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Reliable interpretability of biology-inspired deep neural
networks
Wolfgang Esser-Skala 1 and Nikolaus Fortelny 1✉

Deep neural networks display impressive performance but suffer from limited interpretability. Biology-inspired deep learning,
where the architecture of the computational graph is based on biological knowledge, enables unique interpretability where real-
world concepts are encoded in hidden nodes, which can be ranked by importance and thereby interpreted. In such models trained
on single-cell transcriptomes, we previously demonstrated that node-level interpretations lack robustness upon repeated training
and are influenced by biases in biological knowledge. Similar studies are missing for related models. Here, we test and extend our
methodology for reliable interpretability in P-NET, a biology-inspired model trained on patient mutation data. We observe
variability of interpretations and susceptibility to knowledge biases, and identify the network properties that drive interpretation
biases. We further present an approach to control the robustness and biases of interpretations, which leads to more specific
interpretations. In summary, our study reveals the broad importance of methods to ensure robust and bias-aware interpretability in
biology-inspired deep learning.
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INTRODUCTION
Artificial neural networks and deep learning have demonstrated
impressive performance in a wide range of prediction tasks from
images to languages and board games1. Deep learning has
equally impacted biomedical research, with striking successes in
predicting protein structure from sequences2 or skin cancer from
images3. Despite these successes, neural networks often remain
“black boxes” that defy description by human-understandable
terms4. This remains one of the critical limitations of deep learning
algorithms for scientific, safety, ethical, and other reasons5,6, and
numerous approaches have been developed to make deep
learning more interpretable7.
Interpretation approaches of deep learning models are primarily

focused on the feature level8–10. In computational biology11,12, a
recent alternative approach utilizes prior knowledge on biological
networks to influence the structure of the neural network, in so-
called “visible”, “biologically-inspired”, or “knowledge-primed”
neural networks13–18. In such biology-inspired deep learning
models, hidden layers consist of nodes that correspond to
biological entities, for example, Gene Ontology (GO) terms15,
Reactome pathways17, or signaling proteins16. Layers are then
sparsely connected based on existing knowledge of relationships
of the encoded biological entities. The architecture of biology-
inspired models is thus informed by domain knowledge, which
enables a unique interpretability11,12: After training, a measure of
importance is calculated for each node in the hidden layers (“node
importance score”), which quantifies the importance of each
biological entity in the network for the prediction task. For
example, the P-NET model17 used mutation data to predict cancer
state (primary versus metastatic cancer) in a network, where
hidden nodes correspond to genes and Reactome pathways, thus
identifying genes and pathways relevant for metastasis.
As with most computational analyses, it is critical for the above

models to provide accurate interpretations7,8,11,19, especially in
view of their potential clinical relevance17. However, interpretation

accuracy is challenging to measure due to the lack of appropriate
gold standards20. This is in contrast to prediction accuracy, which
is readily quantified using cross-validation21. We previously
identified two key critical aspects for the reliable interpretability
of knowledge-primed neural networks (KPNNs)16: (i) the robust-
ness of node importance scores upon repeated training (also
called “un-identifiability”11), and (ii) the interpretation biases
induced by using biological network knowledge. To date, it is
unclear whether or how robustness and bias-susceptibility affect
different biology-inspired deep learning models. Indeed, broadly
reviewing biology-inspired models13–15,17,18,22–41, we found that
(out of 25 models) only the BIOS model25 was trained in replicates,
and only the DTox model23 compared interpretations to networks
trained on shuffled labels to rigorously control robustness and
network biases.
Here, we analyze robustness and bias-susceptibility in the P-NET

model17 and show that they limit interpretation accuracy. We next
demonstrate how control experiments improve interpretation
accuracy and thus enable more reliable interpretability. Found
relevant in KPNNs and the P-NET model, our results suggest that
robustness and bias-susceptibility are generalizable aspects that
affect interpretation accuracy. In summary, our analyses demon-
strate the impact of robustness and bias-susceptibility on
interpretability and propose generalizable control algorithms,
which improve the reliable interpretability of biology-inspired
neural networks.

