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The modular biochemical reaction network structure of
cellular translation
Bruno Cuevas-Zuviría1,2, Evrim Fer 1,3, Zachary R. Adam 1,4 and Betül Kaçar 1✉

Translation is an essential attribute of all living cells. At the heart of cellular operation, it is a chemical information decoding process
that begins with an input string of nucleotides and ends with the synthesis of a specific output string of peptides. The translation
process is interconnected with gene expression, physiological regulation, transcription, and responses to signaling molecules,
among other cellular functions. Foundational efforts have uncovered a wealth of knowledge about the mechanistic functions of the
components of translation and their many interactions between them, but the broader biochemical connections between
translation, metabolism and polymer biosynthesis that enable translation to occur have not been comprehensively mapped. Here
we present a multilayer graph of biochemical reactions describing the translation, polymer biosynthesis and metabolism networks
of an Escherichia coli cell. Intriguingly, the compounds that compose these three layers are distinctly aggregated into three modes
regardless of their layer categorization. Multimodal mass distributions are well-known in ecosystems, but this is the first such
distribution reported at the biochemical level. The degree distributions of the translation and metabolic networks are each likely to
be heavy-tailed, but the polymer biosynthesis network is not. A multimodal mass-degree distribution indicates that the translation
and metabolism networks are each distinct, adaptive biochemical modules, and that the gaps between the modes reflect evolved
responses to the functional use of metabolite, polypeptide and polynucleotide compounds. The chemical reaction network of
cellular translation opens new avenues for exploring complex adaptive phenomena such as percolation and phase changes in
biochemical contexts.
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INTRODUCTION
Cellular life is composed of networks of molecular components
that are dynamic and adaptive. Life can only exist as a gradient of
free energy, and metabolic networks can account for the uptake
and excretion of substrates alongside the synthesis of key
biomolecules1. Metabolic networks trace the routes that energy
travels through cells, but genetic sequences and their associated
enzymatic polymers2–4 specify which pathways will be con-
structed, governed, and maintained in any given cell. While a
great deal of current research is focused on filling specific
knowledge gaps at the biochemical level, studies of the overall
cellular network can provide insights into how the details of
biochemistry lead to the emergence of life’s foundational
properties.
At the cellular level, analysis of metabolic networks has inspired

decades of research into biochemical complexity5–9. These
analyses have drawn connections between network attributes
such as a heavy-tailed degree distributions and general complex
behaviors such as resilience, adaptability, and modularity. Follow-
ing initial studies of metabolic networks, there have been
numerous descriptions of heavy-tailed networks at other biologi-
cal levels such as ecological interactions, including theories of
generative mechanisms that are relevant to characterizing the
prebiotic world10–14. These generative mechanisms lead to
continuous, heavy-tailed distributions consistent with a power
law as an asymptotic sampling limit is approached; discontinuous
or multimodal distributions are not explicitly prescribed by these
physical models.

While the cellular level is usually the fundamental starting point
to describe life properties, life manifests at different nested scales
(e.g., cell, organism, ecosystem). At the largest biological levels of
populations and ecologies, systems show emergent traits as
multimodality or even discontinuities in their properties. One of the
most studied properties showing discontinuities is size: depending
on the ecosystem, organisms spanning certain size ranges will not
exist. Examples are found in arboreal forest15, bird16, fish and
plankton17, and mammal18 groupings that can exhibit multimodal
or discontinuous size distributions. Ecological multimodal aggre-
gations arise from a confluence of dynamic processes consisting
of an overlapping combination of both positive feedback (e.g.,
overabundant energy resources available for consumption at one
size or temporal scale but not at others) and negative feedback
(e.g., predation pressures such as grazing that can make survival at
specific scales extremely challenging, or few and highly variable
available resources)19. Discontinuities and modalities in biology
also appear to be idiosyncratic; gaps or troughs in one ecosystem
do not necessarily map to those found in others, and persistent
gaps can nevertheless vary and shift over time20. It is not clear
whether these network-level attributes of biology ought to extend
downward to the biomolecular scale.
Considering these scale-dependent aspects of biological net-

