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BioNetGMMFit: estimating parameters of a BioNetGen
model from time-stamped snapshots of single cells
John Wu 1,2✉, William C. L. Stewart3, Ciriyam Jayaprakash4 and Jayajit Das2,5✉

Mechanistic models are commonly employed to describe signaling and gene regulatory kinetics in single cells and cell populations.
Recent advances in single-cell technologies have produced multidimensional datasets where snapshots of copy numbers (or
abundances) of a large number of proteins and mRNA are measured across time in single cells. The availability of such datasets
presents an attractive scenario where mechanistic models are validated against experiments, and estimated model parameters
enable quantitative predictions of signaling or gene regulatory kinetics. To empower the systems biology community to easily
estimate parameters accurately from multidimensional single-cell data, we have merged a widely used rule-based modeling
software package BioNetGen, which provides a user-friendly way to code for mechanistic models describing biochemical reactions,
and the recently introduced CyGMM, that uses cell-to-cell differences to improve parameter estimation for such networks, into a
single software package: BioNetGMMFit. BioNetGMMFit provides parameter estimates of the model, supplied by the user in the
BioNetGen markup language (BNGL), which yield the best fit for the observed single-cell, time-stamped data of cellular
components. Furthermore, for more precise estimates, our software generates confidence intervals around each model parameter.
BioNetGMMFit is capable of fitting datasets of increasing cell population sizes for any mechanistic model specified in the BioNetGen
markup language. By streamlining the process of developing mechanistic models for large single-cell datasets, BioNetGMMFit
provides an easily-accessible modeling framework designed for scale and the broader biochemical signaling community.
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INTRODUCTION
Recent advancements in single-cell technologies have allowed for
the measurement of cell-to-cell differences in mRNA/protein
abundances1–3. These differences enable the evaluation of means
and higher-order moments (e.g., variances and covariances),
which can be utilized to improve the estimation of model
parameters. One potential strategy, which is especially useful in
our case where the probability distribution for the data (i.e., the
likelihood) is unknown, is to estimate model parameters by
minimizing the differences between sample moments and their
corresponding predicted moments computed from in silico
models. However, it is not obvious how any set of moment
differences should be summarized, especially since sample
moments (and hence moment differences) can vary considerably
in single-cell data. The Generalized Method of Moments (GMM),
widely used in econometrics4,5 and described in greater detail
below, provides a systematic approach to incorporate means and
higher-order moments in parameter estimation6,7. Within GMM,
the moment differences are combined into a single measure of
cost (i.e., distance) using a system of weights that efficiently
accounts for fluctuations across sample moments (see A.1 GMM
Primer for more details). In practice, to find parameter values that
minimize the GMM cost, one usually needs an optimization
algorithm such as gradient-descent8 or stochastic algorithms, such
as simulated annealing9 or parallel tempering10,11. In recent years,
a class of meta-heuristic optimization algorithms, such as Particle
Swarm Optimization (PSO) that do not require the calculation of
gradients and can be easily parallelized has been developed (see
refs. 12,13 for a pedagogical review).

Rule-based modeling approaches, such as BioNetGen14 and
libRoadRunner15, have been developed to address combinatorial
complexity in modeling biochemical reactions in signaling and
gene regulatory networks16,17. These approaches provide a user-
friendly way to construct models. Estimating model parameters,
such as reaction rates, is crucial for improving model predictions
and quantifying underlying mechanisms described by the model
using experimental measurements. With the emergence of
software packages such as PyBioNetFit18, parameter estimation
from rule-based models using bulk measurements of selected
proteins (e.g., average or total protein abundances observed over
time) has become possible.
We introduce BioNetGMMFit, a software tool that uses GMM to

improve parameter estimation in BioNetGen models by exploiting
the additional information in single-cell snapshot data. This tool
requires users to supply a BioNetGen model .bngl file, time-
stamped snapshot abundance data files, and run configuration
files. BioNetGMMFit utilizes the GMM analysis of time-stamped
protein abundances, as implemented in CyGMM7, to estimate the
parameters of the BioNetGen model, provide confidence intervals,
predict moments at future times, and report the minimum cost
(i.e., the distance between the sample moments and the moments
predicted by the model using the GMM estimate of the
parameters). While GMM can be used in conjunction with a wide
variety of optimization routines, we use PSO to optimize our cost
function because it does not require gradient calculations, scales
well with higher-dimensional search spaces, has a relatively short
run time, and is easily parallelized on a compute cluster. In
addition, users can tune the PSO hyperparameters, which can
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affect the optimization’s efficiency and accuracy. As such, in
addition to being written in C++, BioNetGMMFit is scalable with
increasing data sizes on high-performance computing clusters.
BioNetGMMFit is also available through Docker as C++ compila-
tion varies across different operating systems. However, for
improved performance, BioNetGMMFit can be compiled as a
C++ executable through cmake and has been tested on Linux
operating systems.
The manuscript is organized as follows. In the Software

Description section, we provide detailed information on the
implementation and use of BioNetGMMFit. Next, in the “Results
section”, we present three examples of modeling single-cell data
where we apply BioNetGMMFit and compare it with existing
software tools. Finally, we offer our conclusions, and discuss future
directions and limitations in “Discussion”.

