important as they are the
pathways communicating complex signaling between the hubs. In
this section, we show that the hubs of the SCLC TF network are
relevant to the SCLC subtypes. Additionally, we test a pathway
connecting two identified hubs via network simulations. All the
results are elaborated in the following subsections.

Structural analysis of the unbiased SCLC TF network identifies
some of the known SCLC subtype regulators and destabilizers
We start our analysis by converting the SCLC TF network (Fig. 1)
into an undirected, unweighted network (see Methods Section

Dense spanning trees of the unbiased SCLC TF network). In this
way, we just focus on whether interactions between two nodes
exist without considering their interaction types, directionality, or
weights (i.e., probabilities), which allows us to minimize bias on
the network structure. Then, we searched for the DSTs of the SCLC
TF network following the approach of Ref. 55. Upon solving the
global optimization problem in Eq. (1) (Methods Section Dense
spanning trees of the unbiased SCLC TF network), we observed
146,143 DSTs, all having the same optimum total distances
between the TFs. Examples of the found DSTs are presented in
Fig. 2. In one of the DSTs, FLI1 and MITF are identified as the hubs
(Fig. 2a) while in the other DST, FLI1, ASCL1, and FOXA1 are
identified as the hubs (Fig. 2b). Since different DSTs may highlight
different TFs as the hubs, we computed the average node degrees
(Box 1) of the nodes among all the found 146,143 DSTs, which is
collectively presented in Fig. 3. As seen in the figure, FLI1 is a
major hub with about 20 connections on average among all the
found DSTs. In addition, MITF, ASCL1, NR0B1, and FOXA1 are the
other hubs with relatively high average node degrees in some
DSTs.
The found major and side hubs are not only structurally

important but also shown to have biological importance to the
identified SCLC subtypes. For instance, FLI1—the major hub in
Fig. 3—is shown to be one of the regulators of the SCLC NE
subtype34,56,57. Similarly, ASCL1, NR0B1, and FOXA1 are reported
as one of the regulators of SCLC NE and NEv2 subtypes, and MITF
is reported as one of the regulators of the SCLC NON-NE
subtype34, which shows the specificity of the hubs of SCLC TF
network.

Fig. 1 Small cell lung cancer transcription factor network reproduced from34,38. The hexagonal nodes represent the individual transcription
factors, the red edges represent the inhibitory interactions, and the green edges represent the activatory interactions.
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Data-driven structural analysis of the SCLC TF network
highlights MYC as a hub in addition to those previously
identified as subtype regulators and destabilizers
Next, we repeat our hub search by integrating experimental data into
the analysis. The data is the individual probabilities of each
interaction between the TFs in the SCLC TF network (Fig. 1),
extracted from RNA-seq data34. The probabilities are integrated into
the network structure as the weights that are assigned to the
associated edges. Then, to identify the hubs of the weighted SCLC TF
network, we extend the DST concept into MDST (Box 1) for which we
solve an extended multi-objective optimization problem (Methods
Section Integrating data into the structural analysis: minimum dense
spanning trees). Apart from DSTs, MDSTs allow us to highlight the
hubs while preserving the maximum likelihood of the interactions.
Upon solving the optimization, we observed only 46 MDSTs

which is drastically lower than the number of DSTs (146,143)
found with the unbiased network structure. This means that this
analysis guided by prior knowledge, i.e., the experimental data,
can constrain the search space more efficiently. Once we compute
the average node degrees among the found MDSTs, we observe
that FLI1 still is the major hub (Fig. 4). Similarly, ASCL1 and MITF
are still identified as the hubs but this time with higher average

node degrees compared to the unbiased network analysis (Fig. 4).
In other words, they become more major hubs, which coincides
with their biological importance in SCLC as reported in the
literature30,31,34,38,40,58–60. Interestingly, the data-driven structural
analysis further reveals MYC as another hub (Fig. 4), which does
not appear in the unbiased network analysis (Fig. 3). Recently,
MYC was shown to be one of the key TFs for SCLC32,61–63, which
initiates Notch signaling to reprogram neuroendocrine fate from
NE to NEv1 to NEv2 to NON-NE states40. Overall, our observations
support that structurally important nodes are very likely to be
functionally significant as well. Therefore, such structural analyses
could be an initial step in the analysis of complex intracellular
networked processes because of their potential to pinpoint
important network components, which would guide experimental
target discovery.