works, a compelling possibility is which (if any) topological
features associated with complex high-level biological systems
can be found at the cellular level. We hypothesized that these
features, if they show up within a cellular system, necessitate an
explicit description of the processes that shape chemical
hierarchical structure. In ecosystems, these processes include
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Fig. 1 Schematic representation of the integrated cellular chemosynthesis network, composed of translation, polymer biosynthesis and
metabolism layers. We built a translation layer (1) that includes all the relevant steps of that process such as initiation, peptidic bond
formation, translocation, and termination. Translation generates peptides that appear in a biosynthesis layer (A). The biosynthesis layer
describes interactions between polymers and the formation of reported hetero-complex multimers (2) to carry out metabolic functions.
Proteins in the biosynthesis layer act as enzymes or transporters enabling reactions (B) that generate energy and building blocks of translation
such as ATP, GTP and charged tRNA within the metabolism layer (3). Finally, the free energy and building blocks of metabolism are employed
as substrate inputs for translation (C).
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mapping trophic relationships and sources of energy input.
Therefore, we address this question at the cellular level by
building a translation reaction network in Escherichia coli (E. coli),
which we have combined with its metabolic and biosynthetic
networks (Fig. 1). Translation is a molecular information decoding
process that begins with a ribonucleotide sequence as input and a
peptide sequence as output, with remarkable robustness,
accuracy and adaptability21–27. The processes that allow transla-
tion to occur are carried out through the coordinated actions of
numerous ribonucleic and protein polymers, which we refer to as
the translation machinery (TM). The decoding process that
converts triplets of RNA monomers into the attachment of a
specific amino acid residue to a growing peptide sequence is
remarkable in that it is the earliest (and possibly only) emergent
system that processes discretized information and manifests
semantic relationships entirely in chemical terms. The chemosyn-
thetic nature of the TM (i.e., information processing via chemical
reactions, as compared to electronic signals in the brain or in
digital computers) enables its description as a chemical reaction
network, which is amenable to systems-level analyses as has been
done for metabolic networks5,28.
Here, we present the translation reaction network that includes

the core processes of translation (initiation, elongation, termina-
tion), detailed assembly steps required to replicate the ribosome,
and other well-documented features of the TM that maintain
translation functionality (Fig. 2a). To connect the translation and
metabolic networks, we constructed a polymer biosynthesis
network that explicitly links enzymatic components catalyzing
the metabolic reactions with the mRNA reading and peptide
synthesis steps of translation (Fig. 3a). Comprehensive mapping of
the connections between translation and metabolism is necessary
to investigate context-dependent feedbacks between the cellular
environment, substrate/nutrient availability, and ribosomal protein
activity.

RESULTS
A network description of translation in the cellular context
Translation is a process described in textbooks in great detail, but
there are still many unknowns about its function and modes of
integration with other cellular systems. By reviewing
the literature, we compiled the reactions of translation and
generated a bipartite graph represented in Fig. 2b. This TM
network includes the core of translation processes (initiation,
elongation and termination) together with the assembly and
recycling of the ribosome, and the response to amino acid
starvation. A feature of this network is the high level of
redundancy of some of the reactions, given that translation is
based on parallel processes involving different tRNAs.
All chemical reactions for translation and polymer biosynthesis

were then integrated with that for metabolism. The chemical
object names in each network were screened for consistent
annotation, their molecular masses and object classifications were
cross-referenced or inferred (i.e., proteins, RNAs, codons, amino
acids, energy molecules, and relevant ions). A full map of the
integrated network, with node sizes weighted by node degree
and reactions color-coded by network layer category is displayed
in Fig. 3a. The overall network contains more than 8000 nodes and
24000 links. When nodes are placed using a graph-layout
algorithm (Force-Atlas 2 in this case)29, each layer clusters as a
separated group of nodes that are mostly distinct from one
another. A breakdown of the numbers of objects connected
within and between the different layers is displayed through the
use of numbered arrows in Fig. 3b.
To understand how their components are connected within and

outside each network, we applied Node2Vec30 non-supervised
learning to generate multi-dimensional representations

(embeddings) as vectors for each node in the network that reflect
its neighborhood of connections. We then reduced these multi-
dimensional vectors to two dimensions using a t-Distributed
Stochastic Neighbor Embedding (t-SNE) dimensionality reduction
technique. The resulting embeddings provide a representation of
which nodes share a common neighborhood by placing them
closer in a unitless 2D plane. The translation and the metabolic
layers represent two different domains that can be easily
distinguished (Supplementary Fig. 2), while the biosynthesis
nodes appear scattered across these two different domains
without any distinct clustering. Within the translation network,
we find two large clusters of nodes and many smaller groups.
Within these smaller groups there are nodes representing each of
the amino acid processing cycles and the tRNA-synthetase
process. In contrast, we do not find any cluster in the metabolic
network containing distinct components of the TM.
Despite the large number of new connections mapped across

the integrated network, the sparsity between translation and
metabolic layers may be explained in part by the relatively few
compounds joining them directly together (25 and 27 to and from
each layer, Fig. 3b), which is limited to the molecules providing
peptide bond formation energy and substrate molecules for RNA
polymers. It seems likely that the reactions that form connections
across the metabolism and translation layers might have a central
role keeping the overall network together. We contracted
reactions and compounds involved in identified modules (e.g.,
cofactor synthesis, elongation, etc.), and color-coded the resulting
network using the betweenness centrality for each node of the
contracted network in Supplementary Fig. 3. In this case, this
metric represents how often a node is visited when traversing
across the different layers of the integrated translation-metabolic
network. The network depiction of these data shows a distinct
separation between the translation and metabolism layers, with
connections across the separation maintained through modules
such as tRNA charging providing the raw materials for polypeptide
elongation. Together with transport modules that provide the bulk
of metabolic precursors for heterotrophic E. coli metabolism, tRNA
charging is one of the most central modules of the cell.