RESULTS
We applied BioNetGMMFit to simulated datasets generated by
models with known ground truth parameters to provide a
reference point to evaluate its robustness, efficacy, and versatility.
Specifically, we apply BioNetGMMFit to three simulated datasets,
where each dataset is generated from a different model.
Furthermore, we showcase the software’s functionality, which
includes (1) facilitating estimation of model parameters from
different combinations of moments for any rule-based model, (2)
fixing subsets of model parameters both for simulation and
estimation, and (3) forecasting moments at future time points. For
each simulated dataset, we generated two sets of initial conditions
from lognormal distributions as they have been observed across a
variety of single-cell systems19,20. To mimic the experimental
constraint that “X” cannot be used to generate the observed
snapshot data “Y” at time t, we generate another set of
unobserved initial conditions that are used to obtain “Y” by
evolving the BioNetGen models with ground truth parameters.
This feature of simulating data with BioNetGen models when
given a set of initial conditions is built into BioNetGMMFit. Figure 1
provides a diagram of this process.

For more information on the simulated datasets themselves,
please see the GitHub page (https://github.com/jhnwu3/
BioNetGMMFit/tree/main/example) in their respective “X” and
“Y” directories.

A biochemical reaction system with first-order reactions
Here, we investigate and show that BioNetGMMFit can success-
fully reproduce the ground truth model parameters for a system
of first-order reactions model where six molecular species are
arranged in a linear architecture and react via first-order
biochemical reactions as illustrated by the reaction network in
Fig. 2. The reaction system can represent or can be generalized to
represent a variety of sequential cell signaling processes such as
phosphorylation of adaptor proteins such as DAP12 or FcϵR1γ in
NK cells21 which are phosphorylated by Src family kinases or series
of chemical modifications in signaling proteins in membrane-
proximal signaling events in T cells22. We successfully estimate all
6 parameters of the model and showcase one of BioNetGMMFit’s
important features: the ability to estimate parameters using
different moments. We note that one advantage of GMM (see
Supplementary Material) is that it allows for the use of any number
of moments in its objective function. BioNetGMMFit allows the
choice of fitting three different combinations of moments of
across a dataset: (1) first moments (means), (2) first (means) and
second moments (variances), as well as (3) first (means), second
(variances), and mixed moments (covariances) as shown in Fig. 3.
A key strength of this flexibility of moment choice in the cost

function is the ability to adapt to different problem requirements.
For instance, inclusion of higher-order moments tends to improve
parameter estimation in this first-order reaction model as shown
in Fig. 3, whereas the usage of variances and covariances in its
fitting routine produces the tightest confidence intervals around
its parameter estimates.

Model for Msn2-induced transcription in yeast
Next, as mechanistic models often incorporate some form of
nonlinearity, we show that we can successfully perform parameter

Fig. 1 Data generation process. A fundamental constraint of time-stamped CyTOF data is that in order to measure a cell, it must be sacrificed.
Therefore, in physical experiments, the initial conditions of cells observed at time t and t0 are unknown. Similarly, cells observed at time t0,
cannot be observed at future times t and t0 . Here, we refer to such initial conditions and future states (shown in yellow) as “unavailable”. By
contrast, parameter estimation only makes use of the “observed” data shown in green. Note that the “unavailable” data marked with an
asterisk (*) must be generated in order to simulate data obtained from CyTOF experiments. In particular, one must simulate the initial
conditions of all cells so that disjoint subsets of cells can be evolved to future times of interest. For ease of exposition, the subset index is not
shown. We use the X and Y labels here in order to remain consistent with the inputs defined in Fig. 10.
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Fig. 2 First-order reaction model. On the left, X1 through X6 represent protein species in a system of reactions where �!θ represents a
reaction in which species Xi is changed into Click to show the PDF Xj at the rate given by the corresponding θ. BioNetGMMFit is used to
estimate the set of θ’s. Below the system of reactions, its BioNetGen reaction rules are displayed; these need to be defined and input to
BioNetGMMFit to estimate the θ’s. Note that we use k’s instead of θ’s to define model parameters in BNGL. The table on the right contains the
ground truth values.