The pathways connecting the SCLC TF network hubs may
have a role in SCLC subtype transitions: NON-NE to NE
transition occurs when FLI1 – ASCL1 – MITF pathway is active
SCLC TF network contains multiple hubs with varying average
node degrees. These hubs are shown to have distinct functional
features in terms of SCLC subtypes, as elaborated in the previous

Fig. 2 Examples of the found DSTs of SCLC TF network. a An example DST in which FLI1 and MITF are the two hubs. b An example of found
DSTs in which FLI1, ASCL1, and FOXA1 are the three hubs.
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sections, which leads us to a question: Do the pathways
connecting different hubs that are identified as regulators of
different SCLC subtypes have any role in subtype transition? For
instance, FLI1 and MITF are the two major hubs identified in both
unbiased (Fig. 3) and data-driven structural analyses (Fig. 4). One
of the pathways connecting these two hubs is through
FLI1–ASCL1–MITF. FLI1 being a regulator of the SCLC NE subtype,
MITF being a regulator of the NON-NE subtype, and ASCL1 being a
destabilizer of the NON-NE subtype and regulator of the NE
subtypes34 suggest that this pathway has a potential role in NON-
NE to NE subtype transition. One can also identify such structurally
important pathways by checking the interactions remaining in the
found DSTs and MDSTs with high probability, as exemplified in
Supplementary Information.
To test the possible role of this pathway in the NON-NE to NE

subtype transition, here we simulate the SCLC TF network using a
tool called BooleaBayes34 that automatically infers gene regulatory
mechanisms, based on Boolean logic models, and links inputs and
output states tailored to -omics datasets such as those from RNA-
seq data. Upon setting the network’s initial state to NON-NE
subtype based on previously identified combinational ON-OFF
states of the TFs34, keeping the FLI1–ASCL1–MITF pathway active,
and running asynchronous network simulation (i.e., one TF is
randomly picked and updated at each iteration) using the
extracted logic rules (Methods section SCLC TF network subtype
transition simulations), we observe a transition from NON-NE to
NE subtype (Fig. 5).

Dynamic analysis of asynchronous NON-NE to NE subtype
transition simulations
Although the NON-NE to NE subtype transition was observed by
keeping the FLI1–ASCL1–MITF pathway active, there are possibly

other TFs and dominant pathways that contribute to the
transition. Identifying those TFs and dominant pathways may
reveal how the system mechanistically executes such transitions
and allow us to identify potential other TFs playing a role in the
transition. Therefore, as the next step, we run 700 asynchronous
NON-NE to NE subtype transition simulations and keep track of all
the iterations. Then, we compute the Longest Common Sequence
(LCS) based distance (Methods section Distance measure between
instantaneous network state and NE subtype) between the target
SCLC Boolean NE state and the instantaneous network state at
each iteration (Methods section SCLC TF network subtype
transition simulations). As seen in Fig. 6, throughout the NON-
NE to NE transition, the network state dynamically alternates
between NON-NE and NE subtypes through many distance-
increasing and -decreasing patterns until it finally converges to
the NE state. This means that some reaction patterns drive the
cells toward the NE subtype (distance-decreasing patterns in
Fig. 7) whereas some other reaction patterns drive the cells toward
the NON-NE subtype (distance-increasing patterns in Fig. 7).
Overall, the 700 asynchronous NON-NE to NE subtype transition