RESULTS AND DISCUSSION
We first sought to assess whether robustness and bias-
susceptibility affect interpretations beyond KPNNs and thus
examined them in the P-NET model17, one of the most prominent
examples of biology-inspired deep learning. P-NET uses a biology-
inspired architecture of 9229 genes and 3073 curated biological
pathways over 6 layers, which were trained on genomic data of
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1013 prostate cancer patients to predict whether patients
developed metastasis. After training, P-NET uses DeepLIFT to
obtain the importance scores for hidden nodes, which are
ultimately used as interpretations. To assess the reliability of
P-NET interpretations, we downloaded the algorithm and
reproduced the original network and importance scores using
the provided random seeds. Next, we assessed robustness by
repeatedly training networks with varying initial weights and
assessed bias-susceptibility by training on artificial control data.
Finally, we corrected importance scores to yield bias-free and
more specific interpretations.

Repeated network training measures the robustness of
interpretations
Robustness of node importance scores refers to the observation
that repeated training of a given network on the same data can
result in different interpretations in the obtained “replicate
networks”, even if they achieve similar prediction accuracy. This
lack of consistency is due to the random initiation of weights,
which enables a network to “choose” among multiple informative
input features. This in turn leads to differences in trained weights
and, ultimately, importance scores. To estimate the thus caused
uncertainty of interpretations, multiple networks with the same
network structure, input, and output need to be trained, resulting
in a distribution of importance scores16,42.
To assess the robustness of P-NET, we retrained the model 50

times with different initial weights (Fig. 1a) by varying the random
seed before training (see methods for details) and thereby
obtained importance scores as in the original network

(Supplementary Fig. 1). We then compared our replicate networks
to the original network, which was originally published based on
one specific random seed. From the replicate networks, we
obtained a distribution of importance values for every node.
Notably, importance scores from replicate networks are equally
plausible as those from the original network, because (i) the
random seed is neither a meaningful nor tunable (hyper)
parameter, and (ii) all replicate networks had comparable
predictive power to the original network (Fig. 1b). For many
nodes, the importance scores from replicate networks were similar
to the importance scores from the original network. However, in a
significant number of cases, the original scores diverged from the
scores from replicate networks (Fig. 1c, d). For example, in layers 5
and 6, the most important node of the original network was
ranked only second in the replicate networks.
Importantly, these observations are not limited to P-NET and

KPNNs. To demonstrate the broad relevance of assessing
robustness, we analyzed interpretations in the DTox model23

(Supplementary Fig. 2). Training replicates of DTox, we found a
wide spread of correlations between replicate networks, ranging
from highly positive (maximum R= 0.98) to highly negative
(minimum R= -0.98) correlations, which shows a limited
robustness.
Taken together, our analyses of the P-NET and DTox models

demonstrate that interpretations are affected by the choice of
initial weights, which are randomly and thus arbitrarily selected. In
line with previous research16,42, our results show that repeated
network training is required to assess the robustness of
interpretations in different biology-inspired models and that

Fig. 1 Robustness of interpretations of the P-NET model. a Outline of the experimental approach. b ROC curves for the original setup and
replicate networks. c Node importance in replicate networks (n= 50 replicate networks; trained with different random seeds for weight
initiation) compared to original importance (trained with seeds from the published model). d Change of node importance scores in one
representative replicate network (black lines) compared to the scores in the original network (red dots). Boxes display the median value and 25
and 75% quartiles; the whiskers are extended to the most extreme value inside the 1.5-fold interquartile range; dots show outliers.
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averaged interpretations of replicate networks provide more
reliable interpretations than individual networks11.

Control inputs reveal interpretation biases under high
prediction accuracy
Biological networks are highly biased with very few highly
connected nodes (hubs) and many nodes with fewer connec-
tions43, which can influence the importance scores of biology-
inspired neural networks. In our previous work on KPNNs, we
found that hubs tend to get larger importance scores than less
connected nodes, irrespective of the input data, since hubs have
access to more input features and thus more information16.
To assess whether network biases affect importance scores in P-