Fig. 3 Parameter estimates using different combinations of moments in the first-order reaction model. The left column (A) contains 95%
confidence intervals of parameter estimates obtained using only the means of the snapshot data at time t= 1.5 (top panel) and the
comparison of the predicted means and the actual (observed) means (bottom panel). The middle column (B) contains analogous results by
fitting the means and variances. Note the change in the scale of the values of the moments when the variance is included. The last column (C)
on the right are the results obtained by fitting all the first, second, and mixed moments or more specifically all 6 means, 6 variances, and 15
covariances of the 6 proteins. This illustrates the flexibility available to the user to choose different subsets of moments for parameter
estimation. In the analysis, the initial conditions and the simulated observed conditions at time t= 1.5 both contained 10,000 cells each.
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estimation for a nonlinear gene regulatory model involved in
stress response in yeast23. This is a simplified version of a
commonly occurring gene regulatory motif in yeast. One of the
key regulators of the stress response is the transcription factor
Msn2 which resides in the cytoplasm in the resting state and is
dephosphorylated in response to stress. Upon phosphorylation,
Msn2 translocates to the nucleus, binds to stress-responsive
elements (STRE), and induces gene expression of response
proteins. The model is illustrated in Fig. 4. This example explores
a scenario where certain model parameters need to be fixed. Here
we fixed two parameters, the death rate pd and the birth rate pb of
the protein species P, reducing the total number of parameters to
be estimated to four. The BioNetGen rules describing the model
and the ground truth parameter values used to generate the
synthetic data are shown in Fig. 4. We analyzed its simulated
observed snapshot data at time points 0, 1, and 5min in its
parameter estimation.
The parameter estimation results for the Msn2 transcription

model are presented in Fig. 5. Although the moment fits for both
time points are not perfect, with an underfitted variance for one of
the species, the confidence intervals around the estimated
parameters fully encompass the ground truth parameters,
indicating that BioNetGMMFit is capable of handling parameter
estimation for nonlinear models.

Vav1 activation kinetics in NK cells
As the final example, we consider a simplified model early time
biochemical signaling kinetics (Fig. 6) in mouse Natural Killer (NK)
cells24 to illustrate a case where identifiability issues prevent
BioNetGMMFit from capturing the ground truth model para-
meters. The model describes the phosphorylation of a key
signaling protein Vav1 by the kinase Syk bound to activating
receptor–ligand complex and the dephosphorylation of phos-
phorylated Vav1 by the phosphatase SHP1 bound to the inhibitory
receptor–ligand complex. The nonlinear biochemical reactions in
the model are akin to the zero-order ultrasensitivity model
proposed by Goldbeter and Koshland25. We assume the abun-
dances for the proteins Syk, Vav1, Syk-Vav1, SHP1, SHP1-pVav1,
and pVav1 are measured at any time t.
Following parameter estimation, we predict first, second, and

mixed moments. The comparisons between the predictions and
the simulated observed moments at different time points are
shown in Fig. 7. The three slopes shown in Fig. 7, each near unity,

indicate good agreement between the predicted moments (i.e.,
means, variances, and covariances) and the observed moments
at each time point. Furthermore, using the model parameters
estimated by BioNetGMMFit, we can forecast moments (i.e.,
predict moments) at times well outside of the given observa-
tional range (Fig. 7). The nonlinear Vav1 activation model also
presents a case where hyperparameter tuning is needed to
generate more accurate parameter estimates. For instance, in Fig.
7, increasing the number of particles and steps in the PSO
routine improves the parameter estimates (i.e., brought them
closer to the simulated ground truth). Despite improved
estimates, this scenario illustrates a parameter estimation
problem where other parameter estimates exist that minimize
the objective function. Figure 7 shows that although the moment
fits are excellent, and the predictions closely match the observed
and future unobserved data, the parameter estimates for k2 and
k5 are unable to capture the ground truth values, even with a
tuned hyperparameter configuration of 1500 particles and 150
steps of PSO. In the subsection below, we provide further
insights into the challenges of parameter estimation in rule-
based models.

Practical concerns in estimation
As seen from the Vav1 activation model, cost functions for ODE
models often possess multiple local minima and/or flat regions
with small curvatures7, that typically make estimation (i.e., the task
of finding the best parameter values) challenging for any method.
Although PSO mitigates these optimization problems to some
extent, depending on the computational constraints, BioNetGMM-
Fit does not fully address the difficulties of such irregular cost
functions, e.g., BioNetGMMFit can still yield estimates that reflect a
local, rather than the global, minimum. One such example is
shown in Fig. 7 where only 150 particles and 25 steps were used
for parameter estimation of the simulated Vav1 activation model.
We intentionally chose a limited number of particles and steps to
examine what could happen in a computationally constrained
environment. As one might expect, the estimates for some
paremeters were not close to their corresponding ground truth
values; however (perhaps surprisingly), the estimates were able to
accurately predict the observed first, second, and cross moments
at later times as shown in Fig. 7. However, when the number of
particles and steps used are increased tenfold, parameter
estimates are much closer to the ground truth, although