simulations, in which transition occurs in the order of 105

asynchronous iterations, contain about 7 × 105 distance increasing
and 5 × 105 distance decreasing patterns. To see which TF appears
most in the distance-increasing and -decreasing patterns, we
compute their frequencies (Fig. 8). Interestingly, four TFs that are
ASCL1, FLI1, NR0B1, and CEBPD, appear more than the other TFs in
the distance-decreasing patterns (Fig. 8a) whereas the same four
TFs appear less than the others in the distance-increasing patterns
(Fig. 8b). This means that in addition to the ASCL1 and FLI1 which
are part of the pathway identified NON-NE to NE transition
pathway, NR0B1 and CEBPD may have a regulatory involvement in
this transition as well. Moreover, throughout all the asynchronous
iterations among 700 NON-NE to NE transitions, we compute the

Fig. 3 Average node degrees of each TF among the found DSTs. FLI1 is the major hub with about 20 connections on average in the found
DSTs. The other hubs are MITF, ASCL1, NR0B1, and FOXA1 with relatively high connectedness on average.
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number of iterations for each TFs, on which an update of the TF
causes an increase in the distance between the network’s
instantaneous state and NE subtype. As seen in Fig. 9a, in addition
to ASCL1 and FLI1 which never drives the cells toward the NON-NE
subtype, NR0B1 and CEBPD are the two TFs that have a lower
effect on the increase in the distance between the network state
and the NE subtype compared to the others, which further
supports their possible regulatory involvement in NON-NE to NE
subtype transition. Furthermore, we compute the probability of
TFs being ON at the network state during the initiation of distance
decrease patterns (Fig. 9b). With about 0.2 probability of being
ON, NR0B1 seems to drive the cells toward the NE subtype by
mostly being OFF whereas the activity status of CEBPD seems not
very important as its probability of being ON is very close to 0.5.
Additionally, Fig. 9b suggests that whenever ISL1 and FOXA2
appear in the distance-decreasing patterns which is very likely as
seen in Fig. 8a, they are mostly ON with relatively high
probabilities which implies that they may have a role in the
NON-NE to NE transition.
Overall, the presented results suggest that structural analysis of

the biological networks may guide the identification of function-
ally important molecules. More specifically, the concepts of DST
and here extended to MDST by integrating data can identify hubs
of the networks which can be potential targets in the experiments
due to their involvement in complex biological processes.
Focusing on the SCLC TF network that is being analyzed in this
work, all the identified hubs in both unbiased and data-driven
analysis show biological importance in terms of SCLC subtype
regulation and destabilization as supported by the literature.
Moreover, integrating data into the structural analysis highlights

MYC as another hub whose importance in SCLC subtypes has
recently been discovered32,61–63. This observation further supports
those previously reported results. Furthermore, the ability to
identify multiple hubs that have distinct functional roles in SCLC
subtypes lets us scrutinize the pathways connecting the hubs.
Upon asynchronously simulating the network by keeping the
pathway connecting FLI1 and MITF—the two major hubs—active,
we observed a transition from NON-NE to NE subtype. In addition,
analysis of 700 asynchronous NON-NE to NE transition simulations
suggests other TFs that may play a role in this transition. As a
result, starting from a pure network structure, its analysis leads us
to understand the underlying mechanism of a complex biological
system, which is noteworthy.

METHODS
Dense spanning trees of the unbiased SCLC TF network
Given the SCLC TF network (Fig. 1), to analyze its structure and
identify the hubs (Box 1) that are potentially fundamental in terms
of their roles in complex biological processes, we search for the
substructures called dense spanning trees (DSTs, Box 1). Suppose
G is a graph that represents the SCLC TF network, V(G) is the set of
nodes that represent the TFs in the network and E(G) is the set of
edges that represents the interactions between the TFs in the
network. Then, the DST of G is a substructure that minimizes the
total distances between the TFs and contains all the TFs in V(G)
with a minimum number of interactions while highlighting some
nodes with high connectedness, i.e., the hubs. In other words, the
DSTs are the subnetworks of the SCLC TF network that comprises

Fig. 4 Average node degrees of each TF among the found MDSTs. FLI1 is the major hub with about 14 connections on average in the found
MDSTs. The other hubs are ASCL1, MITF, and MYC with relatively high connectedness on average. We note that MYC emerges as a hub after
data integration, which was not the case with the pure structural analysis in Fig. 3.