NET, we used “deterministic” control inputs, an approach we
previously developed for KPNNs16. These control inputs are
artificially designed such that every input feature is perfectly
correlated with the target labels and can thus perfectly predict the
labels (Fig. 2a). Since all control features are equally informative,
the differences in importance scores between nodes (after
training) are solely driven by the network structure and not by
the data. Training P-NET on our deterministic inputs, we observed
clear differences of importance scores between nodes (Fig. 2b),
demonstrating that some nodes receive high importance scores
purely based on network biases. Importantly, these scores were
reproducible across 50 replicate networks trained on deterministic
inputs, demonstrating that the observed differences in impor-
tance scores reveal biases inherent to the prediction task, and not
random variability that may arise from random weight initializa-
tion. Deterministic control inputs thus enabled us to robustly
assess the influence of network biases on node importance scores
in the extreme case of an “easy” prediction task with a very high
prediction performance (i.e., an AUC close to 1; Fig. 2c).
We next assessed whether importance scores obtained from

training on original input data differed from those obtained from
training on deterministic control inputs (Fig. 2d). Indeed,
importance scores from real data greatly exceeded those from
control inputs for nodes with high importance scores. The
resulting large “differential” node scores (obtained from compar-
ing importance scores from original data to deterministic inputs

for each node) suggest that the top nodes are important beyond
what is expected from network biases alone and are thus reliable
interpretations. However, beyond the top nodes, we found many
nodes with control importance scores that equaled or exceeded
real importance scores, indicating an inflated importance measure
that is mainly driven by network biases. In summary, our
deterministic control inputs revealed the effect of network biases
on importance scores and enabled a differential analysis that
corrects for the observed biases.

Label shuffling reveals biases under low prediction accuracy
While our deterministic control inputs rely on perfectly predictive
inputs, we next sought to examine biases under the opposite case,
i.e. networks with limited predictive power. To this end, we
randomly shuffled output labels, an approach commonly used to
assess biases in prediction performance such as class imbalance
(Fig. 3a). We shuffled target labels before training, such that the
prediction algorithm should only be able to learn spurious
relationships in the training data (i.e., an AUC close to 0.5 on
the test data). With regards to interpretability, shuffled labels
complement deterministic control inputs: While interpretations
from deterministic inputs (Fig. 2) reveal network biases under high
prediction accuracy, interpretations from shuffled labels reveal
biases under low prediction accuracy. After training the P-NET
model on shuffled labels, we again observed a distribution of
importance measures across nodes (Fig. 3b) and an expectedly
low prediction performance on test data (AUC close to 0.5; Fig. 3c).
Similar to the node importance scores obtained from deterministic
inputs (Fig. 2), importance scores from shuffled labels were also
reproducible across replicate networks (Fig. 3c), demonstrating
that node importance scores reflect network biases and are not
random. In contrast to deterministic inputs, we found that
importance values from shuffled labels were on a similar scale
to those from original labels (Fig. 3d). Therefore, for some of the
top nodes (with the highest original importance scores), the high
importance scores from shuffled labels suggested a large
influence of network biases.
Taken together, shuffled labels and deterministic control inputs

provide two approaches to assess network biases from both

Fig. 2 Network biases in the P-NET model based on deterministic input data. a Experimental approach. b Node importance derived from
deterministic inputs (n= 51 replicate networks), where every input feature is perfectly correlated with the target labels. c ROC curves for the
original setup (from Fig. 1) and replicate networks. d Comparison of importance scores for deterministic (n= 51 replicate networks) and
original input data (n= 51 replicate networks). Boxes display the median value and 25 and 75% quartiles; the whiskers are extended to the
most extreme value inside the 1.5-fold interquartile range; dots show outliers.
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angles: low and high prediction accuracy. To better understand
the similarities and differences of these approaches, we compared
importance scores across the three experimental setups (original
setup, deterministic inputs, or shuffled labels; Fig. 4), which
confirmed that node importance scores were reproducible across
replicate networks within each setup. Interestingly, scores
calculated using shuffled labels were more similar to scores
obtained in the original setup (Pearson’s R= 0.48) than scores
derived from deterministic inputs (Pearson’s R= 0.25). These
observations were consistent across all layers (Fig. 4) and within
each layer (Supplementary Fig. 3).