Fig. 4 Msn2 transcription model. Model reaction network is shown on the left with its corresponding BioNetGen reaction rules defined
below it. Ground truth model parameters and which ones have been fixed are shown in the table on the right. In this case, non-fixed model
parameters labeled by “n” are estimated.
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prediction improves only slightly. Moreover, this dramatic
improvement in estimation and a slight improvement in predic-
tion demand higher computational costs as shown in Supple-
mentary Fig. 12 where there is a drastic increase in run time from
configuration “6 Protein Time Points Set A” to “6 Protein Time
Points Set A Extreme” in Supplementary Fig. 12. As such, this raises
an interesting question of “How much should one care about
obtaining the best possible parameter estimates (as shown with k4
in Fig. 7 for example), especially when computational resources
may be limited and/or when the primary interest of the analysis
may be prediction, not estimation?” Furthermore, despite the
potential for dramatic improvement in estimation, there is no
guarantee that one will realize the desired improvement simply by
using more particles and/or steps.
We acknowledge the previous work of Sethna et al.26, which

used information theory to characterize parameter identifiability

issues and model sloppiness; and the work of Sorger et al.27,
which used a Bayesian approach to compare competing models
in the presence of partial identifiability. Although BioNetGMMFit
is not designed to directly address those issues, our software
does give users the ability to inspect a given model for
identifiability concerns by constructing pairwise contour plots
of the high-dimensional cost (aka objective) function. For each
contour plot the x and y axes correspond to a pair of distinct
rate constants. For example, pairwise contour plots can be
generated for the nonlinear Vav1 activation model, where local
minima were virtually indistinguishable from the ground truth,
resulting in parameter estimates that were different from the
ground truth (see Fig. 7). By creating pairwise contour plots for
k2 (or θ2) and k5, where PSO was unable to discern the ground
truth values (see Fig. 8), a striped pattern on the log-cost
contour plot reveals a region of unidentifiability. In contrast, the

Fig. 5 Msn2 transcription model outputs. Model parameter estimate with confidence intervals on the left were generated by the moment
fits for two different simulated observed time points, t= 1 and t= 5min, on the right. In this case, 95% confidence intervals of parameter
estimates shown on the left include the ground truth parameter values. Please note that the middle two x-tick marks, pb and pd are not
estimated and are held constant. Using simulated data for the 5 species (i.e D, T2, m, etc.) in the ground truth model, 5 means, 5 variances, and
10 covariances across two time points were obtained and used for parameter estimation. All snapshot data used in the analysis contained
10,000 cells.
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well-estimated first-order reaction model has a convex log-cost
shape (see Fig. 8).

Comparison with other software tools
By combining the best aspects of CyGMM and BioNetGen,
BioNetGMMFit provides several noteworthy features for the analysis
of single-cell time-stamped cytometry data that complements the
currently available parameter estimation software suite (i.e PyBio-
NetFit18, Statistical Model Checking (SMC)28, COPASI29). In particular,
BioNetGMMFit offers the ability to efficiently analyze single-cell
trajectories for a large number ( > 1000) of cells, predict higher-order
moments at future times, and simulate parameter estimation tasks
with ground truth parameters. We detail the full capabilities and
limitations of BioNetGMMFit below as well as how it compares to
other pre-existing parameter estimation software packages. A brief
summary of the software-related differences are shown in Fig. 9.

Dealing efficiently with cell-specific initial conditions. BioNetGMM-
Fit accurately and efficiently estimate BioNetGen model para-
meters from cytometry snapshot data observed across many
single-cell trajectories. It employs the same sophisticated mini-
mization procedure as CyGMM7 to estimate parameters from the
analysis of higher-order moments. To the best of our knowledge,
existing software are not designed to account for large variances
in initial conditions. Thus, they have difficulty performing
parameter estimation efficiently where (1) initial abundance noise
is known to play a role and (2) the data consists of large numbers
of different single cells (where each cell has its own set of
trajectories).
For example, when the estimation depends on the analysis of

data from a large number of single cells (as opposed to bulk
measurements averaged over cells), existing software is either not
designed to handle such data18,28, or is less user-friendly, or is
computationally inefficient14. In many cases, when attempting to
perform parameter estimation across a combination of moment
statistics, inefficiencies related to file input and output occur. For
instance, in using BioNetGen’s simulator, each cell has its own
BioNetGen file containing a bulk measurement such as average
protein abundances. Therefore, to perform parameter estimation
across a combination of different measurements (i.e., means,
variances, and covariances) with BioNetGen only14, the user must
repeatedly read from multiple data files in its parameter
estimation. In PyBioNetFit18, only a single set of cell conditions
per time point are used for parameter estimation. Our method

