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‘Social’ versus ‘asocial’ cells—dynamic competition flux
balance analysis
Yanhua Liu 1 and Hans V. Westerhoff1,2,3,4✉

In multicellular organisms cells compete for resources or growth factors. If any one cell type wins, the co-existence of diverse cell
types disappears. Existing dynamic Flux Balance Analysis (dFBA) does not accommodate changes in cell density caused by
competition. Therefore we here develop ‘dynamic competition Flux Balance Analysis’ (dcFBA). With total biomass synthesis as
objective, lower-growth-yield cells were outcompeted even when cells synthesized mutually required nutrients. Signal transduction
between cells established co-existence, which suggests that such ‘socialness’ is required for multicellularity. Whilst mutants with
increased specific growth rate did not outgrow the other cell types, loss of social characteristics did enable a mutant to outgrow the
other cells. We discuss that ‘asocialness’ rather than enhanced growth rates, i.e., a reduced sensitivity to regulatory factors rather
than enhanced growth rates, may characterize cancer cells and organisms causing ecological blooms. Therapies reinforcing cross-
regulation may therefore be more effective than those targeting replication rates.
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INTRODUCTION
The cells in a multicellular organism or in a stable ecosystem have
different inherent specific growth and turnover rates. Peripheral T
and B cells are renewed for 30~40% every 48 h1, red blood cells
every 120 days2 and brain cells rarely3. ‘Cell competition’ was first
mentioned in a study of ‘Minute’ mutants in Drosophila’s cell
division rate4. These mutants grew more slowly, resulting in their
elimination. Cell-cell competition for limited nutrients, growth
factors, or space can optimize tissue fitness by eliminating ill-
functioning cells through apoptosis5. Such competition can also
be exploited however by super-competitor cells, e.g., high Myc
expression cells outcompeting cells expressing little Myc6.
Cell-cell competition may involve both metabolism and signal

transduction, with signaling pathways regulating growth, apop-
tosis, engulfment and interaction between winner and loser
cells7,8. Competition between immune and tumor cells is an
emerging hallmark of tumors9. Additionally, tumor and host cells
may compete for metabolic resources10. Conversely, the lactic acid
secreted by many tumor cells may inhibit neighboring cells or
immune cells11,12, while ammonium secretion may do this for
tumors with the WarburQ phenotype13.
Understanding how cell-cell competition and intercellular

communication affect the stability of populations of cells of
different cell types, might help develop adjuvant therapies for
diseases where the balances between different cell types are
disturbed. These include autoimmune diseases, hyperplasia and
cancer14. Imbalance between the human body and its micro-
biomes may lead to additional diseases15.
Cells compete for nutrition such as glucose, glutamine and

oxygen. These compounds contribute to the cells’ growth
processes (e.g., ATP and biomass synthesis or lactic acid
secretion)11,12. Cells may also help each other. Lung cells help
provide heart cells with oxygen and heart cells help lung cells
through circulation, for instance. Yet, heart cells cannot grow as

much as they might ‘want’ because their excessive growth would
diminish nutrition for lung cells resulting in insufficient oxygen
availability for the heart cells. How cells make the necessary
‘informed’ choices in cell communities where metabolism is
involved, and what such informed choices are, is incompletely
understood. Flux Balance Analysis (FBA)16 has become the method
of choice for calculating balanced metabolism in complex net-
works. With some modifications it can simulate metabolism by
integrating gene mutation and nutrient concentration informa-
tion17, and identify drug targets18. However, to a system with
multiple cell types competing for nutrition, standard FBA is not
directly applicable as cell numbers and thereby balanced metabolic
fluxes vary over time. Dynamic FBA (dFBA) allows fluxes to vary with
time at time scales longer than time scales required for metabolic
relaxation inside the cells. dFBA typically uses kinetic equations for
dominant nutrient supply rates as functions only of concentrations
of growth substrates outside the network. This may work well for
single cell type growth19 or co-cultures on multiple nutrients20.
However, it addresses neither the impact of cell number variation
with time21 nor intercellular competition for nutrients. The cell
concentrations should be dependent on the dynamic nutrient
concentrations. Conversely the total nutrient uptake rate for each
cell type should be affected by cell concentrations. Whilst detailed
kinetic modelling22,23 could address metabolic networks with time
variant cell numbers and competition, it requires extensive kinetic
details that are largely unknown. It lacks the much-reduced
requirement of kinetic details that FBA offers.
This paper develops a form of FBA that deals with competition

between different cell types for nutrients as well as with cross
regulation of the same cells through signal transduction. The new
variant of FBA, called dynamic competition FBA (dcFBA),
integrates the cells’ competition for nutrients with the cells’
growth. These two factors are made mutually dependent and
variable. Cell number values calculated at each time point are
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subsequently employed to modulate the nutrient uptake rates,
effectively representing cell-cell competition. Applying this dcFBA
we elucidate the intricate behavior of diverse cell types within a
multicellular system, as they rely on intercellular metabolites or
growth factors for sustenance. We explore strategies to achieve
system stability. Moreover, the new dcFBA is harnessed to
simulate the behavior of ‘asocial’ cells and potential therapies
controlling such cells.

RESULTS
Neither competition for common substrate nor metabolic
cross-talk produces stable coexistence in standard FBA in a
two-cell types system
We first examined whether two cell types that compete for a
common metabolic substrate can reach steady coexistence. The
answer is “No” (Supplementary Fig. 1 and Supplementary Table 1,
Supplementary Fig. 2 and Supplementary Table 2). In the case of
Supplementary Fig. 3 where there is no competition for substrate,
both cell types can grow exponentially. The metabolic network
(Fig. 1) allows for the two cell types also to depend on each other
through ‘common goods’ X (produced by cell type 1) and Y
(produced by cell type 2) that both cell types require for their
synthesis of X or Y and their growth (Fig. 1a). Some glucose may
escape to by-product at flux rate ω. The scheme has 8 reactions, 5
metabolic intermediates (glucose, I1, I2, X, and Y) and one fixed flux
(the glucose influx). A flux balance analysis (i.e., requiring steady
state for the 5 intermediates) produced two modes of variation of
the system. We selected the flux to by-product and the difference
between the biomass synthesis rates of cell type 2 and cell type 1
(which we called β1 in Fig. 1a and β in Fig. 1b) as variables to
monitor these modes (Fig. 1a). With total biomass synthesis as