Traits of multimodality and heterogeneity at the cellular level
An important attribute of large networks is their degree
distribution: the probability of finding nodes with a given number
of connections. In bipartite reaction networks, such as the
integrated network assembled here, the degree of each com-
pound represents the number of reactions in which it participates.
Networks associated with complex systems usually show hetero-
geneous degree distributions, where a few nodes show a
remarkable number of connections, while random networks are
characterized by having more homogeneous degree distributions
peaking around a mean number of connections14. We use the log-
ratios of different statistical fits to determine the most likely
degree distribution (exponential for homogeneous networks,
power-law for heterogeneous networks). For objects that com-
pose the metabolism and translation layers, their degree
distributions follow statistically probable heavy-tailed distributions
(Fig. 4b, Table 1), which is not the case of the polymer biosynthesis
layer degree distribution (p > 0.05). The only object in the polymer
biosynthesis network that is heavily connected to other com-
pounds is a generic node ‘peptide’ (Fig. 3a), which represents
intermediate peptide sequences that for various reasons have not
completed the termination step, and thus have no distinct
chemosynthetic or functional impact on the network. The overall
degree distribution of the full network follows a heavy-tailed
degree distribution with an exponent around 2.0 (Fig. 4a, Table 1).
While the degree of a compound might reflect its relevance in

shaping the chemical network, its mass correlates with the
amount of energy required for its synthesis; larger molecules
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Fig. 2 Overview of the translation portions of the integrated chemosynthesis network. a A simplified depiction of the ‘canonical’
translation process encoded within the translation network. b A detailed visualization of the complete translation chemical reaction layer
using Gephi 0.9.2 and a Force Atlas 2 layout29 (settings: scaling= 5.0, gravity= 1.0, tolerance= 1.0, approximation= 1.2). c A depiction of the
30 S and 50 S component assembly steps that enable ribosomal replication to occur.
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require more energy to synthesize than smaller ones31. Our
objective is to assess the relationships, if any, between the
connection degrees and the masses of the compounds in the
network. A multimodal distribution can be discerned in the panels
of Fig. 4c (categorized by chemical compound type) and Fig. 4d
(categorized by network layer). Mass distribution concentrations
(modes) across all network layers occur at around 240, 40,000 and
2,000,000 Daltons (Da). The central regions of these modes
contain both the highest concentrations of compounds and the
most highly connected compounds from the different layers.
There are bins in troughs between the modes without reported
molecules, which indicates that the modal mass distribution may
also be discontinuous. All modes contain some objects from the
TM network; enzymatic polymers that enable metabolism are
almost entirely confined to the middle mode; and metabolic
compounds compose the two smallest modes. The structural
composition of the chemical compounds (small molecules,
polypeptides, and polynucleotides) is the likeliest determinant of
the mode regardless of the functions they perform or the layer
they are assigned to within this network (Fig. 4c, d).

DISCUSSION
Bioinformatic databases are constructed and annotated in such a
way as to enable the high-throughput reconstruction of many
biosynthetic steps of metabolism and gene regulation32, and also
to reconcile these steps with sequences found within an

organism’s genome in an organized pipeline (gene → protein →
function33,34). Prior network descriptions and analyses of transla-
tion have focused on its dynamic attributes afforded by its
autocatalytic motifs35, genetic regulation of metabolic pro-
cesses36, the links between TM function and organism-level
cellular dynamics37 and a mapping of genotype to phenotype
useful for interpreting a wealth of -omics cellular data38. The
chemosynthetic function of the TM and the topological attributes
of the overall network did not figure significantly into these prior
efforts.
The integration of translation and metabolism reactions for

E. coli describes a naturally occurring chemical network that is
hierarchical and spans at least six orders of magnitude of
compound mass. Hierarchy is most clearly resolved when degree
per compound is plotted against compound mass (Fig. 4c, d,
upper panels). By inference, the energy costs associated with
synthesizing and replicating the largest TM components outstrip
those of enzymes and metabolites by at least 1-2 orders of
magnitude. The energy cost per molecular component demon-
strates the hierarchical importance of the TM in specifying
chemical functions made possible by biopolymers within the cell.
As cellular operation requires a hierarchy of different mass

entities, it also involves modules with different connectivity
patterns. The embedding analysis depicted in Supplementary
Fig. 2 reveals that the metabolic and polymer biosynthesis
reactions do not cluster apart from each other in any significant
way, but the TM clusters in a distinct region of the graph. The