allows users to input easily several time-stamped snapshot files
containing abundance data from thousands of cells and store
them directly in memory for quick simulations. See Supplementary
Fig. 10 below for each dataset’s cell count used for parameter
estimation. While the comparison is not exact as the models and
objective function (i.e BioNetGMMFit’s incorporation of higher-
order moments) analyzed were different, we show that we can
attain run-time performance comparable to that of PyBioNetFit18.
In the analysis of the Vav1 activation model in Fig. 6 with 5000
single cells, the run time was ~1.9 h on a 16-core processor for 30
repeated parameter estimates, which is in the range of run time
using the SBML simulator in PyBioNetFit for a similar number of
cores18. To provide some context on run time, we compare with a
method such as SMC28: while again the comparisons are not exact
as the methods and models are different, our run times are
comparable to their 4.2 h for parameter estimation. Due to C++
parallelization with OpenMP, our software is capable of linearly
scaling with increasing cell count, thereby reducing run times for
large numbers of cells. Supplementary Fig. 12 provides run-time
details concerning the number of cells and model parameters.

Estimating with higher-order moments. Due to their design
intended for bulk measurements, existing software such as
PyBioNetFit18, COPASI29, and PyPesto (from the PETab suite)30

for rule-based parameter estimation are not specifically designed
to fit higher moments. While possible to do a plethora of file input
and output to generate multiple parameter distributions per set of
initial conditions and generate moment statistics using PyBioNet-
Fit or BioNetGen, for a large number of cells, parameter estimation
becomes very user-unfriendly and computationally taxing. In
contrast, BioNetGMMFit directly supports three levels of analysis
corresponding to using an increasing number of moments. First,
one can choose to estimate parameters using only the means (i.e.,
first moments). Second, one can use both means and variances or
third, use means, variances, and covariances. Results for moments
with different levels of fitting are shown with its different columns
in Fig. 3.
Other more mature softwares such as COPASI29 offer a wide

variety of other features such as an executable graphical user
interface, the ability to export ODEs from these rule-based
languages, as well as the support of a wide range of optimization
routines. For optimization routines involving smaller and simpler
(i.e., linear instead of nonlinear) models where large initial
abundance noise is not of concern, it is preferable to use
COPASI29, PyBioNetFit18, and PyPesto30 due to the availability of

Fig. 6 Vav1 activation model. The reaction network displayed on the left represents a simplified version of the phosphorylation-
dephosphorylation kinetics of Vav1 in mouse NK cells. The corresponding reaction rules in BioNetGen are shown below. All the parameters,
the set of rate constants {θj} or kj in the .bngl file and their ground truth values on the right are estimated using BioNetGMMFit.
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Fig. 7 Results for the Vav1 activation model. The ground truth parameter values shown in Fig. 6 are estimated by BioNetGMMFit using data
from the ground truth model at t= 0.5 and t= 2. In total, 5000 cells at each time point were used in the analysis. The panels in the left column
show the predicted moments calculated with estimated parameters plotted against the observed moments calculated using the ground truth
model at various time points. The top figure shows the comparison at one of the input time points while the bottom two graphs are the
“forecast” moments at t= 10 and t= 40. This shows that such parameter estimates can predict values at time points well into the future. The
parameter estimates were derived from configuration 6 Protein A. Please see Supplementary Figure 11 in the Supplementary Material for
more information on the PSO hyperparameter configurations used. On the right, we show improvements in estimates by tuning PSO
hyperparameters and show parameter estimates for two different hyperparameter configurations. All the moment comparison plots in the left
column were generated with parameter estimated obtained using PSO with 1500 particles and 150 steps. Note that the time units for this
simulated dataset are arbitrary since BioNetGMMFit does not have units built into its plotting function. However, phosphorylation reactions as
defined by the network in Fig. 6 occur on the time scale of seconds.
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less computationally expensive gradient-based optimization
routines. However, in such simple parameter estimation tasks,
BioNetGMMFit performs functionally the same due to its flexibility
of cost functions where the user can simply choose to use only the
observed first moments.