objective function, the flux to by-product dropped to zero (Fig. 1b).
Sections 1-3 of the supplementary results show that the optimal
flux always ran either to the ‘cheapest biomass’ (i.e. the biomass
with the highest growth yield) or to both cell types with different
growth fluxes (Supplementary Fig. 5 and Supplementary Table 3,
Supplementary Fig. 6 and Supplementary Table 4). Competition for
a common metabolic substrate and interdependence through
common goods such as in Fig. 1a does not suffice for coexistence
of cell types (also at stoichiometries of X and Y synthesis different
from 4 (Supplementary Note 3, Supplementary Figs. 7, 8)).
Figure 1c, d remind us that the actual network structure should

also require balances around the concentrations of biomass 1 and
biomass 2 (section 3-1 of Supplementary Results). These additions
did not really affect to outcome of Fig. 1b however: in the
corresponding Fig. 1d the growth rate of the cheapest cell type still
became persistently higher than the specific growth rate of the
more ‘expensive’ cell type. Consequently, no coexistence arose.
Figure 1c lacks an aspect of reality, however. If the biomass

synthesis flux of cell type 1 is lower than that of cell type 2 whilst
the sum of the two fluxes must equal the maximum 0.5, the
required synthesis rates of X and Y remain 1. The amount of
biomass of type 1 will however decrease with time. As time goes
on, the same amount of X has to be synthesized by less and less of
cell type 1. The FBA that we used up to this point neither
accommodates a maximum to the X synthesis per unit biomass of
cell type 1 nor that the growth cell type 2 should then stop,
perhaps causing coexistence. In the next sections we develop a
variant of the FBA that is able to address these issues.

Stepwise growth FBA for two-cell types system
We developed a ‘stepwise-growth FBA’ algorithm whereby at each
time point the rate of biomass synthesis is related to the cell

Fig. 1 Network structures of two cell types. Metabolic (a, b) and Growth-metabolic (c, d) network structures. The two cell types compete for
a common substrate and depend on common goods X and Y. Stoichiometries equal 1 except for the synthesis of 1/b C-mol biomass 1 from 1
C-mol of I1 and the producing of 4 molecules of X and Y from their respective precursors I1 and I2. Balanced flux values (in C-mol/time unit)
are written above or below the reaction arrows. In (a) and (c), ω can assume any positive value smaller than 1, whilst the growth bias β1 can
assume any value between -1�ω

4 and+ 1�ω
4 . In the optimal states (b, d) ω equals 0 and the growth bias is confined to a value that depends on

the biomass stoichiometry b of biomass 1. In (a): the metabolic network in which CO2 and biomass of both cell types constitute the output,
whilst glucose, I1, I2, X, Y are balanced metabolites. In (b): the optimal balanced flux pattern through the network of a with b= 1: ω, the flux to
by-product, equals zero. The optimal β can assume any value between −0.25 and +0.25. In (c): The metabolism-plus-growth network, with
fluxes balancing both around the metabolites (glucose, I1, I2, X, Y) and the biomass levels (biomass1 and biomass2). In (d): As (c) but with
optimal balanced flux values indicated: Again, ω= 0 and for b= 1, the optimal β can assume any value between −0.25 and +0.25. Otherwise
β=−0.25 (if b < 1) or +0.25 (for b > 1). For b= 1, the glucose consumption bias is equal to the biomass synthesis bias (i.e., β= β1).
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number. The points in Supplementary Figs. 11a–c display the
predicted cell numbers as functions of time for three growth rate
biases β. Again, one cell type ultimately outcompeted the other
cell type at any growth bias. Paradoxically, as cell type 1 with its
capacity to synthesize the common good X disappeared, cell type
2 continued to grow even though a shortage of X should arise.
The required capacity for X synthesis, i.e., the flux per unit cell 1,
increased to infinity (red line in Supplementary Figs. 11d–f).
We then set maximum production capacities of X and Y per unit

biomass of cell types 1 and 2 (as specified under Methods).
Initially, Biomass 2 again increased whilst Biomass 1 decreased
and with it its upper bound for X synthesis. After t= 12 months
(for β(0)= 0.05, Fig. 2a), the upper bound for X synthesis became
lower than what was required. Biomass 2 abruptly decreased with
time and the decrease with time of Biomass 1 accelerated. Total
biomass thereby also decreased with time, ultimately to zero. A
greater growth bias difference led to a shorter lifespan (i.e., a
shorter duration of community co-existence). Using the stepwise
growth algorithm with maximized metabolic capacities still no
stable coexistence was obtained thereby. The actual growth rate
bias βðtÞ ¼ b2 tð Þ�b1ðtÞ

2 changed with time to zero (Supplementary
Fig. 12). An exponential growth model (see Supplementary Figs. 9,
10) and a kinetic model integrated by Copasi24 (Supplementary
Fig. 13) did not reach coexistence either. Only less realistic cases
(e.g., μ1

kD1
¼ μ2

kD2
or ‘time variant death rate constants’) could lead to

coexistence (Supplementary Figs. 14, 17).

Stepwise growth FBA with cross regulation does show
stability
Now we introduce direct cross-regulation between the two cell
types. The biomass synthesis rate of cell type 1 b1;s;r ubðtÞ

� �
will

now be considered to be positively regulated (ε > 0, ε is the
‘elasticity coefficient’ of the regulation25) by the number of cells of
type 2 as represented by a factor B2;s;r tð Þ

� �ε
in the numerator (the

consequent negative dependence produces the required carbon
flux balance, i.e., the competition for the glucose). Cell coexistence
arose when the regulation power was strong enough (0.5 or 1 in
Fig. 3). The purple and yellow lines recall that in the absence of
such regulation (ε ¼ 0) no such stable coexistence developed. The
minimum regulation power (ε value) for coexistence at three initial
growth biases was 0.17 (for β(0)= 0.05), 0.36 (for β(0)= 0.1) and
0.92 (for β(0)= 0.2).
In the presence of the regulation, the steady state was reached

before the maximum capacity was hit. Consequently, the
metabolic limitation was now irrelevant for coexistence. Complete
regulation, i.e., an elasticity coefficient ε= 1, sufficed to bring the
two cell types into coexistence even if their inherent growth rates
differed by a factor of 9. At a high inherent growth bias, stable co-
existence required a strong regulation power (Fig. 3c). In the
kinetic model, co-existence could also be achieved when such
regulation was put in (see Supplementary Fig. 16), but again not
for the exponential growth model (Supplementary Fig. 15).