Fig. 3 Detailed and simplified visualizations of all reactions and compounds that compose the integrated chemosynthesis network. a Full
map with Translation (T) reactions in orange, Polymer Biosynthesis (B) reactions in green, and Metabolic (M) reactions in blue. Compounds (in
white) are scaled in size according to their number of connections within the network. Network depicted with Gephi version 0.9.2 using a
ForceAtlas2 algorithm29 (settings: scaling= 5.0, gravity= 1.0, tolerance= 1.0, approximation= 1.2). b A simplified depiction of the number of
compounds that connect reactions between (directed arrows) and within (circular arrows) each of the layers.
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Fig. 4 Statistical analysis of the degree and molecular weight data of the integrated chemosynthesis network and each of its layers.
a Complementary cumulative density function (CCDF) of node connection plotted versus bins of node connection degree (k) and distribution
model comparisons for the complete chemosynthesis network; heterogeneous (exponential) model shown in dashed line, and
heterogeneous (power law) model shown in solid line. b CCDF plotted versus node connection degree (k) and distribution model
comparisons for the Translation (top), Biosynthesis (middle) and Metabolism (bottom) layers; homogeneous (exponential) model shown in
dashed line, and heterogeneous (power law) model shown in solid line, as in Panel A. c Raw scatter data of the connection degree (k) and
molecular weight (Da) of all chemical objects in the network (upper panel) and same data depicted as a histogram of molecular weight bins
(lower panel), color coded by molecule type. d Raw scatter data of the connection degree (k) and molecular weight (Da) of all chemical objects
in the network (upper panel) and same data depicted as a histogram of molecular weight bins (lower panel), color coded by layer.
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metabolic and TM layers exhibit degree distributions that are likely
heterogeneous, but the biopolymer layer does not. Taken
together, this would indicate that protein biosynthesis is mostly
shaped by the same structural constraints of the intracellular
metabolism module and is not likely to exhibit independent (i.e.,
intra-layer) attributes associated with complexity.
Based on prior observations of biological networks across the

hierarchy of life, we articulated three distinct possibilities for the
distribution of compounds in the integrated translation network
(see Supplementary Fig. 4). Each of these possibilities has distinct,
predicted implications that may be compared to the observed
mass distribution. In a parallel to ‘trophic hierarchy’, one
hypothesized driver of hierarchical connection in cellular bio-
chemistry is the ability to distribute energy and maximize power
in a dynamic way across independently functioning layers. For this
possibility, each distinct molecular layer is self-organizing and
both feeds upon and into the others. The predicted pattern is that
each layer contains distinct connectivity peaks, and the overall
mass distribution is continuous. In an ‘energy availability’
distribution, the hierarchical structures of polymer biosynthesis
and translation are built directly atop, and extensions of, energy
pathways enabled by metabolism. The predicted pattern is that
though the translation and polymer biosynthesis layers of the
network may contain ‘heavy tails’, the bulk of compounds in each
layer all coincide with a peak generated by metabolic compounds.
In a distribution shaped by ‘molecular distinction’, the association
of compounds with a given biofunctional layer is less significant
than the compounds’ chemical attributes in the cellular environ-
ment. The predicted pattern for this distribution is that multi-
modality or discontinuity caused by distinct molecular properties
would lead to sorting at the network level. Each of these predicted
distributions may carry basic implications about the primordial
relationship(s) between emergent metabolic, enzymatic and
translation functions, and about identifying measurable network
attributes that fundamentally distinguish abiotic and biotic
systems. We predicted that energy availability would be the
dominant organizing driver of cellular biochemistry, given that
energy transduction is indispensable to the overall function of
translation.
The observed multimodal (and perhaps discontinuous) mass-

degree distribution of the network seems most consistent with
the ‘distinct molecules’ prediction. The network’s multimodal
mass-degree distribution is the first such distribution reported for
biological systems at the cellular level. The multimodal mass
distribution of the integrated chemical reaction network is
independently supported by chemical assays of living E. coli cells.
Non-targeted metabolomic assays of small molecular mass

compounds using mass spectrometry (TOF-MS) and different
preparatory analytic weighting techniques consistently show a
peak in metabolite compounds at approximately 150-350 Da, and
a tapering of compounds approaching ~2000 Da, even after
accounting for decreased detector sensitivity with increasing
mass39,40. This approximately aligns with the centroid and
distribution range of the smallest mass mode. For polypeptides,
proteomic assays conducted across taxa as diverse as E. coli, S.
cerevisiae and H. sapiens consistently show a broad correlation
between translated genomic length and in vivo enzyme length41.
For E. coli, this specifically includes a median peak length of about
209 amino acids, which corresponds to a peak in the mass
distribution of polypeptides of approximately 28,000 Da if the
average amino acid mass is assumed to be 136 Da (the average
molar mass of all 20 essential amino acids). This approximately
aligns with the centroid of the second mass mode. A whole-cell
assay of all E. coli enzymes, regardless of composition and
function, show that highly connected objects central to both
metabolism and translation (e.g., the ribosome, TCA cycle
components, glycolysis and fermentation components, etc.)
compose comparable protein mass fractions under a variety of
growing conditions42. The ribosome itself is consistently com-
posed of 2:1 mass fractions of RNA to protein43. In sum,
independent raw cell molecular assays indicate sharply discretized
compound mass modes that are attributable to the chemical
properties of RNA polymers, proteinaceous polypeptides, and
base metabolites, regardless of their cellular functions they carry
out or the modules to which they may be assigned. Molecules that
fall within the troughs between the modes are undoubtedly
present in cells in some form, but would not seem to play essential
roles in generating an E. coli’s chemosynthetic pathways, cellular
physiology, or adaptive responses to stimuli. Multimodal distribu-
tions present a unique challenge to theoretical studies of network
generation, and may require elaboration using multiplexes that
can account for multimodality34.
An assessment of the possible drivers of multimodality and