DISCUSSION
We present a new software: BioNetGMMFit, that greatly enhances
a researcher’s ability to explore a wide range of mechanistic
models while using higher-order moments to leverage the

information in single-cell data. In particular, BioNetGMMFit
provides accurate estimation of model parameters, and reports
valid confidence intervals for each estimated parameter as well.
Furthermore, BioNetGMMFit can easily handle data observed
across multiple time points, and it can predict protein abun-
dances at future times. A key feature of BioNetGMMFit, which
benefits from its integration with libRoadRunner’s simulators, is
its ability to easily simulate protein abundances at scale (i.e.,
across multiple time points, across many single cells, and under a
wide variety of different biochemical signaling models). More-
over, because such simulations can now easily be carried out at

Fig. 8 Contour plots for identifiability. Contour plots of the landscape of the cost function are shown as a function of k2 on the x axis and k5
on the y axis with all other model parameters held constant at the ground truth. The left contour plot is a pairwise contour plot of the fully
“identifiable” first-order reaction system where a steeply convex cost landscape surrounds the ground truth parameters at the bottom left. The
right pairwise contour plot is of the nonlinear Vav1 activation model where a nonconvex cost landscape results in the parameter estimates
shown in Fig. 7. Note the big difference in the scale of the color values for the two plots. The color bar is of the log-GMM cost that is derived
by BioNetGMMFit with 6 means, 6 variances, and 15 covariances in its calculation.

Fig. 9 Comparison of BioNetGMMFit features. Bulk measurements refer to measurements in which one obtains a single observed value for
each species of reactants, at each time point. The observed value may be the mean or total abundance of the species at that time point. In
contrast, single-cell measurements yield copy numbers or concentrations of each species for thousands of cells at each time point. This leads
to what we refer to as initial abundance noise. The letter “y” indicates that the feature is available and “n” implies that the software is not
designed to do it.
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scale, the ability to tune hyperparameters has become a much
more accessible task.
Hyperparameter tuning involves selecting the optimal set of

hyperparameters of the optimization routine to achieve the best
parameter estimates that minimize the cost function and enable
optimal prediction from one’s model. For example, in the case of
PSO, there are five hyperparameters to tune, including the
number of particles, the number of steps, and three coefficients
that affect how the particle swarm moves in the space of model
parameters. To address this challenge, we use a simulated
reference point of the “optimal” or ground truth parameters for a
BioNetGen model, which can provide insights into the perfor-
mance of an optimization routine’s hyperparameter configura-
tion. A practical way of determining a suitable set of
hyperparameters when analyzing experimental data is as follows.
If one wishes to fit a model to the data, one can simulate a
ground truth version of the model separately and adjust the
hyperparameters so that BioNetGMMFit estimates the ground
truth values to desired accuracy. Then, one can use these
newfound hyperparameters to fit the model to the
experimental data.

Limitations of BioNetGMMFit
BioNetGMMFit is currently limited to parameter estimation for
well-mixed mechanistic models describing deterministic and
stochastic kinetics. Unlike PyBioNetFit18, other forms of
simulation such as NFsim31 and spatial modeling32,33 are not
supported. Furthermore, BioNetGMMFit does not support any
optimization algorithms other than PSO. In addition, the lack of

Python support may make it difficult to integrate it with pre-
existing workflows that rely heavily on Python. While there
exists a C++ static binary that has been tested on Ubuntu
Linux, compilation with libRoadRunner C++ libraries can be a
nontrivial process on other Linux distributions. Thus, Bio-
NetGMMFit is most readily accessible through Docker, which
although accessible across all major operating systems, still
requires the use of third-party virtualization software. These
software weaknesses will need to be addressed in future
iterations of the software.

METHODS
Software inputs
To illustrate in detail how one might use BioNetGMMFit, a parameter
estimation task with an experimental CD8+ T-cell dataset was
performed. As shown in Fig. 10, BioNetGMMFit reads input data from
several sources, including (i1) a directory containing a CSV file with
initial protein abundances (X) and a directory containing CSV files
with observed protein abundances at different time snapshots (Y); (i2)
a time steps CSV file that contains the times at which the data of
interest are observed (note that the data of interest may be a subset
of the full data); (i3) a .bngl (BioNetGen) file that describes the
mechanistic model capable of executing deterministic or stochastic
kinetics; and (i4) a BioNetGMMFit hyperparameter configuration file
that enables various features, such as generating time-series
snapshot data from the BioNetGen model or changing the number
of particles and steps of the PSO routine. A general overview of the
BioNetGMMFit workflow is illustrated in Fig. 11.
When working with directories of data files, only one CSV data file

is read from directory X to establish the initial set of protein
abundances. Meanwhile, directory Y may contain multiple CSV files
for each time step being analyzed. These data files are arranged such
that each row contains the observations (i.e., protein abundances)
from an individual (or single) cell. To ensure that protein abundances
or concentrations are nonnegative, any single-cell data containing
negative protein values at a given time is removed before
performing parameter estimation in BioNetGMMFit. Such a pre-
processing step reduces the necessary steps the user must take to
properly use BioNetGMMFit, as negative values are commonly
generated in CyTOF datasets during a processing step that spreads
out zero readings in CyTOF measurements34.