M. Ozen and C.F. Lopez

6

npj Systems Biology and Applications (2023)    55 Published in partnership with the Systems Biology Institute



the hubs and the shortest pathways from the hubs to all other TFs
preserving the maximum biological influence.
To identify the hubs of the SCLC TF network, we minimize

possible bias to the network structure by removing all the edge
directions, i.e., the information on which node influence the other,
the edge types, i.e., the information on activating and inhibitory
interactions, and not using any data on strength of the
connections, i.e., the probabilities of the interactions (Supplemen-
tary Figure 1). Then, the DSTs of the network are observed by
solving the following optimization55:
For the graph G with vertex set VðGÞ ¼ v1; v2; ¼ ; vNf g where

N ¼ Vj j, and edge set EðGÞ ¼ e1; e2; ¼ ; eMf g where M ¼ Ej j,
min
h
!

PN
i;j¼1;i≠j

dðvi; vjj h!�Þ

subject to

hi 2 f1; 2; ¼ ; Mg � Zþ; i ¼ 1; ¼ ; j h!j
hi ≠ hj; 8i ≠ j

h
!

contains at least one edge adjacent to vi 2 V; 8i ¼ 1; ¼ ; N

h
!� ¼ Kruskalð h!Þ

(1)

in which~h
�
denotes the minimum spanning tree obtained from~h

that is a subset of E(G), and d vi; vj
� �

is the distance between nodes
vi and vj defined as the total number of edges in the shortest
pathway between vi and vj . The main idea here is to find the
optimal subset(s) of edges E(G) from which the constructed DST

has the optimal objective value which is the total distances
between the individual nodes. For more mathematical details and
possible applications of this approach, we refer the reader to54,55.
Upon solving the optimization problem (1) via Genetic Algorithm
(GA), which is a metaheuristic optimization method that attempts
to find the global optimum or at least its good approximation64,
we observed 146,143 DSTs with the same objective value.

Integrating data into the structural analysis: minimum dense
spanning trees
As the next step, we blend this pure structural analysis with some
data that is the probability of the interactions, i.e., the strength of
the connections estimated from RNA-seq data from the probabil-
istic Boolean rules by Wooten et al.34. They are the difference of
means for a particular node when the parent node is on versus off.
To elaborate, suppose FLI1 regulates ASCL1. Then, the weight for
the edge between FLI1 and ASCL1 is the mean probability of
ASCL1 turning on for FLI1 being on minus the probability of ASCL1
turning on when FLI1 is off across the samples, i.e.,
P(ASCL1= 1 | FLI1= 1) - P(ASCL1= 1 | FLI1= 0). So, if ASCL1 is
always on when FLI1 is on, and always off when FLI1 is off, then
the edge weight = 1. These probabilities are integrated into the
network structure as the weights that are assigned to the
associated edges. The source codes for computing these

Fig. 5 SCLC subtype transition from NON-NE to NE subtype. The network was initially set to NON-NE subtype attractor. After running several
asynchronous iterations by keeping the FLI1–ASCL1–MITF pathway active, the system converges to an NE subtype attractor shown in the last
iteration. Running further iterations does not move the network to another state. This pathway was identified based on the hubs observed
from both unbiased and data-driven network structure analyses. The details of network simulation are provided in Methods Section SCLC TF
network subtype transition simulations. The red color means TF is ON and cream color means TF is OFF.
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probability values were provided in Wooten et al.34 (see their
BooleaBayes source codes on GitHub).
To identify the hubs of the weighted SCLC TF network, here we