An asocial mutant in a stable two-cell types stepwise
growth system
We then introduced a third cell type, again under consideration of
growth optimization for total biomass synthesis, flux balance,
regulation, and limited metabolic capacity (Fig. 4). We modeled
the third cell type as a mutant of cell type 1 that continues to use
common goods X and Y and converts glucose to its intermediate
I3, and that produces X but has undergone a mutation interfering
with the cross regulation with cell type 2. As a control we first
considered a cell type 3 that was the same as type 1, i.e., neither
‘non-responsive’ nor ‘non-communicating’ (respectively meaning
that the mutant is not responsive to regulation by cell type 2, or
does not regulate cell type 2). The results (Supplementary Fig. 18)
were the same as in Fig. 3a with regulation power of 1. Then we
considered three cases for the new mutant: (1) both non-

Fig. 2 Biomass levels (B1, B2) and related biomass synthesis rate (b1 and b2) and the required X and Y production for cell type 1 and cell
type 2, respectively. a, d: β= 0.05; (b, e): β= 0.1; (c, f): β= 0.2. The Biomass levels and related biomass synthesis rates are calculated with
capacities of metabolic reactions (I1 to X and I2 to Y) limited to 3 times the corresponding Biomass level, as calculated using the stepwise-growth
FBA algorithm as described under Materials and Methods. Glucose influx was unlimited and glucose efflux absent. The FBA objective was maximal
total biomass synthesis, calculated by adding the balance between b1 and b2 and the death rate (Biomass 1 or Biomass 2 respectively, multiplied
by kD= 0.5/ts) after every time step of 0.1 month. The volume of the culture vessel was assumed to be 1 Liter (same in all calculations in the paper).
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responsive and non-communicating; (2) non-responsive; (3) non-
communicating.
In case 1 the mutant cell type 3 outgrew the other two cell

types, ultimately bringing all cell numbers down to zero. The
transient outgrowth of the mutant cells occurred even though it
had the same (or lower) inherent specific growth rate (0.2/ts) as
cell type 1 and an even lower inherent specific growth rate than
cell type 2 had (Supplementary Fig. 19 and Fig. 5). In the
‘unresponsiveness’ case 2, the mutant cell type 3 co-existed with
cell type 2, but outgrew cell type 1 (Supplementary Fig. 20). Since
the mutant (cell type 3) has the same functionality as its original
(cell type 1), it did not make the system unstable. In the ‘no
communication’ case 3 the mutant could not outgrow the other
two cell types and only existed at low concentrations. This may
simulate a benign tumor (Supplementary Fig. 21). That (see case 1)
in a system comprising of social cell types, the ‘asocial’ mutant
should outgrow the other cell types, might seem remarkable
because the signals it stopped responding to, appear to be

stimulatory. An increase in the number of type 2 cells was
modelled as enhancing the growth of the cell so that after the
mutation, this stimulation was lost, suggesting that the mutant
should be worse and not better off. That the result is the opposite
is due to the growth regulating factor being smaller than 1 and
proportional to cell numbers in order to control excessive cell
growth.

Three cell types regulating each other in the three-cell
types system
The emergence of the transformed cell type that has lost all
regulation through mutation is unlikely. Most breast cancers are
still estrogen dependent for instance26,27. We therefore also
considered the situation in which all three cell types continue to
regulate each other at various elasticities. When we increased the
reciprocal cross-regulation elasticity (γ value) between the normal
cells of type 1 and type 2 on the one hand and the ‘transformed’
cell type 3 on the other hand we found that already at the

Fig. 3 Stepwise growth of the two cell types system at various magnitudes of the regulation power ε and growth rate bias β.
βdef¼ μ2 � μ1ð Þ=2. In (a): β= 0.05; (b): β= 0.1; (c): β= 0.2; all three calculations with capacities of metabolic reactions limited as in Fig. 2. The value
of ε indicates the strength of the regulation power (ε= 0: without regulation). The purple and orange points show the biomass value for cell type
2 and cell type 1, respectively, without regulation. The light-blue and olive points show the biomass value for cell type 1 and type 2, respectively,
with regulation power of 0.5. The deep-sky-blue points and orange-red points are for the case with regulation power of 1, for cell type 1 and cell
type 2, respectively. The stepwise-growth-with-regulation FBA algorithm was used with total biomass production as objective function.

Fig. 4 The three cell types’ network. Cell type 3 is a mutant of cell type 1 just losing the regulation by and of cell type 2, and is taken to
exemplify an ‘asocial cell’ as it does not engage in cross regulation. All three cell types equally require X and Y for growth. Cell types 1 and 3
both produce X whilst cell type 2 produces Y.
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moderate regulation of γ= 0.5 cell type 3 no longer outgrew the
other two cell types (Fig. 6). For an initial population composition
of B1(0)= 0.39, B2(0)= 0.59 and B3(0)= 0.02, the minimal magni-
tude of γ for stability was around 0.3 at a death rate of 0.5/ts.
Additionally, we investigated the higher growth rate of cell type 3
with and without regulation by the other two cell types. Cell type
3 thrived at a high growth rate when regulation by the other two
cell types was active, leading to the observed coexistence
(Supplementary Fig. 22d). Also this result shows that cell
regulation rather than inherent growth rate, is the factor

determining whether cells out-compete each other or co-exist
(This was confirmed by kinetic modelling (Supplementary Figs.
25, 26)).

Only cell type 3 (mutant) being regulated by the other two cell
types (normal cells)
In actual situations the transformed cell is still reliant on the
normal cells’ activities. However, the tumor cell may not support
the normal cells in any way. When increasing the cross-regulation
(γ value) between the normal cells and the transformed cell, the

Fig. 5 Cell numbers of the three cell types with various differences between their inherent specific growth rates in the three cell types’
system. The reciprocal regulation between the ‘social’ cell types 1 and 2 had an elasticity of 1, (i.e., ε= 1). The third cell type was both ‘non-
responsive’, i.e., insensitive to such regulation, and ‘non-communicating’, i.e., did not regulate either other cell types. In (a): a lower inherent
specific growth rate for the asocial cell type 3 (i.e., μ3 < μ1 < μ2). In (b): an intermediate inherent specific growth rate for the asocial cell (i.e.,
μ1 < μ3 < μ2). In (c): a higher inherent specific growth rate for the asocial cell (i.e., μ1 < μ2 < μ3). Initial cell numbers were 0.39, 0.59, and 0.02
billion for cell types 1, 2, and 3, respectively. The stepwise growth FBA algorithm for the three cell types’ system with cross-regulation elasticity
(ε) of 1 between cell type 1 and type 2 was used for the dcFBA computations with total biomass synthesis as objective function and with the
metabolite production capacity limitation present. If no cell type 3 was added, the simulation was identical to that of Fig. 3a (ε= 1).