Working example
As an example, we will use a signaling kinetic model involving four
proteins to analyze a CD8+ T-cell CyTOF dataset. One biological
question of interest that can be addressed with such data is to
quantify the rate of the signal propagation between a pair of
signaling proteins and study how the rates depend on the
developmental state of the immune cell (e.g., naive vs memory
CD8+ T cell). We applied BioNetGMMFit to describe signaling kinetics
in CD8+ T cells stimulated by CD3 and CD28 antibodies where
binding of the antibodies induce phosphorylation of the transmem-
brane CD3ζ chains which further lead to phosphorylation of the
adaptor protein SLP76, MAPK kinase Erk and the ribosomal protein S6
following pCD3ζ→ pSLP76→ pErk→ pS635. We model the phosphor-
ylation reactions shown above by first-order reactions. There are
many intermediate biochemical reactions involved within the
phosphorylation steps shown above and we assume the rates of
the first-order reactions effectively capture the effect of those
intermediate reactions. The phosphorylated protein species also go
through degradation/ubiquitylation processes which are also approxi-
mated by first-order decay reactions. In addition, pCD3ζ is assumed to
be produced at a constant rate due to the signaling process. The
model contains five rate constants, θ1, ⋅ ⋅ ⋅ , θ5, which we estimate
using BioNetGMMFit. BioNetGMMFit also plots confidence intervals as
well as the observed and estimated moments as shown in Fig. 12. The

Fig. 10 BioNetGMMFit inputs and outputs. The inputs and outputs
to the program BioNetGMMFit (yellow box) are displayed. The green
boxes, labeled with the letter “i'', are the inputs to the program. The
two boxes included in i1 represent the input directories: X contains the
initial conditions for the model and Y, all the observed snapshot data at
different time points that must be passed to BioNetGMMFit. The box i2
is the time steps file that contains all the specified time points at which
the concentrations are evaluated, by evolving the model given the
initial conditions. i3 represents the model defined in BioNetGen
containing the parameters to be estimated. The BioNetGen model
(defined in BNGL) is used to evolve the initial conditions in X to fit the
observed moments computed from the data in Y. i4 is the
configuration file that contains the hyperparameters of the PSO (i.e
the number of particles, steps, and PSO weights) that need to be
defined by the user for the parameter estimation task. The orange
boxes indicate outputs and are labeled by “o''. BioNetGMMFit produces
two explicit outputs, o1, the parameter estimates of the BioNetGen
model and o2, the corresponding time-evolved moments. The
moments in o2 are generated using the parameter estimates that
minimize the GMM cost between the observed moments and
predicted moments. Lastly, the user can choose to forecast future
trajectories of moments in o3.
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underlying datasets used in this parameter estimation task of the
CD8+ T cells are from (https://dpeerlab.github.io/dpeerlab-website/
dremi-data.html) 35. From this dataset, one can compute time
trajectories of the protein moments, means, variances, and covar-
iances (see Fig. 12). To make the presentation simple, we will only
analyze trajectories at two time points: 1min and 2min. In this case,
719 cells were measured at time point 1 in and 653 cells were
measured at time point 2min. Again, as shown in Fig. 12, mechanistic
model reaction rules are defined in the .bngl file where they are then
converted into an SBML file using BioNetGen’s writeSBML() function
as BioNetGen does not support its own C++ API. Using libRoa-
dRunner’s C++ API15, BioNetGMMFit converts this SBML file into a
roadrunner object that is capable of simulating the defined model to
user-specified time intervals. While there are many other reaction
network simulators such as PySB36, COPASI29, and AMICI37, libRoa-
dRunner was primarily chosen for its speed and ease of customiz-
ability due to its function as a C++ API rather than a standalone
software package.
Once the model is defined, the hyperparameters configuration

file supplies the PSO hyperparameters (i.e., the number of
particles, steps, and PSO coefficients) used for parameter
estimation. For more information on the configuration file, a table
of parameters is provided in the documentation on the GitHub
page and in the Supplementary Material. To estimate parameters
within the BioNetGen model, PSO minimizes the GMM-weighted

square Euclidean distances of lower and higher-order moments
between the observed and model-simulated data7. Upon PSO
convergence, estimates are provided, and confidence intervals are
computed.
The plots of parameter estimates and moment fits provide

additional insights into the fit of the mechanistic model. In Fig. 12,
for example, the confidence intervals around the parameter estimates
reveal the ranges of possible values for each model parameter and
their relative magnitudes. The estimation shows that the rates of
production of pCD3ζ and of pS6 induced by pErk are the two
dominant signaling reactions that occur at the early times (1–2min)
when CD8+ T cells are stimulated. This result is consistent with
related conclusions in ref. 35 obtained using information theory.
Nonetheless, models are imperfect, and their fits may be poor. To
assess the model fit in such cases, we can refer to the “Fit of Predicted
Moments” plot in Fig. 12. This plot shows that the estimated model
fails to accurately fit one of the protein’s variances, as indicated by a
variance dot biased below the perfect fit line, indicating that further
modifications in the model are needed to better fit the data. Such
moment plots are essential for evaluating the parameter estimation
and model fits that may be difficult to observe with only mean or
bulk abundance differences.
BioNetGMMFit is currently available as a docker image for ease

of portability across different operating systems, a compilable
executable for those requiring high-performance computing

