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Growth exponents reflect evolutionary processes and treatment
response in brain metastases
Beatriz Ocaña-Tienda 1✉, Julián Pérez-Beteta 1, Juan Jiménez-Sánchez1, David Molina-García 1, Ana Ortiz de Mendivil2,
Beatriz Asenjo3, David Albillo 4, Luis A. Pérez-Romasanta5, Manuel Valiente6, Lucía Zhu6, Pedro García-Gómez 6,
Elisabet González-Del Portillo7, Manuel Llorente4, Natalia Carballo4, Estanislao Arana 8,9 and Víctor M. Pérez-García 1,9

Tumor growth is the result of the interplay of complex biological processes in huge numbers of individual cells living in changing
environments. Effective simple mathematical laws have been shown to describe tumor growth in vitro, or simple animal models
with bounded-growth dynamics accurately. However, results for the growth of human cancers in patients are scarce. Our study
mined a large dataset of 1133 brain metastases (BMs) with longitudinal imaging follow-up to find growth laws for untreated BMs
and recurrent treated BMs. Untreated BMs showed high growth exponents, most likely related to the underlying evolutionary
dynamics, with experimental tumors in mice resembling accurately the disease. Recurrent BMs growth exponents were smaller,
most probably due to a reduction in tumor heterogeneity after treatment, which may limit the tumor evolutionary capabilities. In
silico simulations using a stochastic discrete mesoscopic model with basic evolutionary dynamics led to results in line with the
observed data.
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INTRODUCTION
Macroscopic tumor growth is a complex process resulting from
the interplay of different biological elements at the cellular and
subcellular levels. These include the driving molecular alterations
and their associated heterogeneity, angiogenesis, the immune
system, the tumor microenvironment, and surrounding healthy
structures, the effect of treatments on the different tumor
phenotypes/genotypes, etc.
Mathematical growth laws have been shown to describe

longitudinal tumor growth dynamics effectively in simple experi-
mental models1–5. A great deal of data is available for those
models, which do not have the biological complexity of human
tumors. One would expect that describing cancer growth
mathematically in humans would be far more difficult because
of the different biological mechanisms that drive it over distinct
tumor stages.
Assessing complex tumor growth dynamics over time, given the

large genotypic and phenotypic variability developed during
tumorigenesis, is very difficult with current techniques. Medical
images are performed routinely in most cancer patients and
provide rough global macroscopic information -the so-called
imaging phenotype- which integrates the several processes
occurring at the microscale, potentially providing information on
the underlying tumor biology. However, longitudinal datasets for
untreated malignant tumors are rare, and of limited quality, since
therapeutic action is typically performed promptly. This is why
studies of untreated tumor dynamics in humans have been mostly
limited to the use of two time points per patient which allows only
for the identification of average growth rates6,7.
A recent study using more time points has shown that the

explosive growth observed in human cancers may be the result of
evolutionary dynamics, which underpins increased tumor

aggressiveness and leads to an acceleration in tumor growth as
the disease progresses8. It is well known that solid tumors contain
subpopulations of clonal cells with different genomic alterations, a
phenomenon referred to as intra-tumor heterogeneity9. A
growing body of evidence has highlighted the importance of
understanding tumor heterogeneity and its evolution in cancer
research10,11. According to this recent work8, the sequential
emergence of new, more aggressive clones would produce a
sustained increase in the average growth exponent of the entire
tumor, as these clones would eventually prevail over the rest by
competitive advantage, increasing their relative abundance and
imposing their faster growth. This sustained generation of
variation within a tumor has been shown to play a crucial role
in the development of many aggressive clinical characteristics of
cancer12. As such, measuring tumor evolution and heterogeneity
can have significant clinical implications for cancer therapy13.
Our goal in this study combining clinical data and mathematical