Fig. 6 Cell numbers developing over time in the three cell types’ system with various regulation powers (γ) from normal cell types to
type 3 and vice versa. a: γ ¼ 0 (no such cross regulation). b: γ ¼ 0:2. c: γ ¼ 0:5: d: γ ¼ 1: The regulation power between cell type 1 and cell
type 2 was taken ε ¼ 1 reciprocally. The inherent growth rate bias in favor of cell type 2 as compared to the other two cell types was taken to
equal β ¼ 0:05. The stepwise growth FBA algorithm for three cell types’ system with cross-regulation power of 1 (i.e., ε ¼ 1) between cell type
1 and type 2 and also regulation among three cell types, was used for the dcFBA computations with total biomass synthesis as objective
function and with the production capacity limitation present.
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transformed cell initially outgrew the other two cell types, but this
could subsequently lead to coexistence of the three cell types
(Fig. 7c). However, this coexistence is not a typical occurrence
since more often the normal cell count drastically decreased to
zero. As the regulation strength was increased to 0.4 or more, the
two normal cell types outgrew the transformed cell (as shown in
Fig. 7d).

Evaluation of therapeutic strategies based on model
simulations: specific cytotoxic treatments or therapies aimed
at restoring regulation
In the perspective that cell type 1 and cell type 2 represent normal
cells, and cell type 3 asocial (tumor or ecological bloom) cells, we
simulated potential therapies. We next modelled three interacting
cell types (1, 2 and 3) starting at initial cell numbers of 0.39, 0.59
and 0.02 billion, respectively. The inherent specific growth rates of
cell type 1 and 3 were taken equal at 0.2/ts and that of cell type 2
was taken 0.3/ts, with the same specific death rate of 0.05/ts for all
three. We chose a critical value of 0.4 billion for the tumor cell
number and simulated the therapy by reducing the tumor cell
number by 80% at the first (Fig. 8b) or at the first two critical time
points (Fig. 8c, d). Our results showed that continued therapy (i.e.,
a persistent decreasing of the number of the tumor cells) should
be necessary to keep the number of tumor cells from again
reaching the critical value and from causing the system to become
unstable (which we attributed to cells of type 1 or 2 dwindling to
0.1 billion (Fig. 8)). Although instantaneous therapies reduced the
number of tumor cells by 80%, they only increased the time at
which the system became unstable by approximately 10%.
However, by exposing tumor antigens this therapy has the

potential to activate the immune systems and increase the
concentration of antitumor T cells, which presumably outreaches
the suppression of immune inhibitory pathways by the tumor

cells. We simulated this by also tripling the death rate constant of
the tumor cells once their number had decreased to such a low
value (i.e., just after the second therapeutic intervention (Fig. 8d)).
The results confirm that as adjuvant to immune therapy this side
effect of killing tumor cells might be effective whereas it would
not be in the absence of the immune therapy (see however ref. 28).
Next, we investigated the effects of a particular drug or therapy

that restored the regulation to cell type 3 by type 2. The
simulation assumed that the drug would increase the elasticity of
cell type 3 with respect to regulation by cell type 2 (i.e., ε1) from 0
(without therapy) to 1.1 with therapy. We chose 1.1 because the
number for cell type 3 was dominant when therapy was needed.
Accordingly, the regulated strength should be higher than the
elasticity between cell types 1 and 2. At a critical tumor cell
number of 0.4 billion the therapy could prevent the system from
becoming unstable due to tumor cells increasing in its cell
number (Fig. 9b). Similarly, our results indicated that continuous
therapies would still be required to maintain the stability of
system unless the regulation could stay in place forever after one
or a few therapies. The development of drug resistance in tumor
cells might still lead to a gradual loss of efficacy, however. The
brown line in Fig. 9c shows the newly drug resistant tumor cells
increasing, whilst the original tumor cell was disappearing (the red
line).

DISCUSSION
A new, ‘dynamic competitive FBA’ (dcFBA) methodology was
developed and used to investigate the behavior of a multicellular
system over time. Mathematical equations set the reaction bounds
for a nutritionally competitive situation. The biomass values for
each cell type were incorporated into the nutrient uptake
equations. Additionally, the biomass synthesis was balanced to

Fig. 7 Cell numbers in the three cell types’ system with various regulation powers (i.e., various γ values) between cell type 3 and the
other two cell types. a: γ ¼ 0 (no such cross regulation). b: γ ¼ 0:2. c: γ ¼ 0:3: d: γ ¼ 0:4: The inherent growth rate bias in favor of cell type 2
as compared to the other two cell types was taken to equal β ¼ 0:05. We calculated over a longer time (i.e., t= 200 months) to show the
steady state. The stepwise growth algorithm in the three cell types’ system with cross-regulation power of 1 (i.e., ε ¼ 1) between cell type 1
and type 2 and also only regulation to the third cell type from the other two cell types was used for the stepwise-growth FBA computations
with maximal total biomass synthesis as objective and with maximum metabolic production capacity in place.
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account for cell number growth, wherein the biomass synthesis
was determined by competitive nutrient uptake. Small time
intervals were employed to iterate dynamic progress and the flux
balance requirement. The interplay among biomass synthesis, cell
number increase and nutrient uptake competition, governed the
growth of cell populations and influenced overall dynamics.
Comparing with dFBA, this new dcFBA method not only shows
how cell growth relates to competition for nutrients, but also puts
cell numbers into the nutrient uptake rate equation to show
competition mathematically. The dcFBA could also be used to
simulate interactions between cells through ‘growth factors’. For
two cell types with different inherent growth rates, regulation was
necessary to prevent one cell type from going extinct. In a three-
cell types system involving two normal cell types and a
transformed cell type, the loss of regulation led to the emergence
of ‘asocial’ cells that exploited resources from others. By using
dcFBA to simulate the persistence and growth of such asocial cells,
we showed that this asocialness and not a higher intrinsic growth
rate was responsible for the mutant outgrowing the normal cells
and for endangering the multicellular organism. Although this
result has been discussed29–31 previously, this is the first time its
feasibility has been demonstrated (and in this sense ‘explained’)
by using mathematical equations set in a relatively simple
modelling approach (i.e., dcFBA) and by assuming an objective
of cell proliferation (i.e., biomass synthesis, see below). Further-
more, dcFBA was applied to simulating drug treatments by
decreasing the cell number of tumor cells. We did not only show
that continuous therapy would be needed, but also that this may
prove ineffective due to the development of drug resistance.
Alternative therapeutic interventions restoring regulation in tumor
cells would also necessitate ongoing treatment. Nevertheless, the
latter approach should hold the potential of maintaining
regulatory control over the offspring of the tumor cells.