reformulate the optimization problem constructed to find DSTs in
Eq. (1) as a multi-objective optimization problem given in Eq. (2)
and call the resulting optimal trees as the minimum dense
spanning trees (MDSTs, Box 1). MDSTs add another information
layer to the found trees by preserving the maximum likelihood of
the interactions in addition to the minimum total distances
between the nodes while highlighting the hubs of the network.
More precisely, MDSTs of the SCLC TF network are the subnet-
works that preserve the most probable interactions as well as the
maximum biological influence between the TFs via the shortest
pathways through the hubs. Note that one can assign different
weights to the interactions by different means such as the mutual
information between the TFs extracted from experimental data. In
this case, the MDSTs will be the substructures that preserve the
highest mutual information in addition to the shortest pathways
through the hubs.
To find the MDSTs of the SCLC TF network, we extend Eq. (1) as

follows: Suppose for each interaction i, we are given a probability
pi , that is probability of the existence of the ith interaction. Then,
for the graph G with vertex set VðGÞ ¼ v1; v2; ¼ ; vNf g where
N ¼ Vj j, and edge set EðGÞ ¼ e1; e2; ¼ ; eMf g where M ¼ Ej j with
associated weights wi ; i ¼ 1; ¼ ;M:

min
h
!

PN
i;j¼1; i≠j

dðvi; vjj h!�jÞ;PM
i¼1

1ðei 2 h
!Þ ´ ðwiÞ

( )

subject to

hi 2 f1; 2; ¼ ; Mg � Zþ; i ¼ 1; ¼ ; j h!j
hi≠hj; 8i ≠ j

h
!

contains at least one edge adjacent to vi 2 V ; 8i ¼ 1; ¼ ; N

h�
! ¼ Kruskalð h!Þ

(2)

in which weight wi ¼ 1� pi; ~h
�
denotes the minimum spanning

tree obtained from ~h that is a subset of E(G), and d vi ; vj
� �

is the
distance between nodes vi and vj , and 1 ei 2~h

� �
results in 1 if the

edge ei is in~h. Here, the first objective function is the minimization
of the total sum of distances between the nodes whereas the

second objective function is the minimization of the sum of
weights assigned to each edge, which is the same as the
maximization of the sum of probabilities of each selected
interaction exists based on the definition of weights. Once we
solved the multi-objective optimization problem (2) by GA, we
observed 46 MDSTs all having the same objective value, which
shows the effect of prior knowledge on narrowing down the
search space.

SCLC TF network subtype transition simulations
To see how important the pathways connecting the hubs having
distinct functional features are, we simulate the SCLC TF network
using a tool called BooleaBayes34. BooleaBayes is a Boolean rule-
fitting algorithm that infers local regulatory mechanisms near
stable cell subtypes from gene expression data. The approach has
previously been applied to the SCLC TF network (Fig. 1) to identify
and rank master regulators and master destabilizers of SCLC
subtypes assuming binary, i.e., ON and OFF, activity states of each
transcription factor (Supplementary Figure 2). Further details of
BooleaBayes and how it infers the logic rules can be found in34.
Using the Boolean rules extracted via BooleaBayes, we test the

role of FLI1–ASCL1–MITF pathway, in which FLI1 and MITF are the
two major hubs found by both DST and MDST approaches, in
NON-NE to NE subtype transition. This is hypothesized due to FLI1
being a regulator of the SCLC NE subtype, MITF being a regulator
of the NON-NE subtype, and ASCL1 being a destabilizer of the
NON-NE subtype and regulator of the NE subtype34. In other
words, FLI1 and MITF are two functionally distinct hubs identified
by DST/MDST analyses and ASCL1 connects these hubs. Note that
FLI1–ASCL1–MITF is only one of the candidate pathways
connecting these two hubs. We picked this pathway based on
prior knowledge from the literature. Nevertheless, if one does this
analysis in the same way without any prior knowledge and try all
possible candidates, FLI1–ASCL1–MITF pathway will still be
identified as one of the candidate pathways that results in a
subtype transition.
First, we set the initial state of the network to the NON-NE

subtype using the logic TF states in Supplementary Figure 2. Then,
we simulate the network using a general asynchronous update