models, was to provide more evidences on the macroscopic
growth dynamics of both treated and untreated tumors in human
patients. We focused on growth dynamics of brain metastases
(BMs) integrating mathematical and computational models with
data analysis methods on a patient database with longitudinal
magnetic resonance imaging (MRI) follow-up and more than a
thousand lesions. BMs are the most common intracranial tumor
and a major complication of many cancers, with 20–30% of cancer
patients developing the condition in the course of their
disease14,15. Here we focused on two scenarios. The first one
was the growth of untreated BMs. Human beings as well as mice
data were studied. The second scenario considered BMs under
different treatment modalities. Therapy options for BMs are
surgery, whole brain radiation therapy (WBRT), gamma knife
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radiosurgery, stereotactic radiosurgery (SRS), targeted and sys-
temic therapies.
We wanted to investigate whether there was a measurable

effect on the growth dynamics of the expected loss of tumor
heterogeneity after treatment. To this end, we performed an
analysis of the growth dynamics of untreated BMs, and BMs
treated under different types of therapy, by fitting a general tumor
growth law16. The results obtained were endorsed by in silico
simulations with a discrete stochastic model of tumor growth,
which helped to gain insight into the causes of the behavior
observed in BMs.

RESULTS
Brain metastasis growth is explosive in untreated patients but
not in treated ones
The Von-Bertalanffy model16,

dV
dt

¼ αVβ � bV; (1)

has been proven recently to describe the longitudinal dynamics of
growing human tumors8. Eq. (1) describes the change in size (i.e.,
volume change dV

dt ) experienced by an organism according to its
energy intake and consumption. Parameters α and b are positive
coefficients associated to energy intake and energy consumption
for maintenance, respectively. Note that, while energy consump-
tion is proportional to the whole volume of the organism (bV),
energy intake depends only on a fraction of this volume (αVβ),
provided by the metabolic scaling exponent β. This β, defined

hereafter as the growth exponent, influences the shape of the
tumor growth curve (Fig. 6).
While exponents β that characterize allometric growth of

organisms are typically lower than 117,18, it has been argued,
and supported with data from different human cancers, that
malignant tumors with heterogeneous clonal composition have
exponents β > 1, what lead to a super-exponential growth. The
reason is that in heterogeneous tumors there would be a range of
phenotype/genotypes to choose from, leading to selection for
more aggressive phenotypes/genotypes, and an increase of the
growth exponents, which would manifest in the form of faster-
than-exponential explosive unbounded growth8. In this paper we
will focus on scenarios of growing tumors for which the first term
in Eq. (1) dominates over the second. In this context, it will be
assumed that b≃ 0, meaning that most of the metabolic
requirements are routed towards biosynthesis rather than basal
energy consumption. Moreover, our dataset having time intervals
with three consecutive longitudinal measurements without
treament (V0, V1, V2) allows us to identify at most three parameters
for each tumor (V0, α, β) but not more. When b is assumed to be
zero, for a clonally homogeneous tumor with only a fraction of the
cells proliferating due to necrosis, nutrient limitations, etc.,
exponents 0 < β < 1, correspond to growth slower than exponen-
tial, but with volumes still increasing with time.
Three patient groups were studied in a first batch of analyses.

They included the cases of (i) growing untreated and (ii) relapsing
post-radiotherapy BMs, and also (iii) growing BMs from patients
under chemotherapy (CT) but with no specific treatment for the
BMs. Patients in the last group included only drugs crossing the

Fig. 1 Growth dynamics of untreated and post-treatment relapsing BMs. Longitudinal dynamics observed in a an untreated breast cancer
BM and b a relapsing post-SRS lung cancer BM. SRS treatment times are marked with a vertical dashed black line. Dots are the measured
volumes and the dashed orange and blue lines are the links between points used for growth exponent computation. Axial slices of the
contrast-enhanced T1-weighted MRI sequences are displayed. c Box plots comparing the growth exponents β of the different groups:
untreated (n= 10), growing during chemotherapy treatment (CT, n= 16), recurrent BMs receiving only radiation therapy (RT, n= 30), or both
(RT+CT, n= 40). Growth exponents were obtained for each BM using Eq. (3). p-values correspond to the Kruskal–Wallis test. d Box plots of the
growth exponent β for BMs after RT: WBRT (n= 16), SRS (n= 44) and both (n= 10). The Kruskal–Wallis test gives non-significant p-values,
showing no differences between growth exponents β in these groups. e Box plot of the growth exponents β in mice (n= 20) injected with an
human lung adenocarcinoma brain tropic model (H2030-BrM). f Total tumor mass growth curves for some of the studied mice where dots
correspond to the measured values and lines are the fittings by Eq. (4). The boxplots depict the median (center line), interquartile range
(bounds of the box), the range of typical data values (whiskers, extending 1.5 times the interquartile range), and outliers (represented by
circles).
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blood-brain-barrier (BBB) as described in ‘Methods’. Figure 1a, b
shows examples of BM longitudinal growth dynamics as observed
in MRI studies. The growth exponent β governing the dynamics
for each patient was obtained as described in the Methods
section. The median value of the fitted individual exponents for
untreated BMs (n= 10) was β= 1.59. This suggests substantial
growth acceleration with β≃ 3/2. It is interesting to note that this
number differs from the value 5/4 obtained from metabolic
scaling data of primary tumors8.
Median growth exponent for BMs growing under CT was