Control experiments capture network biases
As both control approaches yielded reproducible but different
importance scores, we next sought to assess which network
properties may be captured by each approach. We correlated
importance scores to measures of node centrality, which provide
network-based and node-level measures of network biases (Fig. 5,
Supplementary Fig. 4). Indeed, we found that importance scores
were highly correlated with network reachability and between-
ness in the original P-NET setup and in the setup using shuffled

labels. Node reachability measures the number of nodes from a
given node is “reachable” through paths of any length44. In a
neural network, reachability can be interpreted as the amount of
information available to a given node16. Betweenness measures
the number of shortest paths between all pairs of nodes that path
through a given node. Both measures rely on paths through the
network, thus measuring “global” node properties. Interestingly,
both measures were also highly correlated (Supplementary Fig. 5),
which is not a general observation44 but likely due to the
particular architecture of feed-forward neural networks16.
In contrast to the above global measures, importance scores

were less correlated with node degree, which measures the direct
neighbors of each node and is thus a local measure. Of note,
P-NET implements a normalization of importance scores based on
node degree in order to attenuate importance measures of highly
connected nodes. Our results, which were obtained after this
normalization, demonstrate that a normalization based on local
network measures does not sufficiently correct for network biases
of interpretations.

Correction approach yields more reliable and specific
interpretations
To obtain interpretations that account for robustness and network
bias, we calculated differential importance scores by comparing
importance scores from the original setup to the control of
shuffled labels (Fig. 6), thus comparing the original scores to a
background. A positive differential score indicates that a node is
more important than expected from network biases alone. A score
close to zero or a negative score suggests that importance is
either driven by network biases or less than expected by these
biases, respectively. We focused our analyses on the first (gene)
layer, which was also the focus of interpretations in P-NET17: First,
AR has a highly positive differential score, suggesting that this
gene is much more relevant than expected from network biases.
This highlights the important and highly specific role of androgen
signaling in prostate cancer, which is supported by numerous
publications45–47. Second, TP53 received a negative differential
score, indicating that the importance is driven by network biases.
Indeed, TP53 is a highly multifunctional gene and known to bias
computational analyses48. Third, MDM4 had a positive differential

Fig. 3 Network biases in the P-NET model based on shuffled target labels. a Experimental approach. b Node importance derived from
shuffled labels (n= 51 replicate networks). c ROC curves for the original setup (from Fig. 1) and replicate networks. d Comparison of
importance scores for shuffled (n= 51 replicate networks) and original labels (n= 51 replicate networks). Boxes display the median value and
25 and 75% quartiles; the whiskers are extended to the most extreme value inside the 1.5-fold interquartile range; dots show outliers.

Fig. 4 Comparison of network biases across control experiments.
Correlation (Pearson’s R) of node importance scores from all layers
across experimental approaches. Each of the 103 rows and columns
(51 seeds x 3 setups) represents a different network.
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score, showing that this gene is specific to the process studied,
which is supported by the experiments performed in the P-NET
publication17. Differential importance scores thus suggest a much
more specific and critical role of androgen signaling (AR) in
pancreatic cancer compared to TP53, which is in line with existing
literature45–47.
To further validate the increased specificity obtained by

correcting node interpretations, we trained the P-NET model on

the MSK-IMPACT 2017 dataset49 (see methods for details), a
dataset that contains genomic data similar to the data used in
original P-NET model but from different cancers (Supplementary
Fig. 6). We trained replicate P-NET networks on genomic data from
four cancers (non-small cell lung, breast, colorectal, and prostate)
to predict metastasis and then compared node importance scores
between cancers. Interestingly, when comparing raw importance
scores, we found a strong correlation (from R= 0.55 to R= 0.83)

Fig. 5 Interpretation biases are reflected by network centrality measures. a Correlation (Pearson’s R) of node importance scores and
network centrality measures. Gray denotes missing values. Indegree and outdegree correspond to the number of nodes to which a given
node is connected in the previous and following layer, respectively. Reachability denotes the number of nodes from which a node is
reachable. The betweenness is related to the number of shortest paths between all pairs of nodes that pass through a node. Notably, some
layers contain nodes with a single value for the centrality measure. For instance, all nodes in layer 1 have indegree 3 (three predecessors with
mutation, copy number amplification, and copy number deletion data) and thus a reachability of 4 (since the node is reachable from its
predecessors and from itself ). b Exemplary scatterplots for the cells highlighted in (a); each point corresponds to a hidden node (n= 113 in
each panel).