Fig. 6 Longest Common Sequence-based distance between NE subtype and the instantaneous network state versus asynchronous
iterations. Starting from NON-NE state, the system converges to and diverges from NE state multiple times throughout the iterations until
finally it fully converges.
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scheme with the inferred Boolean rules and keeping the
FLI1–ASCL1–MITF pathway active by setting ASCL1 and FLI1
always ON. At each iteration, we randomly select a node and fetch
its probability of being ON based on its parent nodes’
instantaneous state from the Boolean lookup tables generated
by BooleaBayes. Then, based on the probability value, we flip a
weighted coin to set the selected node’s state to ON or OFF. After
updating the selected node’s state, we compare the overall
network’s state to the target state. After several asynchronous
update/compare iterations (usually in the order of 105), the
network converged to one of the NE subtype Boolean states
(Supplementary Figure 2). The stopping criteria for the simulation
is either the network state is equal to the target state, or the
simulation reaches to the maximum number of iterations, which
we set to 106 (three times more than the typical number of
iterations needed for such a transition based on our experience).
We have also tested various activity status of this pathway to

see under which conditions such a transition occurs. Keeping FLI1
and ASCL1 always inactive does not result in a NON-NE to NE
transition, which is intuitive because the target NE state requires
them to be active and they are forced to be inactive. Similarly,

keeping FLI1 active and ASCL1 inactive or vice versa does not
result in a transition as well. Keeping one of them active and not
forcing the other one to any state resulted in a NON-NE to NE
transition in a few instances (5% of the simulations). We believe
this is due to the random nature of the update scheme, which
resulted in the “right” conditions for such a transition. On the
other hand, Keeping FLI1 and ASCL1 always active results in this
transition at every single run (100% of the simulations). Note that
due to the nature of the asynchronous update scheme, the
convergence of the system to the NE subtype may occur in a
different number of iterations and update patterns at each run of
the simulations.

Distance measure between instantaneous network state and
NE subtype
To track the network state and understand its dynamic behavior
throughout NON-NE to NE transition, we compute the distance
between the network’s instantaneous state at each iteration and
the target NE subtype. The distance metric we chose is longest
common sequence (LCS) metric65 due to its sensitivity to order

Fig. 7 Examples of increase and decrease distance patterns between the network instantaneous state and SCLC NE subtype. In the
zoomed-in panels, the x-axis tick labels are the TF names that are updated during that iteration window of the simulation which cause the
increase/decrease in the distance between the network’s instantaneous state and the target state.
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differences by assigning a larger distance value to the difference
between the network state and target state and it can be applied
to vectors with the same or different lengths. Overall, LCS-based
distance is a metric that measures the difference between two
sequences as a cost of required insertions and deletions
operations to transform one sequence to another. Given two
vectors v1 and v2 of length m, that in our case represent the
network state and the target state, respectively, the LCS-based
distance dLCS is defined as follows:

dLCS v1; v2ð Þ ¼ A v1; v1ð Þ þ A v2; v2ð Þ � 2A v1; v2ð Þ (3)

where A v1; v2ð Þ is the number of elements in v1 that uniquely
matches the elements of v2 in the same order (not necessarily
contiguous). Note that one can use other distance metrics such as
Hamming distance to perform the same analysis if the vectors are
equal in lengths.
Computing LCS-based distance between the instantaneous

network state and NE subtype throughout the asynchronous
transition simulations shows us how the network converges and

diverges from the NE subtype starting from the NON-NE subtype.
Furthermore, this allows us to identify some patterns causing
increase and decrease between the two network states; and
hence, allows us to identify other TFs that may contribute to this
transition.