β= 0.64 (n= 16). For BMs growing after completing radiation
therapy (RT) we obtained β= 0.63 (n= 30). Finally, for those
having received RT and under CT we got β= 0.65 (n= 40), where
RT can stand for WBRT, SRS or a combination of both. Box plots are
shown in Fig. 1c. Similar growth exponents were obtained after
receiving different RT modalities (see Fig. 1d). Thus, volumetric
growth of treated BMs had lower β exponents on average than
those obtained for untreated BMs.

Animal models recapitulating BM’s natural history display
superexponential dynamics
To investigate the growth patterns of untreated BMs in faithful
animal models, experiments in mouse models were performed as
described in Methods. For the experiments, the human lung
adenocarcinoma brain tropic model H2030-BrM3 was used since it
is injected into the hearts of nude mice and leads to the formation
of brain metastases from systemically disseminated cancer cells.
Thus, the cell line used recapitulates at least in part the complex
sequences of transformations required for cells to metastatize.
Since more than three points were available in the mice dataset,

the growth exponents were computed using a different fitting
technique as described in ‘Methods’. The median value of the
individual exponents β was 1.44 (n= 20) (Fig. 1e, f).

Sensitivity analysis of the exponents calculation
Since three points per patient were available to obtain three
parameters, the fitting could be very sensitive to small variations
in the data. Those variations in volumetric data could be given
either by the time between MRIs or by image segmentation,
regardless of being performed by the same image expert, and
revised by another expert and a radiologist. In order to asses the
effect of small changes in measured volumes on the results, an
analysis of sensitivity was performed as explained in ‘Methods’.
The growth exponent values were consistent in 82% of the BMs

used in the study when a random error was added. Once sensitive
cases were excluded, the results were in line with those of the
entire cohort of BMs (Fig. 2), ensuring the strength of the study.

Growth exponents best fitting the dynamics display super-
exponential growth for untreated patients and
subexponential growth for treated ones
An alternative approach to obtaining β was designed by looking
for the value β* that provided the best fit for all patients in each
subgroup: 1) untreated, 2) growing while in CT treatment (CT), and
3) relapsing post-RT -with or without CT− (RT*). The absolute
errors weighted by volume, relative errors, were computed for
each β* value and each group of patients.
The exponent best fitting the whole dataset of untreated BMs

was β*= 1.5 (n= 10). For treated relapsing tumors, the best fit was
obtained with β*= 0.51 (CT, n= 16) and β*= 0.71 (RT*, n= 70),
showing again a slowing down of the post-treatment growth
dynamics (Fig. 3b).
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Fig. 2 Growth dynamics of untreated and post-treatment relap-
sing BMs that successfully met the sensitivity analysis criteria. Box
plots comparing the growth exponents β of the different groups
after a sensitivity analysis: untreated (n= 9), growing during
chemotherapy treatment (CT, n= 14), recurrent BMs receiving only
radiation therapy (RT, n= 27), or both (RT+CT, n= 29). p-values
correspond to the Kruskal–Wallis test. The boxplots depict
the median (center line), interquartile range (bounds of the box),
the range of typical data values (whiskers, extending 1.5 times the
interquartile range), and outliers (represented by circles).