While the current system comprises only a limited number of
reactions, the obtained results will be similar when using more
complex metabolic maps to represent the different cell types (see
the supplementary material). The incorporation of additional
nutrients through such maps leads to increased nutrient
competition ultimately impacting biomass production and nutri-
ents uptake, which is similar to the findings presented here
(Supplementary Fig. 29). For understanding the full and detailed
complexity of ecosystems other modelling methods32,33, perhaps
in combination with dcFBA, should also be of great interest. dcFBA
developed here may also be useful for other issues around tissue
homeostasis, such as the control of liver size. Within minutes after
partial hepatectomy, mammalian liver exhibits regenerative
abilities, recovering to its original organ mass within weeks34,35.
The liver is also capable of returning to its normal size after
hypertrophy and/or hyperplasia, by the activation of regression
mechanisms (e.g., cell apoptosis), using mechanisms monitoring
cell number or cell size36. One may implement the dcFBA
developed here to try and describe this precise regulation and
the reason why there is no overgrowth. Another example may
reside in the competition between astrocytes and neurons for
amino acid uptake during brain development. In a previous
paper37, we developed another mode of competitive FBA to
demonstrate implications of the amino acid competition for
uptake across the blood-brain barrier. One may now fruitfully
combine the two new types of FBA and include neurotransmitter
cross-talk and metabolism. FBA differs from kinetic modelling in
requiring virtually no kinetic detail15. Since it is these kinetic
details that are still missing for the complex networks at hand, this
should make the dcFBA approach a useful addition to the
modelling toolbox, at least for the not-too-distant future.
FBA’s prediction of much fewer than all possible steady state

behaviors, requires the assumption that network behavior is

Fig. 8 Simulated therapy of decreasing only the tumor cell number by 80% when it reaches a critical value 0.4 billion. a: no treatment. b:
single instantaneous treatment at time 9.5 months. c: dual instantaneous treatment at times 9.5 and 12.1 months. d: the same as (c) but also
increasing the death rate constant of cell type 3 at t= 12.1 months by a persistent factor of 3. The stepwise growth algorithm in the three cell
types’ system with cross-regulation elasticity of 1 between cell type 1 and type 2 and no regulation of cell type 3 by the other two cell types
was used for the stepwise-growth dcFBA computations with maximal total biomass synthesis as objective. μ1 = μ3 ¼ 0:2; μ2 ¼ 0:3. The
different values of ‘t’ refer to the time of treatment.
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optimal, however. The optimality is usually assumed to corre-
spond to maximal growth rate of the cells in question16 and that is
what we also assumed here: maximality of total biomass synthesis.
However, one could try various objective functions (as Supple-
mentary Figs. 27, 28) and utilize a more suitable and precise
objective function for the specific FBA calculation as our previous
paper did, for a different circumstance37. In multicellular organ-
isms the specific growth rate of the various cell types is known to
be controlled tightly. We could have used this as starting point, for
instance by taking the specific growth rate of any one cell type
(perhaps ovary cells or pluripotent stem cells) as objective
function under the proviso that the specific growth rates of all
other cell types should be precisely the same (this in order to
prevent any one cell type from overgrowing all the others because
it has the highest specific growth rate). Instead we used the total
biomass synthesis rate as objective. And we examined under what
condition of cross regulation we obtained ‘stability’ (effectively
defined as the persistence of all cell types eventually at the same
specific growth rate), so that the relative numbers of the cells of
the different types would remain time independent. In section 10
of the supplementary material we used the biomass synthesis rate
of only one cell type as objective function and obtained essentially
the same results. A most important implication is that our paper
found an explanation for what we should otherwise have used as
a priori, i.e., that all specific growth rates are equal due to tight
control. We found that irrespective of the objective being total
biomass or the biomass of only one of the cell types stability
required such tight control. Another implication is that we found
the appropriate objective function for dcFBA.
Our study did not deliver detail. The integration of more

molecular, signaling and interaction information into FBA-kinetics
hybrid models may lead to a more realistic representation of
metabolic and signaling phenomena. Myc-mediated cell competi-
tion for instance is prevalent across different organs and tissues,
including fibroblasts38 and heart cells39,40 and plays a role in the
growth and expansion of cancer cells6,41–43. Overexpression of
Myc transforms tumor cells into super-competitors, enabling them
to eliminate adjacent wild-type cells44. The growth signaling
pathway in out-competed cells becomes impaired5, as evidenced
by the decreased decapentaplegic transduction observed in out-
competed cells45: the out-competed cells capture fewer growth
factors. The winner cells increase their engulfment46, thereby
acquiring more space and resources while evading regulatory
mechanisms from normal cells. Tumor cells also inactivate the
Hippo pathway, thereby promoting their own proliferation47. The
dcFBA developed here may be extended to deal with some of this
complexity.

Competition for nutrients, space, and growth factors is
ubiquitous in multicellular organisms. On the one hand, normal
or young cells compete with damaged or older cells to maintain
tissue homeostasis. Preventing such competition may result in
lymphoblastic leukemia48. On the other hand, when asocial tumor
or super-competitor cells engage in cell competition, normal cells
may be eliminated. Our findings suggest that the critical time (i.e.,
the time it takes for the tumor to grow to a critical size) can be
prolonged by increasing the initial cell number of normal cells (cell
type 1 and type 2) (Supplementary Fig. 23). This may imply that an
active body at a reduced glucose (metabolic substrate) level might
delay the growth of tumor cells, suggesting an alternative to
glucose fasting14. That also the cell-death rate constant affected
the critical time (Supplementary Fig. 24) suggests that elder
individuals may be more sensitive to competition by tumor cells.
Our results may further inspire the development of drugs or
therapies targeting the competition or cross-regulation, rather
than cytotoxic agents or growth rate inhibitors. A higher inherent
specific growth rate is unlikely to be the primary factor driving
tumor cell growth (Fig. 5 and Supplementary Fig. 22). When social
cells with a higher inherent specific growth rate were present, the
asocial cell type (cell type 3) was able to outgrow them but not
when the latter was social even if it had a higher specific growth
rate than the other cell types.
In this paper we employed mathematical equations to establish

the biomass synthesis balance within a meta-metabolic map (i.e., a
map involving more than one organism albeit in a drastically
simplified form), effectively illustrating cellular competition by
adjusting the cells’ nutrient uptake rates based on their respective
cell numbers. By applying this novel methodology we successfully
simulated a community comprising multiple cell types and
elucidated the critical role played by intercellular regulation in
the achievement of system stability. This approach may hold
potential for investigating complex microbial ecosystems, effec-
tively showcasing their intricate dynamics in terms of competition
and cooperation. It could provide a comprehensive understanding
of cellular interactions within a community, shedding light on the
factors that govern stability and cooperation in intricate biological
systems through mathematical equations.
Our observations of the effects of cell-cell competition and

cross-regulation may also be relevant more generally. Also, the
components of an ecosystem are interdependent and single
‘dominant’ species or mutants rarely thrive in isolation. Relevant
scenarios in global warming or human-induced pollution may be
analyzed by our new dcFBA methodology with a proper objective
function and network.