Fig. 6 Correction approach in the P-NET model. Raw importance scores (original setup) shown on the y-axis are compared to control
importance scores (shuffled labels) on the x-axis. Vertical bars are shown for nodes with high scores (i.e., scores greater than one in either
approach) and show differential importance scores. In each layer, the five nodes with the highest importance score in the original setup using
the original seed are labeled.
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between cancers, demonstrating that interpretations were not
specific to the cancer and input data but likely driven by other
factors such as network biases. In contrast, after correcting
importance scores by calculating differential scores, correlations
between different cancers significantly decreased (from R= -0.02
to R= 0.47). This demonstrates the ability of our correction
procedure to remove biases from interpretation scores, resulting
in corrected scores that are more specific to the dataset (or here
cancer) studied. Taken together, our results from the original
P-NET dataset and from MSK-IMPACT 2017 show that our
correction approach corrects interpretations, removing biases
and revealing effects that are specific to the biological process
studied.

DISCUSSION
Biology-inspired neural networks enable a unique type of
interpretability by incorporating domain knowledge of biological
relationships into the architecture of deep learning models11,12.
However, critical steps must be taken to ensure reliability of
interpretations. Our results demonstrate that robustness and
network biases, which we previously studied in KPNNs16, broadly
affect biology-inspired models. We further demonstrate that
control methods can improve the accuracy of interpretations
but are lacking in the field of biology-inspired deep learning.
Controlling robustness, we repeatedly trained identical net-

works on identical data, which reveals that interpretations vary
based on the choice of randomly initiated weights. Similar
observations have been made for autoencoders42 or logic
models50,51 and can likely be expected for any algorithms relying
on random initial parameters. Robustness towards small changes
in the model or data has been widely recognized is key for
machine learning19. For example, in graph neural networks,
“stability” is quantified upon small perturbations of nodes or
edges52. Here, we demonstrated that dedicated analyses are
required to ensure robustness for biology-inspired neural
networks.
Controlling for network biases, we used deterministic inputs

and shuffled labels. These analyses revealed that, without controls,
certain nodes receive higher importance scores based on their
position in the network but independently of input data and
output labels. Network biases specifically affect biology-inspired
neural networks, where interpretations are focused on hidden
nodes, and have not been described for other interpretation
algorithms focused on input features. However, similar biases have
been shown to bias gene function predictions in biological
networks48 and thus likely represent a general aspect of working
with biological networks.
Taken together, we have confirmed challenges for interpret-

ability in the P-NET model17 and have described and characterized
control experiments. We expect that these findings will also be
relevant for other biology-inspired neural networks or related
machine-learning interpretation methods.

METHODS
Preparation of P-NET for manual selection of random seeds
P-NET uses two hard-coded random seeds to ensure reproducible
network training. In order to facilitate manual selection of these
seeds, the P-NET code was downloaded from GitHub (https://
github.com/marakeby/pnet_prostate_paper, commit 2b16264
dated 2021–11–15), and the files pipeline/one_split.py and train/
run_me.py were modified. These modifications allowed us to
specify two seeds as command line arguments when running the
latter script. The Python environment (comprising Python v2.7.15
and TensorFlow v1.12.0) was set up via conda (v4.10.3) through
the environment.yml file provided in the P-NET repository. In order

to facilitate reproducible analysis across platforms, a Docker
container with P-NET installed is available from our GitHub
Container registry (ghcr.io/csbg/pnet-container).