Fig. 11 BioNetGMMFit workflow. All “i’’’s and “o’’’s correspond to the same inputs and outputs defined in Fig. 10. In this figure, we depict the
steps needed to run BioNetGMMFit relating back to the inputs and outputs of Fig. 10. To begin, the snapshot data of interest must be loaded
by first organizing all .csv files into their corresponding initial conditions (X) and observed conditions (Y) directories, and then these (X) and
(Y) directories (i1) must be specified to BioNetGMMFit. The black points in the data boxplot figure represents the outlier of the dataset
(specifically CD8+ T-cell dataset). Next, the user must define the time points that correspond to each of the snapshot files by creating and
specifying a times.csv file (i2). Once all of the data are defined, the user must define and specify the BioNetGen model of interest (i3) to
BioNetGMMFit. The last input required is the hyperparameters configuration file where the user must define all of the necessary parameters
for a parameter estimation run, specifically related to the PSO algorithm that will be used to estimate the BioNetGen model parameters. Once
all necessary inputs (i1, i2, i3, and i4) are defined, BioNetGMMFit will run its parameter estimation routine with GMM and PSO, returning
parameter estimates (o1) (and confidence intervals if there are multiple replicate runs of PSO) as well as a observed= predicted line where
observed moment values are on the y axis and predicted moments (o2) generated from the estimated model parameter on the x axis. Please
note that the observed moments are calculated from the abundance data supplied by i1, and similarly the predicted moments are computed
from the evolved abundances generated by simulating each initial sample with the BioNetGen model. Finally, while optional, users of
BioNetGMMFit can predict moments of future time points (o3) of the BioNetGen model. Please refer to the Supplementary Material for a more
in-depth tutorial on how to use the command line version of BioNetGMMFit illustrated with the CD8+ T-cell dataset.
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Fig. 12 CD8+ T-cell example. The input and output results for fitting the CD8+ T-cell CyTOF dataset are shown. The panel labels (i1), (i3), (o1),
and (o2) correspond to those in Fig. 10. Panel (i1) in Fig. 12 shows the sample means, variances, and covariances of CD8+ T-cell proteins
calculated by BioNetGMMFit for the observed time points of snapshot data (supplied in the files i1 and i2). These are used for parameter
estimation as part of the GMM procedure. (More information on GMM can be found in the Supplementary Material.) Panel (i3) displays the
reaction network and its corresponding reaction rules in the .bngl file. Each reaction rule represents a reaction within the model and has a
parameter (rate constant) associated with it (e.g., k1). Using the observed moments (i1 panels) BioNetGMMFit uses PSO and GMM to estimate
parameters of the model. (o1) and (o2) illustrate the results for a case where BioNetGMMFit performs 30 PSO estimates and produces a set of
confidence intervals as well as a plot of the least GMM cost fit between the observed moments and predicted moments. The fit is performed
with 4 protein means, 4 protein variances, and 6 protein covariances. Please note that the user is responsible for the consistency of units units
in the input data since BioNetGMMFit uses the input value without ascribing about measurement units. For the CD8+ T-cell data used above,
the input data were of the magnitude of fluorescence.
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capabilities (https://zenodo.org/record/7733865), and as a web
demo (https://bngmm.nchigm.org/). Further details on how to use
and compile BioNetGMMFit are available on the GitHub page
(https://github.com/jhnwu3/BioNetGMMFit), and a comprehensive
tutorial on using BioNetGMMFit can be found in the Supplemen-
tary Material.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
The dataset(s) supporting the conclusions of this article is(are) available in the
BioNetGMMFit/example repository [https://github.com/jhnwu3/BioNetGMMFit/tree/
main/example]. Project name: BioNetGMMFit; Project home page: https://
github.com/jhnwu3/BioNetGMMFit; Archived version: N/A; Operating system(s):
Platform independent through Docker; Programming language: C/C++; Other
requirements: Docker, if Compiling see GitHub; License: MIT License; Any restrictions
to use by non-academics: N/A; Other Locations of Access: https://hub.docker.com/
repository/docker/jhnwu3/bngmm/general, https://zenodo.org/record/7733865,
https://bngmm.nchigm.org/. Experimental CD8+ T-cell data can be found at
https://dpeerlab.github.io/dpeerlab-website/dremi-data.html.
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