Fig. 3 Growth exponent best fitting the dynamics for the dataset of untreated, CT and RT groups. Relative errors obtained when the β
growth exponent is fixed. a Errors computed for each metastasis in the different groups: untreated (a1), CT (a2), RT* (a3). b Cumulative errors
for each subgroup of BMs as a function of β* for each of the different groups: untreated (b1), CT (b2), RT* (b3). The yellow dashed line
indicates the value β*= 1.5.
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It’s interesting to note that at β*= 1.5, a minimum appears in
each dataset. Such minima are absolute for untreated lesions and
relative in the case of treated ones, which indicates that after
treatment, when the best growth exponent defining the group is
lower than one, there is still a relevant tumoral component in
some cases.

Evolutionary dynamics of tumor complexity
It is known that cancer treatments lead to a reduction of the clonal
complexity during treatment, due to the selective pressures
exerted by the therapies19–22. The successive overtaking of
progressively fitter clonal populations is a key ingredient leading
to the increase of the growth exponent β8. Hence, one would
expect this reduction in heterogeneity to be reflected in the
growth exponents of BMs as observed in our previous analysis.
The influence of different clonal compositions on the growth

exponent of BMs was assessed in silico using an adapted version
of the mesoscopic model developed in ref. 23 (as described in
Methods). We explored computationally a simplified scenario were
BMs were made of two predominant clonal populations, one
being more aggressive than the other. The initially most abundant
population proliferated and migrated at fixed rates, while the
initially less abundant population had an advantage in both
processes, and hence was assumed to be more aggressive, due to
either mutational changes or irreversible phenotype changes,
providing evolutionary benefits. In that way we accounted for an
initial tumor heterogeneity, and the abundance of each popula-
tion would change over time (due to one being fitter and more
aggressive than the other, but less abundant), with the turning
point taking place several months post SRS.
First, the growth exponent β of an untreated virtual BM was

evaluated. To do so, we simulated starting with a small fraction
(10%) of an aggressive population coexisting with a larger
population of less aggressive cells. After a few months, the tumor

was substantially enriched in silico in the most aggressive
population (94% versus 6%) and the growth exponent β was
found to be β= 1.53 Fig. 4a.
In a second set of computational experiments, we studied the

effect of three scenarios after SRS treatment: a total depletion of
the most aggressive subpopulation, a total depletion of the less
aggressive subpopulation, and a balanced reduction in cell
number of both subpopulations. In the first and second cases,
that yield an homogeneous tumor after SRS, growth exponents
were respectively β= 0.63 and β= 0.68, thus far from exponential
growth (Fig. 4b, d). In the third case, we observe an hetero-
geneous tumor after SRS (a more realistic scenario), since we
assumed that the most aggressive population was more sensitive
to treatment, thus restoring equilibrium between the two
subpopulations. In this scenario, the growth exponent found
was β= 1.01, still far from super-exponential (Fig. 4c).
To study the influence of different advantages in proliferation

and migration of the most aggressive population on the growth
exponent β, simulations were performed varying the value of the
advantage coefficients vdiv and vmig (see ‘Methods’), and keeping
the initial proportion of aggressive cells equal to 10%. We
observed that the largest growth exponents β were obtained for
combinations of slight advantages in both processes (β= 1.758 for
vdiv= 1.25, vmig= 1.05; Fig. 5b) and that, for most combinations of
coefficients vdiv and vmig, the resulting exponent β is lower than 1.
Therapy is most harmful to the most proliferative cells24,25.