discontinuity in the chemical reaction networks of bacteria may
open new ways of characterizing the evolvability of cellular
systems, and for distinguishing them from complex abiotic
systems. Different network analysis techniques (Figs. 3a, S2, S3)
and raw plots of mass distribution modes (Fig. 4c, d) trace
modularized systems of translation and metabolism that, by virtue
of their chemical isolation from one another, are each able to
independently adapt to conditions that the cell may encounter39.
Modules can exhibit hierarchical properties and function as key
units of adaptive evolution because organismal fitness depends
on their performance7,44–47.
The E. coli metabolic network is only able to exist via the

functions afforded by polymeric peptides. Accounting for these
polymeric peptides in the chemical reaction network introduces
the first modal trough (Fig. 4c) between the largest metabolites
and the smallest polypeptides. This trough is also present in
objects that compose the translation network that are found
across this range of masses (Fig. 4d). From a purely physical
perspective, there are no a priori reasons for a discontinuity of
mass size between these compounds. A discontinuity may be
understandable, though, in biofunctional terms if resources for
synthesis are limited31. The synthesis of an extremely large
metabolite necessitates the precise placement of assorted atoms
and molecular groups, connected with different bond types. If
there is a single placement error, or inadequate feedstock of
starting materials, the resulting compound is unlikely to be
functional. An expenditure of chemical resources to produce
increasingly larger (and increasingly error-prone) metabolites has
adverse effects on the persistence of the overall cellular system.
The synthesis of a linear oligopeptide of comparable mass, by
contrast, can make use of repetitive interconnections of a much
smaller number of object types (i.e., amino acids), many of which

Table 1. A tabulated comparison of power law and exponential
distributions (log-likelihood ratios), significance estimates (p-value
according to one-sided log-likelihood test), minimal degree value at
which we start fitting the distribution (kmin), and best-fit exponent
values (γ) for the complementary cumulative distribution functions of
the translation, biosynthesis and metabolism networks.

Fit type

Continuous Discrete

Domain γ kmin p-value γ kmin p-value

All layers 2.118 3 2.4.10−17 1.929 3 4.5.10−13

Biosynthesis 3.470 3 9.9.10−2 2.703 3 9.1.10−1

Metabolism 2.290 6 9.0.10−8 2.229 3 3.0.10−7

Translation 3.526 40 3.2.10−14 3.448 40 1.2.10−13

See Clauset et al.83 for a more detailed discussion of the fitting methods.
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also have similar chemical properties. A reduction of the number
of building block types and of the kinds of bonds through which
they are connected can increase production fidelity (and resultant
functionality) of peptidic complexes compared to massive
metabolites. The polypeptide assembly process cannot scale
downward indefinitely, however, since there are natural limits to
how small a chemically functional polypeptide may be. Oligopep-
tides must attain some minimal length to form structural folds, or
to form a pocket in which specialized cofactor chemistry can occur
that is isolated from the cellular environment46. The tradeoffs
between synthesizing extremely large metabolites or extremely
small polypeptides to ensure overall functionality can introduce a
natural trough in mass distribution between these two chemical
regimes that is attributable to both the constraints brought about
by the chemical properties of their different building blocks and of
the emergent functions they enable.
The trough between the second (polypeptide) and third

(polynucleotide assemblies) modes appears to arise for entirely
different reasons that are distinct to the TM. As with the first mode
gap, there are no obvious physical or chemical reasons why there
should not be an overlap between large polypeptide and small
ribonucleotide polymer compounds, and the observed trough is
counter to our predictions. The ribosome, however, has evolved to
localize many of the TM’s protein-protein, protein-ribozyme, and
ribosomal interactions on itself, thereby spatially isolating the
functions of translation from the surrounding metabolic and
physiological activities in the cell45. These functions are further
isolated in time and space by regulatory mechanisms, such as via
binding with the properly formed initiation factors48–51, by
corresponding activated tRNA complexes52 and through spatial
heterogeneity arising from complex physiological relationships
with nucleoids53. The TM network description includes a rich array
of intraribosomal subunit interactions, which we record as
interactions involving an object with the mass of the ribosome.
This creates a sharp, isolated peak in the distribution centered at
the ribosome’s mass. The ready clustering of the TM in the
network topology (Fig. 3a) and embedded vector and dimension-
ality reduction analysis (Supplementary Fig. 2) depict and
corroborate the biochemical facets of translation’s modularity, as
do in vitro experimental systems that employ cell-free protein
synthesis54,55.
There are numerous examples of systems that may be