Fig. 9 Simulated therapy of restoring the regulation (to elasticity= 1.1) of the tumor cells by cell type 2 when the tumor cell number
attains a critical level (i.e., 0.4 billion), and also the drug resistance of tumor cells (i.e., the brown line, cell type 4). a: without treatment. b:
treatment at t= 9.5. c: treatments at t= 9.5 and t= 50, the latter time point arising drug resistance (brown line: cell type 4 is the same as the
tumor cell (i.e., the red line, cell type 3) but with drug resistance). The stepwise-growth FBA algorithm in the three cell types’ system with cross-
regulation elasticity of 1 between cell type 1 and type 2 and no regulation of cell type 3 by the other two cell types was used for the stepwise-
growth dcFBA computations with maximal total biomass synthesis rate as objective. ðμ1 = μ3 ¼ 0:2; μ2 ¼ 0:3). ‘t’ means the treatment time.
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METHODS
Model building—two cell types competing for common free-
energy/carbon substrate and interacting through
common goods
In all our models two (or three) cell types use glucose to produce
their own metabolic intermediate (I1 and I2, respectively)
(Supplementary Fig. 4). The so-called ‘common goods’ X and Y
are produced by cell type 1 and 2 from their respective metabolic
intermediates and are both required by both cell types to produce
their metabolic intermediate. Each cell type uses its intermediate
either to produce its own biomass (i.e., to increase its cell number)
or to produce one common good. The model also contains a by-
product reaction from glucose and a carbon dioxide secreting
reaction. In terms of carbon, our models transform half the
glucose into biomass and the other half into carbon dioxide, a
carbon/carbon yield that is not unusual49. The stoichiometries for
the GTI1 (glucose-to-intermediate-1) reaction (see Supplementary
Fig. 4) are taken to be -1 for glucose, X, and Y and +1 for I1. For
the GTI2 reaction they are analogously -1 for glucose, X and Y and
+1 for I2. For DI1X they are -1, +4, and +1 for I1, X, and CO2,
respectively. For DI2Y they are -1, +4, and +1 for I2, Y, and CO2,
respectively. For the reaction towards biomass 1 they are -1 and
+1 (or 1/b) for the intermediate I1 and the biomass 1, respectively.
For synthesis of biomass 2, these numbers are -1 and +1 for the
intermediate I2 and the biomass 2, respectively. In our simple
model, only glucose was supplied in the medium. This model may
correspond to the interaction between ‘lung cells’ and ‘liver cells’,
which both depend for their growth on externally supplied
glucose (for carbon), glutamine (for nitrogen) and oxygen (for
energetics) in the circulating blood. Lung cells oxygenate the
blood, whilst liver cells enrich it with glutamine. Both cell types
may use the glucose, glutamine and oxygen in growth and
respiration producing carbon dioxide and urea.
By using the COBRA routine50,51, FBA was performed with the

sum of the two biomass production fluxes as objective and the
maximum total biomass synthesis flux was determined. This
produced flux balances for glucose, X and Y, as well as I1 and I2.
Acknowledging that COBRA’s FBA only yields a single flux pattern
also when there are multiple equivalent patterns, we employed
Flux Variability Analysis (FVA)52 to compute the range of possible
flux patterns at the same maximum magnitude of the objective
function, by limiting each step to smaller absolute values. We also
checked the effect of making biomass 1 ‘more expensive’ by
making the production of biomass1 cost 2 units of I1, and biomass
2 ‘cheaper’ by requiring only one unit of I2 to produce 1 unit of
biomass 2. In other models the biomass 1 synthesis reaction only
produce 1/b C-molar of biomass per C-molar of I1 (The volume of
the culture vessel was assumed to be 1 Liter for all calculations in
this paper).

Growth FBA—dynamic cell competition flux balance analysis
for two cell types competing for a common substrate and with
time varying cell densities, without or with capacity
limitations, and with cross dependence through common
goods X and Y
According to the FBA the biomass synthesis fluxes should
optimally add up to 0.5 (This was because we assumed the
glucose uptake equaled 1. In cases where the glucose uptake
differs from this value, the equations should be adjusted).
Assuming that this optimum is achieved at all times, also as the
biomass concentration ratios change, the biomass synthesis fluxes
for biomass 1 and biomass 2, respectively, should tend towards

Eqs. (1) and (2).

b1;e;ubðtÞ ¼ 0:5 � μ1 � f 1ðtÞ
μ1 � f 1ðtÞ þ μ2�f 2ðtÞ

(1)

b2;e;ubðtÞ ¼ 0:5 � μ2 � f 2ðtÞ
μ1 � f 1ðtÞ þ μ2�f 2ðtÞ

(2)

with arbitrary functions f1(t) and f2(t) representing the growth
tendencies, and with μ1 and μ2 representing the inherent specific
growth rates.

Stepwise growth FBA for two cell types. We first assumed pre-
defined exponential functions of time for two growth tendencies,
and found that one cell type number reached 0 when time tended
to infinity (see Supplementary Material). We next developed an
FBA growth algorithm in which the growth kinetics would not be
pre-defined. At the glucose branch we considered fluxes towards
I1, I2 and an overflow flux ω, the rates of which we assumed to be
all proportional to the glucose concentration level. The biomass
synthesis ratios at the next time (t+ts, ts is a small (infinitesimal)
amount of time) was taken proportional to their cell number at the

time t b1;s;ubðtþtsÞ
b2;s;ubðtþtsÞ ¼ μ1�B1;s tð Þ

μ2�B2;s tð Þ
� �

. This was described as differing in μ,

but this could just as well reflect a difference in yield. With the
common goods balance met and the glucose influx fixed to 1, the
two fluxes towards biomass amounted to Eqs. (3) and (4).

b1;s;ubðt þ tsÞ ¼ 0:5 � μ1 � B1;s tð Þ � 1� ωð Þ
μ1 � B1;s tð Þ þ μ2 � B2;s tð Þ

(3)

b2;s;ubðt þ tsÞ ¼ 0:5 � μ2 � B2;s tð Þ � 1� ωð Þ
μ1 � B1;s tð Þ þ μ2 � B2;s tð Þ

(4)

Because the growth rates were reset at every time point of
computation, we called this the ‘stepwise-growth FBA’ procedure.
The rate of X synthesis required was equal to twice the sum of
these two fluxes. Hence the fluxes from glucose to I1 and I2 are
described by Eqs. (5) and (6).

v1;gðt þ tsÞ ¼ 1� ω

4
þ 0:5 � μ1 � B1;s tð Þ � 1� ωð Þ

μ1 � B1;s tð Þ þ μ2 � B2;s tð Þ
(5)

v2;gðt þ tsÞ ¼ 1� ω

4
þ 0:5 � μ2 � B2;s tð Þ � 1� ωð Þ

μ1 � B1;s tð Þ þ μ2 � B2;s tð Þ
(6)

Total biomass synthesis is described by Eq. (7).

b1;s;ubðtÞ þ b2;s;ubðtÞ ¼ 1� ω

2
(7)

When asking for maximal total biomass synthesis, and if the
metabolic capacities were not limited, ω became equal to zero
and disappeared from the equations. At every time point FBA was
carried out for the metabolic network of Supplementary Fig. 4,
with b1,s,ub and b2,s,ub as the upper bounds for the biomass
synthesis rates for cell types 1 and 2, respectively. This produced
the biomass synthesis fluxes b1;s;FBAðtÞ and b2;s;FBAðtÞ, which were
effectively equal to the upper bounds. Acknowledging that the
cells should also be subject to death processes (for which we used
a first order process with rate constant kD (we chose kD to equal
0.05/ts)), we calculated the Biomass concentrations for the two cell
types at each time point from Eqs. (8) and (9).