Hence, it is to be expected that the relative abundance of
aggressive cells will decrease after treatment. To explore the
influence of treatment on the growth exponent β, we repeated
the previous analysis but this time the initial proportion of
aggressive cells was modified to represent scenarios were the
treatment was either very effective (initial proportion of aggres-
sive cells is 1%, Fig. 5c) or not very effective (initial proportion of
aggressive cells is 20%, Fig. 5a). The resulting β maps (each spot
corresponds to a simulation performed with a fixed pair of

Fig. 4 Simulations of longitudinal growth of heterogeneous BMs with two initial populations (turquoise: less aggressive, and ocher:
more aggressive). a Pre-treatment and b–d post-treatment cases. The more aggressive population carries an advantage of 80% in
proliferation speed and 92.5% in migration speed, compared to the less aggressive population. In a the BM is composed of 10% of more
aggressive cells, and 90% of less aggressive cells. After eight months, the more aggressive population has overcome its counterpart,
becoming dominant. Then, three different situations that can happen after treatment are illustrated: b the less aggressive population is
completely removed from the tumor; c both populations remain in a balanced state, and d the more aggressive population is completely
removed from the tumor. The betas were computed by choosing a random time point from each third of the total simulated time and are
shown on each subplot.
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coefficients vdiv and vmig) are qualitatively similar, although it can
be observed that the maximum exponent β achieved decreases as
the initial proportion of aggressive cells increases. Again, we
observed that most combinations of advantage coefficients yield a
β lower than 1. This result suggests that, regardless of the resulting
proportion of aggressive cells after treatment, it is rare to observe
a growth exponent β larger than 1 in treated BMs.

DISCUSSION
Evolution is one of the main driving forces of life on Earth and is
behind the observed diversity at every level of biological
organization. Evolutionary processes are used by cancers to
survive within their hosts and escape from the pressures exerted
by treatments. It is a remarkable fact that the growth laws of
untreated human malignant cancers and their animal model
counterparts display a signature of the evolutionary processes
taking place behind the scenes, in the form of an exponent β > 1
in Eq. (1)8.
This study mined a dataset including more than a thousand

BMs to test such a surprising result over a time scale of months, i.e.
the time interval spanning three MRI studies (6–9 months). BMs
have a background of heterogeneity that could provide the
necessary substrate for evolutionary competitive dynamics to
happen, leading to super-exponential growth of the tumor mass.
Phylogenetic analyses have revealed that BM-competent clones
genetically diverge from their primary tumors at a relatively early
stage in lung adenocarcinoma patients26. Genomic analyses of
solid tumors and matched BMs revealed significant genetic
heterogeneity between primary lesions and BMs27, and the
degree of genetic heterogeneity of BMs varied significantly
among individuals with NSCLC, breast, and colorectal cancer28–30.
In addition to the genetic heterogeneity, BMs have significant
epigenetic variability31,32 and there can be other phenotype-
based mechanisms playing a role33.
Our results manifested both a macroscopic reflection of the

evolutionary dynamics in the form of a β > 1 exponent for pre-
treatment longitudinal dynamics, and also the loss of biological
richness experienced by BMs after therapy, which lead to
substantially reduced exponents β ≈ 2/3 post-SRS. It has been
hypothesized, using mathematical models, that treatment strate-
gies in which an oncological “first strike” reduces the size and
heterogeneity of the population, then followed by “second strikes”
could lead to cancer extinction in metastatic disease34,35. Our
results show the effectiveness of the first-line SRS approach in
providing an ecoevolutionary first-strike strategy for BMs. Inde-
pendently of the volumetric reduction observed, which ends up
being marginally irrelevant if the tumor recurs, the substantial

reduction of the growth exponent implies a direct effect on the
tumor ecological complexity. In the case of BMs, “second-strike”
strategies could be provided by targeted therapies with better
penetration than classical drugs across the blood-brain barrier,
many of which are under investigation36,37. It is also very
interesting that information obtained from global macroscopic
images could provide information on the underlying biological
richness of these metastatic lesions. Thus β could be understood
as an evolutionary exponent providing some information on the
tumor heterogeneity.
It could be thought that the information about growth

dynamics provided by the growth rate of a tumor (α in Eq. (1))
could be more important than that of the growth exponent β. As a
toy example, let us consider two different BMs, one of them
having a faster growth rate. For some values of the growth
exponent β of the BM with the slower growth rate, it could
happen that the “apparently slower” BM would end up surpassing
(namely, growing faster in the long term) the “apparently faster”
BM. Hence, the growth exponent β provides valuable information
about the growth dynamics and the aggressiveness of BMs,
independent of that provided by the growth rate. Moreover, this β
also has practical implications in the management of BMs, as it can
help in distinguishing between tumor recurrence and radiation
necrosis. Radiation necrosis (RN) is a common side effect of
irradiation that appears about a year after treatment and it can
resemble true progression in appearance and clinical symptoms. It
has been shown that growth exponents in the case of RN are
larger than those observed not only in recurrent but also for
untreated BMs38.
Regarding its prognostic value, one could think that the