characterized as complex self-organizing, adaptive phenomena,
but which lack the evolvability, emergent novelty and agency of
living systems. Far-from-equilibrium physical systems such as
galactic, stellar, and planetary structures56, earthquakes57, solar
flares58 and sandpile or avalanche dynamics59 all exhibit
continuous scaling across many orders of magnitude, but few or
no reported discontinuities. Discrete size classes observed in
biology, on the other hand, are evidence of multiple dynamic
regimes60 in which signaling, and the perturbative effects of
novelty can propagate and be controlled in directions both up
and down scales of a hierarchy61.
A multimodal biochemical distribution may be interpreted as

indicating an evolved response of modularization to significant
constraints placed on a complex adaptive chemical reaction
network62. In biochemical systems, energy flows through the
entire hierarchy mostly in the direction from metabolites up to the
translation components, but modal gaps and troughs arise due to
a complicated reconciliation process between the basic building
blocks that compose large objects in the system, energy
availability for synthesis, and optimization of functional traits that
large objects can exhibit63. In conjunction with a heavy-tailed
degree distribution, a multimodal mass distribution may be one of
a select suite of indicators diagnostic of biological dynamics that
can be observed across the entirety of life’s various spatiotem-
poral scales.

Implications for prebiotic chemistry
Mapping the full extent of chemosynthetic relationships between
translation and metabolism (Fig. 3a, b) graphically captures long-
recognized aspects of the hierarchical relationship between these
two cellular functions. Translation of a transcripted mRNA directs
the specificity of polymer-catalyzed metabolic chemistry, and this
chemistry in turn supplies the required energy and materials for
ribosomal replication and operation. At the same time, though,
the existence of multiple distinct mass discontinuities that
correlate more with differences in chemical composition (Fig. 4c)
than with cellular function (Fig. 4d) opens new possibilities about
the underlying dynamic circumstances in which translation arose.
Chemical modes and discontinuities may be so fundamental as to
have been contemporaneous with (or have preceded) the origins
of cellular life. As an extension, it is possible that some
information-processing attributes of the TM module are primor-
dially rooted in complex feedbacks between ribonucleotides and
metabolites, intra-network dynamics of the TM, or physicochem-
ical reinforcement of modularization (such as spatiotemporal
isolation) afforded by discrete compound class modes, as much as
from the emergence of the ribosome’s large and small subunit
mechanical activities.
Generating hierarchically connected networks across so many

orders of magnitude, with modules that each contain at least one
autocatalytic cycle35,64–66 presents a significant challenge to the
field of prebiotic chemistry67–69. If the biochemical modality and
modularity observed in this network are genuinely universal
attributes of life, they may arise due to general physical
phenomena such as percolation70. The observed coupling
between translation, protein biosynthesis and metabolic networks
presents a new model system in which the network phenomenon
of percolation may be studied in a chemical context71 as an
exemplary emergent system in which multiple networks with
distinct topologies coexist and are connected via common
elements72 and discontinuities stem from mechanisms that lead
to network (dis)assortativity73,74. Theoretical analyses of such
conditions show a possible connection between the number of
distinct modes and the possibility of multiple discontinuous phase
transitions enabled by multiplex networks75. Phase transitions
have long been recognized as potentially important behavioral
features that are correlated with complex adaptive systems76.
The relationships between complex adaptive systems and

information processing attributes afforded by network topology
are directly relevant to developing new theories of the origin of
translation. The decoding process that links nucleotide sequence
identity to peptide sequence functionality is highly optimized for
error tolerance through a property known as code degeneracy,
which can be described in informatic and computational terms
without explicit reference to the underlying biochemistry. It is
unclear how an inherently informatic, network-level property such
as code degeneracy would arise on the basis of tracing the
individual origins of the ribosome’s chemical components and
interaction partners in isolation from this wider network77. Recent
discoveries have shown that ‘biological’ attributes such as self-
reproduction, adaptation and evolvability (which together char-
acterize much of biological agency) are intrinsically linked to one
another through coupling of Hopf and Turing instabilities within a
small network of reactions with a cubic autocatalytic motif78.
These attributes are observable even in the absence of the
intricacies of macromolecular mechanisms or a diversified
biochemical metabolic network. Further studies of coupled
metabolic and translation chemical reaction network properties
may help to develop new hypotheses about the origin of
translation as an information-processing modular network, rather
than about how translation can arise due to the chemical
relationships between amino acids and nucleotides or through
the specific biochemical activities of TM components. Specifically,
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one may test whether the modularization of information
processing centered on the ribosome in modern cells can be
decentralized across a primordial TM network.
Life exists, in part, by cohesively channeling energy from