B1;s t þ tsð Þ ¼ B1;s tð Þ � 1� ts � kDð Þ þ ts � b1;s;FBA tð Þ (8)

B2;s t þ tsð Þ ¼ B2;s tð Þ � 1� ts � kDð Þ þ ts � b2;s;FBA tð Þ (9)

where ts= 0.1 month; B1(0)= 0.4 and B2(0)= 0.6 for β= 0.05;
B1(0)= 0.3 and B2(0)= 0.7 for β= 0.1; B1(0)= 0.1 and B2(0)= 0.9
for β= 0.2 (These values were the same for subsequent
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calculations unless specifically stated). We chose these values
because we wanted the whole system to be stable before it
became unstable (new biomass flux equaling the death flux). The
difference between the cell numbers at the beginning was in
accordance with their relative growth rates.

Limiting metabolic capacities. The FBA calculations using the
methods specified up to this point did not acknowledge any
possible capacity limitation for producing common goods X or
Y that would arise due to lack of sufficient cells of type 1 or 2,
respectively. The model continued to predict biomass synthesis
of cell type 2 even when cell type 1 (the sole producer of the X
required by cell type 2 for the synthesis of its intermediate I2
and thereby for its growth) had been outgrown. To address this
issue, we adjusted the upper bound for X and Y production so
as to be proportional to the cell numbers of type 1 and type 2,
respectively. Specifically, we set the maximum abilities to
produce X or Y to three times their respective calculated cell
numbers. After setting the reaction bound, we again ran the
FBA at every time point to compute the growth rates of two
cell types (i.e., b1;s;FBAðtÞ and b2;s;FBAðtÞ). By the usual multi-
plication of the biomass production fluxes by the duration of
the time step and by correction for cell death, we then
calculated the predicted cell numbers for each cell type. In an
alternative methodology, 1- ω in the Eq. (7) was replaced
according to Eq. (10).

1� ωðt þ tsÞ ¼ minimumð1; 4 � Vmax � B1 tð Þ; 4 � Vmax � B2 tð ÞÞ
(10)

We also developed a kinetic model based on irreversible mass
action rate equations and used Copasi24 to simulate the cells’
growth dynamics (See Supplementary Material, Supplementary
Tables 5, 6).

Regulation in stepwise growth FBA
We also considered cases where the two cell types depended
on each other for their growth also more directly than through
the common goods X and Y. We assumed that cell type 2
produced a growth factor that stimulated growth of cell type 1
without being consumed by it, and that the concentration of
that growth factor was proportional to the number of cells of
type 2. The regulation is assumed to depend on the activation
of a receptor by the binding of growth factor G, as described by
Eq. (11).

Gþ RRG (11)

Here G is the growth factor produced by cell type 2 and R is the
corresponding receptor in the plasma membrane of cell type 1. At
binding equilibrium is described by Eq. (12).

RF ¼ ½RG�
R½ � þ ½RG� ¼

½G�
½G� þ Kd

; (12)

where the regulation factor (RF) is the fraction of receptor bound
to growth factor G; Kd is the dissociation equilibrium constant. If α
is the ratio of the production rate constant to the first-order
dilution rate constant of G, then:

G ¼ α � B2 (13)

RF ¼ α � B2
α � B2 þ Kd

¼ B2
B2 þ Kd

α

(14)

The regulation factor will always be smaller than 1 and depend
on B2. For simplicity we used B2 (the number of cells of cell type 2)
to represent the activity factor which then acts at various different
strengths (We also tried using various values of Kd

α (e.g. 0.2, 1 and

5); this led to similar results as compared to when we chose the
number of cells of type 2 as regulation factor (see: Supplementary
Fig. 30)). We ensured that B2 ranged between 0 and 1, by
adjusting the unit for cell numbers (i.e., to a billion).
To simulate the regulation we made the rate of synthesis of cell

type 1 proportional to RF (and hence to the concentration of cell
type 2) taken to the power of the ‘elasticity’ ε (as described in
Eq. (15)).

b1;s;r;ub t þ tsð Þ ¼ 0:5�μ1 � B1;s;r tð Þ
� � � B2;s;r tð Þ

� �ε
μ1 � B1;s;r tð Þ

� � � B2;s;r tð Þ
� �ε þ μ2 � B1;s;r tð Þ

� �ε � B2;s;r tð Þ
� �

(15)

ε is the elasticity coefficient of the regulation25 akin to the
power in Biochemical Systems Theory53. The corresponding
dependence of synthesis of cell type 2 on the concentration of
cell type 1 reads as Eq. (16).

b2;s;r;ubðt þ tsÞ ¼ 0:5�μ2 � B1;s;r tð Þ
� �ε � B2;s;r tð Þ

� �

μ1 � B1;s;r tð Þ
� � � B2;s;r tð Þ

� �ε þ μ2 � B1;s;r tð Þ
� �ε � B2;s;r tð Þ

� �

(16)

Here b1,s,r,ub and b2,s,r,ub were again used to set the upper
bounds for the biomass synthesis reactions. After that we
obtained actual biomass synthesis rates for cell types 1 and 2
with regulation in stepwise growth, respectively. And we used
these values to calculate the cell number for cell types 1 and 2 by
Eqs. (8) and (9). Although in the beginning the inherent specific
growth rates for cell types 1 and 2 were μ1= 0.25-β and
μ2= 0.25+β, respectively, the two actual specific growth rate
tendencies would depend on time. We tried various regulation
powers (i.e., different values of ε) to set the reaction upper bound
for biomass production and to check how the cell number was
changing with time. As the equation does not contain a
predefined exponential growth tendency for the two cell types
but this growth tendency is set by the stepwise change in biomass
concentrations with time, we call this procedure ‘regulated
stepwise growth FBA’.