information provided by the β exponent may be biased by tumor
size. An older BM may have had plenty of time to grow, so that the
correlation between advanced time and BM size could be
confounding the analysis of the growth exponent β. However, it
should be pointed out that this exponent is an intrinsic property of
the growth curve, so that it remains the same during the whole
lifespan of the BM, and independently of the times of observation
(three at least, in order to be able to fit Eq. (3) as described in
Methods). As an example, such correlation between advanced
time and larger size would still be observed for BMs with β= 1,
which would be showing no acceleration nor explosive growth.
Hence, β prognostic information is independent of tumor size.
It may seem naively counterintuitive that BMs subject to

different treatment modalities (SRS, WBRT, CT) led to similar
growth exponents β, since SRS is known to be substantially more
effective than WBRT or CT. Our retrospective study focused only
on BMs growing after (RT) or under (CT) treatment, but of course
there would be many BMs with complete response, e.g. to SRS,

Fig. 5 Growth exponents β obtained from a parameter sweep varying the advantages in migration and proliferation. Simulations were
carried out for different combinations of coefficients vdiv (advantage in proliferation; values explored range from 1.11 to 5) and vmig (advantage
in migration; values explored range from 1.05 to 5). a Poor-effectiveness treatment case (proportion of aggressive cells after treatment is 20%).
The largest exponent β obtained is equal to 1.615, for a vdiv= 1.33 and a vmig= 1.05. b Medium-effectiveness treatment case (proportion of
aggressive cells after treatment is 10%). The largest exponent β achieved was 1.758, for a vdiv= 1.25 and a vmig= 1.05. c High-effectiveness
treatment case (proportion of aggressive cells after treatment is 1%). The largest exponent β achieved was equal to 1.99, for a vdiv= 1.1765
and a vmig= 1.05. Gray lines correspond to β= 1.
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that were not included here. It is also relevant to emphasize that
the growth exponent cannot be directly interpreted as a growth
rate, e.g. the speed of volumetric growth, but as a measure of the
shape of the tumor growth curve.
An intriguing result of our study was the fact that the growth

exponent for untreated BMs when fitted together was close to 3/2.
It has recently been found for different primary tumors, lung (both
adenocarcinoma and squamous cell), breast, colorectal, glioma,
and head and neck cancer, that metabolic scaling exponents are
close to 5/48. Following the classical reasoning of West et al.39, one
would expect metabolic exponents to be the same as growth
exponents. This raises the interesting question of what the
metabolic scaling of BMs would be on diagnosis, since the
datasets of8 did not include that condition. Would it be 3/2, raising
the question of why BMs have a different metabolic scaling than
other cancers? Or would it be 5/4, raising the question of why
there should be a mismatch between metabolic and growth
exponents in BMs? Data on metabolic scaling of BMs would be
necessary to answer that question.
The in silico observation that the largest exponents β were

achieved for combinations of slight advantages in both processes,
division and migration, points out that a great advantage will not
lead to a β > 1, as the overtaking time will be reached more
quickly by the aggressive population. Another observation is that
β decreases faster with changes along the vmig axis, suggesting
that advantages in migration may bring more competitive
advantages in division.
Several authors have wondered whether the interval between