abundant, small-mass objects into the synthesis of a specific array
of large-mass objects. These larger objects afford functions and
activities that smaller objects, for various reasons, cannot perform.
The inherent tension between utilizing available energy in an
efficient way and ensuring diverse functions and activities will be
reliably carried out can lead to multimodal mass distributions.
Multimodality in this sense may be diagnostically biological, as an
evolved trait that is exhibited by adaptive, self-organizing and self-
assembling populations that can exhibit and propagate novel
responses to stimuli and which are subject to natural selection. It
is a property that has been observed in many different ecological
systems. Our study of a combined network of metabolism and
translation shows that mass multimodality can arise in biochem-
istry, with distinct drivers for different troughs between modes,
even before physiological or gene regulatory mechanisms of
cellular operation are considered. This extends multimodality
down to the lowest levels at which biological population dynamics
can exist: the chemistry within individual bacterial cells. Transla-
tion stands apart in the cell as a functional module that is as much
informatic as it is chemosynthetic. Its modularity is achieved in
part by concentrating many enzyme and ribozyme component
interactions on the ribosomal complex, which has the effect of
chemically isolating the translation function from much of the
chemical activity going on elsewhere in the cell. Looking forward,
it may be possible to use an integrated metabolism and
translation network to study the emergence of the translation
function as a network-level module in a way that is abstracted
from the mechanistic biochemical activities carried out by the
ribosome and its interaction partners.

METHODS
Generation of the translation and polymer biosynthesis
reaction databases
The purposes of this study are (i) to describe translation as a
chemosynthetic process, (ii) to integrate this process with a
chemical reaction network describing metabolism; (iii) to map
network-level patterns between object mass and object con-
nectivity across different chemical domains; and (iv) to assess
whether network-level patterns observed at the highest levels of
the biotic hierarchy are present at its lowest levels of biochemistry.
These purposes circumscribe the scope of the resulting network’s
component description. Objects and reactions that describe the
chemical components of the cellular translation and metabolic
systems will be transcribed and included in the network. Those
reactions that do not alter the explicit biochemical components of
an E. coli cell (i.e., gene regulatory interactions, sequence-specific
motifs and their mutual interactions, isomerization reactions, etc.)
may be otherwise important, but they fall outside the scope of this
particular chemosynthetic study and will be excluded. To be
sufficient for inclusion in the network, an object and its associated
reactions must have been reported in peer-reviewed literature and
be based on observable, experimental data; inferences based only
on modeling alone are not sufficient.
To serve this purpose, the level of description for translation

includes a chemical accounting of ribosome assembly and
replication, as well as adjacent active site (A, P and E) interactions,
since each of these interactions has downstream effects on the
synthesis of biopolymers that enable autocatalytic replication of
the entire system (Fig. 2b). The chemical reaction network is
intended to focus on the cellular chemosynthetic process, and
does not explicitly include sequence-specific or site-specific
(physiological or anatomical) information of the cell.

A list of E. coli translation components was obtained from the
EcoCyc database79 (GO: 006412). Supplementary Data 1 sum-
marizes the components of translation used in this network, apart
from the ions and metabolites (e.g. GTPs) required to operate. The
reactions for tRNA aminoacylation by tRNA synthetases, rRNA
maturation and modifications, ribosomal protein modifications
and maturations and peptidyl tRNA hydrolysis were obtained from
the EcoCyc79 database and were also confirmed by literature
synthesis (Supplementary Table 1). The reactions for ribosomal
subunit assembly, initiation, elongation and termination steps and
stress response were built for E. coli. The generation of translation
reactions focused on five processes: (a) elongation, which is
largely conserved across all organisms; (b) initiation, where some
variations have been described between and within domains of
life; (c) termination; (d) translation machinery biosynthesis, which
are the assembly steps for replicating a ribosome; and (e) the
response to amino acid starvation. The reactions were manually
annotated. To describe the elongation process in detail, the
reaction model accounts for each of the three ribosome active
sites. This includes a large number of reactions describing each of
the distinct combinations of amino acids at each position. The
metabolic and translation component masses were retrieved from
the Kyoto Encyclopedia of Genes and Genomes (KEGG) Applica-
tion Programming Interface (API). The TM layer reaction network
file is provided in Supplementary Table 1.
The polymer biosynthesis layer was constructed to link the

metabolic and translation layers together by writing non-
stoichiometric reactions that approximate the assembly of amino
acids into the assembled enzymatic polypeptides. Each reaction
within the metabolic layer associated with a specific enzyme
resulted in a new reaction placed within the polymer biosynthesis
layer network. For reactions that involved multiple protein
components (i.e., the formation of multimer heterocomplexes),
the logical relationships of the protein components that enabled
specific reactions were automatically read and parsed to generate
protein-protein interaction maps within the molecular biosynth-
esis layer (Supplementary Table 1).
The translation process is carried out as a repetition of steps for

each of the proteins. Given that we are not considering sequence-
specific processes or relationships, we must employ a placeholder
“peptide” node that is used in chemosynthesis steps carried out by
translation prior to completion of enzyme synthesis. It denotes
any incomplete polypeptide sequence that is in the process of
being assembled through the translation process. It does not
possess any specific chemical function or identity that must be
subsequently tracked in other portions of the chemical reaction
network.