Training of replicate networks in the P-NET model
In each of the three experimental setups described below, P-NET
was trained repeatedly, once with the original random seeds (234
and 20080808) and 50 times with seeds ranging from 0 to 49. As the
value of the random seed influences the choice of initial weights,
this enables us to assess robustness of interpretations. The number
chosen (50 replicate networks) enabled us to estimate a distribution
of importance scores (for the robustness analysis in Fig. 1) and was
sufficient to show clear differences in importance scores of
interpretations from the original setup and the control experiments
(Figs. 2, 3). Training was conducted on an HP EliteBook 850 G7
containing an Intel Core i5–10210U CPU (4 cores, 1.6 GHz). In all
setups, the training, validation, and test set comprised 80%, 10%,
and 10% of the data, respectively. (a) The original setup utilized the
P-NET input data files available for download (https://
drive.google.com/uc?id=17nssbdUylkyQY1ebtxsIw5UzTAd0zxWb).
(b) Deterministic control inputs were obtained by modifying two
P-NET input data files: _database/prostate/processed/P1000_final_a-
nalysis_set_cross_important_only.csv, a binary matrix describing the
presence (1) or absence (0) of at least one mutation in 14378 genes
of 1011 samples; and _database/prostate/processed/P1000_data_C-
NA_paper.csv, a decimal matrix describing copy number alterations
in 13802 genes of 1013 samples. (In the latter matrix, P-NET
interpreted values above 1.5 as presence of copy number
amplification and values below –1.5 as presence of copy number
deletion). These matrices were modified such that in all samples
labeled as metastatic, each gene was characterized by mutation
(value 1) and copy number amplification (value 2), while in the
samples labeled as normal, each gene received values denoting wild
type (value 0) and normal copy number (value 0). (c) Shuffled labels
were obtained by randomly labeling all 1013 samples listed in
_database/prostate/processed/response_paper.csv as either meta-
static (value 1) or normal (value 0) while ensuring equal class
frequency.

Training of replicate P-NET networks on MSK-IMPACT 2017
data
P-NET was trained repeatedly (n= 51, as described above) on
the MSK-IMPACT 2017 dataset49 in two experimental setups: (a)
The original setup utilized labels (primary or metastatic),
mutations (detected in 414 genes), and copy number variations
(detected in 410 genes) from the dataset. (b) Shuffled labels,
with the same input data but shuffled output labels as described
above for the original P-NET dataset. Both experimental setups
were applied to the four most frequent cancer types in the
dataset: non-small cell lung cancer (1668 samples), breast cancer
(1337 samples), colorectal cancer (1007 samples), and prostate
cancer (717 samples).

Training of replicate networks in the DTox model
DTox23 uses one hard-coded random seed to ensure reproducible
network training. In order to facilitate manual selection of this
seed, the DTox code was downloaded from GitHub (https://
github.com/EpistasisLab/DTox, commit 10c909b dated
2022–10–13), and the files code/dtox.py and code/dtox_lear-
ning.py were modified. These patches allowed us to specify a seed
when running DTox and to export predicted labels. The Python
environment (comprising Python v3.7.3 and torch v1.10.1) was set
up via conda (v23.3.1) through the environment.yml file provided
in the DTox repository. A Docker container with DTox installed is
available from our GitHub Container registry (ghcr.io/csbg/dtox-
container).
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DTox was trained repeatedly, once with the original random
seed (0) and 50 times with seeds ranging from 1 to 50. All other
settings were kept consistent with the original DTox publication:
To train and test each network, we used the dataset available in
the DTox GitHub repository (in the folder data/example). Both the
training and test set comprised 500 compounds each (samples),
characterized by a 166-bit MACCS fingerprint, from which binding
probabilities for 361 target proteins were calculated as a
preprocessing step. Node importance scores were calculated for
those 97 compounds that showed activity in a mitochondria
toxicity screen.

Data analysis
All analyses were conducted in R (v4.3.1)53. ROC curves were
calculated by the ‘roc_curve’ function in yardstick (v1.2.0)54. Node
importance scores from all layers across experimental approaches
were compared by calculating Pearson correlation coefficients rij
(R function ‘cor’) and using these coefficients as distances 1 – rij for
hierarchical clustering (R function ‘hclust(method = “complete”)’).
Network centrality measures were calculated by igraph (v1.4.3)55.
Figures were plotted with ggplot2 (v3.4.2)56 and Complex-
Heatmap (v2.16.0)57. To calculate differential importance scores,
we normalized scores using the function ‘normalizeQuantiles’
from limma (v3.56.2), and subtracted control importance scores
from those from the original setup. Shuffled labels were used as
the control and scores from replicate networks were averaged for
each node.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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