DISCUSSION
Small cell lung cancer (SCLC) is an aggressive disease with its
mixtures of transcriptional subtypes such as neuroendocrine (NE)
and non-neuroendocrine (NON-NE), later being more treatment-
resistant, regulated by the expression of different transcription
factors (TFs). In addition to the heterogeneity in cancerous cell
types, transitions between the subtypes make the disease even
harder to treat. To date, SCLC TF networks have been broadly
studied via systems approaches to reveal regulators and
destabilizers of different subtypes. Yet, the studies lack mechan-
isms of subtype transitions, whose understanding is critical to
control disease progression and perhaps develop ways for

Fig. 8 Frequencies of TFs in the distance decreasing and increasing patterns. a Appearance of TFs in the distance decreasing patterns. The
shaded TFs, i.e., ASCL1, FLI1, NR0B1, and CEBPD, appear more than the other TFs in the distance-decreasing patterns. b Appearance of TFs in
the distance increasing patterns. The shaded TFs, i.e., ASCL1, FLI1, NR0B1, and CEBPD, appear less than the other TFs in the distance-increasing
patterns.
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permanent cure. In this work, we hypothesize that analysis of the
SCLC TF network structure (Fig. 1), which is barely investigated to
our best knowledge, can provide clues on distinct subtype drivers,
and further reveal pathways controlling subtype transitions. To
test this hypothesis, here we use graph theory concepts called
Dense Spanning Trees and its extended version called Minimum
Dense Spanning Trees (DSTs and MDSTs, see Box 1 and Methods
Sections Dense Spanning Trees of the unbiased SCLC TF network
and Integrating data into the structural analysis: Minimum Dense
Spanning Trees). DSTs and MDSTs are special subnetworks of the
initial TF network that feature strategical nodes called hubs and
the pathways connecting the hubs. Hubs are critical nodes due to
interconnecting several key pathways and collecting, processing,
and distributing key signals throughout the signaling mechanism.
Moreover, the pathways connecting the hubs are also important

as they are potential probes for controlling complex signaling
across hubs. Therefore, given two hubs regulating different SCLC
subtypes, we hypothesize that the pathways connecting these
hubs could be targets to control subtype transitions.
First, with DSTs, we analyze a relatively unbiased network

structure by removing all the edge directions, i.e., the information
on activatory and inhibitory interactions, and not using any data
on the strength of the connections (Fig. 3). Next, we integrate data
into this pure structural analysis, assigned to each edge as weights
that are the probability of the existence of the interactions, i.e., the
strength of the connections estimated from RNA-seq data34. Then,
we extend the DST into MDST (Methods Section Integrating data
into the structural analysis: minimum dense spanning trees) to
identify the hubs of the weighted network structure (Fig. 4).
Interestingly, all the hubs such as ASCL1, FLI1, and MITF identified

Fig. 9 Effect of TFs in distance increase and decrease between network state and NE subtype. a Number of iterations on which update of
TF cause an increase in the distance between network state and NE subtype. b Probability of TF is ON in the network state initiating distance
decreasing patterns.
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in both unbiased and data-driven structural analyses are either
regulators or destabilizers of different SCLC subtypes as reported
in the literature, which confirms our hypothesis on the importance
of hubs. Additionally, the structural analysis driven by the data
highlights MYC as another hub in addition to those identified in
unbiased analysis (Fig. 4), which supports its importance in SCLC
subtypes as shown in recent studies32,61–63. To test the roles of
pathways connecting functionally distinct hubs, we asynchro-
nously simulate the SCLC TF network using a Boolean modeling
framework extracted by a tool called BooleaBayes34 (Methods
section SCLC TF network subtype transition simulations). As a
result of several asynchronous iterations and keeping the pathway
connecting FLI1 and MITF—the two major hubs in both unbiased
and data-driven analyses—active, we observe a transition from
NON-NE to NE subtype (Fig. 5), confirming our hypothesis on the
importance of hub-connecting pathways. Furthermore, after
analyzing increasing and decreasing patterns in distance between
the network state and NE subtype (Figs. 6 and 7) in 700
asynchronous NON-NE to NE transition simulations, we conclude
that the TFs NR0B1 and CEBPD may also play a role in this
transition in addition to FLI1 and ASCL1 (Figs. 8 and 9).
Note that, one can integrate different data into this analysis,