Metabolic reaction database
The metabolic layer was obtained from Feist et al.80, who
reconstructed E. coli metabolism. We linked these reactions to
their corresponding enzyme(s). We obtained chemical information
about each of these enzymes through KEGG (Supplementary
Table 1). We also considered metabolic models of alternative
strains of E. coli obtained from BiGG81. The subtle differences
between the strains do not lead to any significant difference in the
degree distributions (see Supplementary Fig. 1), so we only
consider one strain in this article (K12-MG1655)80 .

Chemical reaction network integration
All chemical reactions from each of the three layers (translation,
polymer biosynthesis and metabolism) were uniformly processed
into an aggregate network data file for graphing and analysis
(Figs. 1, 3a). The aggregate network data file forms a bipartite
graph with one class of nodes representing chemical compounds,
and another class of nodes representing logical chemical relation-
ships (i.e., chemosynthesis reactions and biosynthesis assembly
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processes) that describe generating biomolecules from underlying
substrates. The integrated network is composed of 1433 reactions
for translation, 1455 reactions for polymer biosynthesis and 2085
reactions for cellular metabolism, each with varying proportions of
intra- and internetwork connectivity (Supplementary Table 1).

Network visualization, processing, and analyses
We define the degree of a compound based on the number of
different reactions involving it (whether as reactant, product,
transporter or catalyst). We have built upon prior network analysis
efforts5 to explicitly consider enzymes and macromolecular
assemblies in addition to metabolites. The complementary
cumulative distribution function (CCDF), a binned list of the
number of compounds with a degree value in a given network,
was analyzed using the power-law Python library82 to determine
the likeliest statistical model distribution. We performed discrete
and continuous fits using models of exponential and power-law
distributions, and we compared the log-likelihood ratios among
them to determine if the degree distribution is homogeneous or
heterogeneous83.
Network visualizations with many pieces of information tend to

become cluttered, which can obscure observational insights.
Techniques that reduce a network’s information density without
altering its fundamental relationships are useful for recovering
these insights. We simplified network visualizations by grouping
sets of reactions into combined nodes (node-contracting) accord-
ing to their module labels. These labels were either provided by
the original metabolic data without further modification80

(e.g., transport, pyruvate synthesis, etc.), or manually assigned by
the authors for the translation network (e.g., elongation, initiation,
etc.). The term ‘module’ denotes a subset of nodes in a network
that are densely connected to each other, while being sparsely
connected or entirely disconnected from nodes in other
modules62,84. Compounds that participate only in reactions within
a single module are grouped within combined nodes with their
module labels, while those compounds that interact across
different modules are conserved and graphed as individual nodes.
The resulting contracted network is still a bipartite network with
modules connected by compounds. We contracted a network
formed by the translation and metabolism layers, and we perform
an analysis to find out which nodes are more relevant in the
traversal of this contracted network using the betweenness
centrality metric. This metric consists of measuring the number
of times that a node appears in the shortest path between two
different nodes:85

BC nð Þ ¼
X

s≠n≠t

σst nð Þ
σst

(1)

Where σst is the number of paths joining the nodes s and t, and
σstðnÞ is the number of those paths that pass through the node n.
Reaction directionality is accounted for when using this method. A
different contraction approach is taken in Fig. 3b, where we
collapse all the reactions belonging to the same layer, and we
represent in the edges the number of compounds that participate
within each layer or that connect the different layers.
The KEGG database provided the molecular structures and

sequences required to compute the molecular weight of each of
the chemical compounds (proteins, RNA, metabolites, etc.). In the
case of complexes, we add the masses of their components but
we disregard their stoichiometry of assembly due to a lack of
experimental information.
Large networks are highly dimensional objects where similarity

relationships are difficult to assess. Network embeddings allow the
mathematical representation of network entities to ease their
comparison86. The network embeddings are generated using the
node2vec algorithm30 as implemented in PyTorch Geometric87.
We use standard parameters to generate the embeddings. The

resulting 128 dimensions of each of these embeddings were
converted into 2D embeddings by using the t-distributed
Stochastic Neighborhood Embedding (t-SNE) technique. Visualiza-
tion of the integrated network and its individual layers was carried
out in Gephi 0.9.288. The code employed to perform this analysis
together with the data are provided in the article GitHub
repository https://github.com/kacarlab/Translation-Network.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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