Three cell types
Stepwise growth FBA for two social cell types together with one
asocial cell type. After calculating the system with two cell types,
we added another cell type to the system. The third cell type was a
mutant of cell type 1 deficient in the communication with cell type
2. Otherwise it functioned identically to cell type 1. It still had the
ability to produce common good X, and used common goods X
and Y whilst converting glucose to its intermediate metabolite I3.
The model building file is provided in the folder ‘files’ in the GitHub
directory. The influx was again 1 C-mole/ts, the sum of biomass 1,
biomass 2 and biomass 3 synthesis was again 0.5 C-mole/ts. The
excess carbon produced in the reactions forming X and Y was
supposed to leave the system as CO2. We wanted to examine
whether there could be coexistence of the three cell types. We first
just studied the control case (i.e., ∂= 1 and ε1 ¼ ε; Eqs. (17) and
(18)) in which cell type 3 was the same as cell type 1, i.e., with
regulation to cell type 2 and responsive to cell type 2 regulation.
Then, we considered three ‘asocial’ cases, i.e., case 1 (‘non-
responsive and non-communicating’, i.e., cell type 3 neither
regulating/stimulating cell type 2, nor responsive to cell type 2
regulation, i.e., ∂= 0 and ε1 ¼ 0), case 2 (‘non-responsive’, i.e., cell
type 3 not regulated by cell type 2, cell type 2 still regulated by cell
type 3), i.e., ∂= 1 and ε1 ¼ 0, respectively. We also considered the
remaining case 3 (‘non-communicating’, i.e., cell type 3 not
regulating cell type 2, but still regulated by cell type 2, i.e., ∂= 0
and ε1 ¼ ε). With the common goods balance met and the glucose
influx fixed to 1, the three maximal fluxes towards biomass
amounted calculation were as described in Eqs. (17), (18) and (19).
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Here ‘ε’ or ‘ε1’ is the inter-regulation between cell type 1 or cell
type 3 with type 2 in this ‘three-cell-types’ stepwise growth. Unless
specified otherwise the inherent specific growth rates of cell types
1 and 3 were the same (μ1 ¼ μ3 ¼ 0:2=ts), while that of cell type 2
was higher (μ2 ¼ 0:3=ts).
As per the numerators of the Eqs. (17), (18) and (19) we tried

various values of ε and used these equations to set the upper
bound for the biomass synthesis rate for the three cell types. The
sum of the biomass synthesis rates of the three cell types was
again the objective function. After defining the model, we
calculated the relationship between the cell number and time by
using COBRA at every time step and then integrating over time by
the Eqs. (17), (18) and (19) for the Biomasses. Finally, we selected
case 1 (both non-responsive and non-communicating) for further
analysis because in that case cell type 3 was most similar in
behavior to tumor cells.

Three cell types regulating each other. We could not find a
coexistence for three cell types when we chose various ε values,
even though cell type 3 needed support from the other two in
terms of common goods X and Y. As cell type 3 modelled a tumor
cell, we considered it unlikely that it had completely lost all
regulation. Therefore, we next considered the regulatory interac-
tions among three cell types, whereby cell types 1 and 2 mutually
regulated each other with strength (elasticity25,53) ε, and were
both cross-regulating with cell type 3, and vice versa, with a
regulation strength (elasticity) γ. The regulation is described in Eqs.
(20), (21), (22) and (23).

FR1 ¼ μ1 � B1;s3;r1 tð Þ � B2;s3;r1 tð Þ� �ε � B3;s3;r1 tð Þ� �γ
þ μ2 � B1;s3;r1 tð Þ� �ε � B2;s3;r1 tð Þ � B3;s3;r1 tð Þ� �γ
þ μ3� B1;s3;r1 tð Þ� �γ � B2;s3;r1 tð Þ� �γ � B3;s3;r1 tð Þ

(20)

b1;s3;r1;ub t þ tsð Þ ¼ 0:5 � μ1 � B1;s3;r1 tð Þ � B2;s3;r1 tð Þ� �ε � B3;s3;r1 tð Þ� �γ
FR1

(21)

b2;s3;r1;ub t þ tsð Þ ¼ 0:5 � μ2 � B1;s3;r1 tð Þ� �ε � B2;s3;r1 tð Þ � B3;s3;r1 tð Þ� �γ
FR1

(22)

b3;s3;r1;ubðt þ tsÞ ¼ 0:5 � μ3 � B1;s3;r1 tð Þ� �γ� B2;s3;r1 tð Þ� �γ � B3;s3;r1 tð Þ
FR1

(23)

where ‘γ’ is the regulation power (elasticity) between the normal
cells and cell type 3, and vice versa. b1;s3;r1;ub, b2;s3;r1;ub and b3;s3;r1;ub
were again used to set the upper bounds for the biomass synthesis
reactions. After that, we obtained the actual biomass synthesis
rates for cell types 1, 2 and 3 in this three-cell-types system with
regulation, by implementing dcFBA at each time point with the
sum of their biomass synthesis rates as objective function. These
rates were then used for the calculation of the cell numbers.

Only cell type 3 (transformed cell) regulated by the two other cell
types (normal cells). In actual situations, the transformed cell
needs support from normal cells, but may not support the normal
cells in any way. Accordingly, we constructed another regulation
network through equations in which the normal cells regulated
the transformed cells, and not vice versa. The regulated equations
are described by Eqs. (24), (25), (26) and (27).

FR2 ¼ μ1 � B1;s3;r1 tð Þ � B2;s3;r1 tð Þ� �ε þ μ2 � B1;s3;r1 tð Þ� �ε � B2;s3;r1 tð Þ
þ μ3� B1;s3;r1 tð Þ� �γ� B2;s3;r1 tð Þ� �γ � B3;s3;r1 tð Þ (24)

b1;s3;r2;ub t þ tsð Þ ¼ 0:5 � μ1 � B1;s3;r1 tð Þ � B2;s3;r1 tð Þ� �ε
FR2

(25)

b2;s3;r2;ub t þ tsð Þ ¼ 0:5 � μ2 � B1;s3;r1 tð Þ� �ε � B2;s3;r1 tð Þ
FR2

(26)

b3;s3;r2;ubðt þ tsÞ ¼ 0:5 � μ3� B1;s3;r1 tð Þ� �γ� B2;s3;r1 tð Þ� �γ � B3;s3;r1 tð Þ
FR2

(27)

Again, we used Eqs. (25), (26) and (27) to set the upper bounds
for the biomass production reactions and performed the dcFBA
calculation with the sum of the biomass synthesis rates of the
three cell types as objective function. And we used the biomass
synthesis values obtained by the dcFBA to calculate the cell
numbers as in Eqs. (8) and (9).

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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