assigned as the weights to the edges. For instance, instead of
assigning probabilities of interactions extracted from experimental
data, the mutual information between the pair of nodes can be
used. In this case, resulting MDSTs would contain the hubs while
preserving the highest mutual information and the maximum
influence within the nodes. Similarly, one can assign the weights
manually guided by prior knowledge to keep the preferred
interactions in the resulting substructures. Also, one can apply the
tools presented here for any network type such as protein–protein
interaction networks (PPINs), gene regulatory networks (GRNs),
cell signaling networks, and metabolic networks. In addition, they
can be applied to any network structures such as directed or
undirected and weighted or unweighted. Note that although
preserving the directedness of interactions would integrate more
information into the structural analysis, it would also require
adding new constraints to the optimization problems (1) and (2),
which may become harder to solve due to increased complexity,
leaving room for potential improvement to the found DSTs and
MDSTs for the SCLC network. Moreover, as this is a structural
network analysis, the results will be sensitive to the given network
structure. Here, we analyzed the SCLC TF network provided in34,38.
Given different SCLC TF networks with different set of nodes and
interactions, the observations might change.
There are different ways to define and identify the hubs for a

given network than ours. One can define a node that has the most
connections (highest node degree) or a node that has the most
connections that make it central in the network as the hub (see
Supplementary Information for application of different hub
definitions and their results on SCLC TF network). However, we
believe they are not very well suited for biological applications as
they are purely structural concepts and aren’t concerned about
the closeness, i.e., the influence of the nodes with each other.
Moreover, such hubs are expected to occur only in scale-free
networks, i.e., the networks whose degree distribution follows
power law66. On the other hand, the concept of DSTs and MDSTs
can identify hubs for any given network because, in DSTs and
MDSTs, hubs are defined as the central nodes that minimize the
total distance between every node, and such substructures can be
found for any random network. Additionally, there are other ways
to find DSTs of a given network such as the edge-swap heuristic
algorithms presented in53,54. However, we have previously shown
that optimization-based approaches outperform such edge-swap
heuristic algorithms55 both in accuracy and computational
complexity changing by the network size. Lastly, here, to identify
the DST and MDSTs, we solve the optimization problems (1) and
(2) using genetic algorithm (GA), which is a metaheuristic

optimization method that attempts to find a globally optimal
solution, but it does not guarantee a global solution because it
does not guarantee exploration of all the search space and the
solution quality and optimality depend on several parameters that
need to be properly selected by the user, including population
size, rate of mutation and crossover, etc.64. However, GA is well
suited for problems that are discrete and combinatorial in nature
by providing at least a good approximation of the global solution.
Nevertheless, one can solve these optimization problems via other
algorithms such as particle swarm optimization.
Overall, the presented results have shown that the hubs of the

SCLC TF network identified via DSTs and MDSTs are either
regulators or destabilizers of different SCLC subtypes. This implies
that structural analyses of the networks can be advantageous as
the initial analysis step as their results can be used as guidance to
generate hypotheses to be tested in experiments. Moreover, the
pathways connecting the functionally distinct hubs may have
major roles in SCLC subtype transitions as shown by the
simulations, which may allow the control of such transitions
and help develop better treatment strategies by driving the
cancerous cells toward more sensitive states. Furthermore,
targeting those pathways in the experiments may lead to the
identification of other dominant components in such transitions
and hence help to understand the underlying mechanism of this
complex signaling process. As a result, pure as well as data-driven
structural analyses of the networked processes could be a
plausible first step and may result in important biological
observations in complex systems as well as help generate
hypotheses to be tested.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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