SRS planning and treatment is accurate40–43. In order to study this,

they compared volumes from diagnostic imaging and radio-
surgery planning MRI and extrapolated the growth linearly to the
day of SRS, since only two time points were available. Progression
between diagnosis and SRS is common, and some suggest that a
mathematical model would be useful to individualize treatments.
Our model based on three time points shows that the growth
velocity of untreated BMs increases with time, thus pointing out
an inadequate prediction of the tumor volume on treatment day
and a substantial benefit of reducing the interval between SRS
planning and treatment.
The main strength of our study lies in the utilization of 96 brain

metastases (BMs) from a substantial dataset comprising 1133 BMs
treated with stereotactic radiosurgery (SRS), characterized by high-
resolution data and adherence to the guidelines for BM clinical
studies44. The selected subset of BMs was suitable for computing
β as they exhibited sustained growth across three sequential
imaging studies, without undergoing additional therapeutic
interventions during that time window. Additionally, each lesion
was meticulously segmented by the same expert and verified by a
radiologist. Moreover, our study adopted a multicenter approach,
encompassing BMs from five different hospitals.
However, a key limitation of our study is that due to the size of

the final dataset and the predominant representation of lung
cancer cases, we were unable to perform separate analyses by
primary histologies. It would be of great interest to investigate
whether the conclusions drawn from our study are dependent on
the specific type of primary cancer considered.
In summary, we studied a large BM dataset and unveiled a

continuous acceleration of growth in the case of untreated lesions,
due to evolutionary dynamics sustained between different tumor
subpopulations, as validated by in silico simulations using a
stochastic discrete mesoscopic model. Results for mice data were
in line with that. Recurrent BMs after treatment displayed slower
growth, compatible with treatment-mediated reduction of tumor
heterogeneity. As a result, we have highlighted the predictive
value of a macroscopic variable, the growth exponent, which can
be used to obtain information on the microscopic status of
the tumor.

METHODS AND MATERIALS
Patients
Patients included were all participants in the study MetMath
(Metastasis and Mathematics), a retrospective, multicenter, non-
randomized study approved by five hospitals. All patients were
diagnosed with BM in the period 2007-2021 and followed up with
MRI according to standard clinical practice. A total of 354 patients
who received SRS at any time during the evolution of the disease,
and with full longitudinal follow-up, were reviewed in the study,
including 1133 BMs. Primary tumor histologies were mainly non-
small-cell lung cancer (NSCLC), breast cancer, melanoma
and SCLC.
For the study of longitudinal volumetric dynamics, BMs were

selected from the MetMath dataset on the basis of several
inclusion criteria. First of all a minimum of three consecutive
imaging studies, including a volumetric contrast-enhanced (CE)
T1-weighted MRI sequence (slice thickness ≤2.00 mm, no gap)
with no substantial imaging artifacts, at different time points, were
required in order to allow for reliable lesion volume calculations.
Secondly, an increase in tumor volume at each of the three time
points was required, since it was desired to study the growth of
either untreated or recurrent tumors. Next, only time points
without previous SRS/WBRT treatments (for untreated cases) or
with SRS/WBRT treatments received more than four months
before the first imaging study were considered (treated cases), in
order to exclude the potential confounding effect of acute
inflammatory responses seen in some patients in the first MRI

Table 1. Summary of patient and BM characteristics, histology,
volumetric parameters and treatments.

Patient characteristics

Number of patients 69

Number of metastases 96

Age (years) 60 (33–78)

Sex (Male (M), Female (F)) 55.07% M (38), 44.93% F (31)

Primary cancer Histology

Percentage (number of BMs)

NSCLC 59.42% (41)

Breast 17.39% (12)

SCLC 8.70% (6)

Melanoma 5.80% (4)

Others 8.70% (6)

Volumetric parameters at first follow-up

Median (range)

Total tumor volume (cm3) 0.493 (0.003–24.853)

CE volume (cm3) 0.495 (0.003–14.856)

Necrotic volume (cm3) 0.002 (0.000–9.997)

Treatments

Percentage (number of BMs)

Untreated 10.4% (10)

Chemotherapy (CT) 16.7% (16)

Radiotherapy (RT) 31.2% (30)

CT+ RT 41.7% (40)

Radiotherapy modalities (RT and CT+RT)

Percentage (number of BMs)

WBRT 22.9% (16)

SRS 62.9% (44)

WBRT+ SRS 14.2% (10)
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after SRS. Patients with prior surgical resection of the metastasis
were excluded to avoid confounding effects, such as ischemia.
Brain metastases lacking relevant clinical variables and/or data on
treatments received, as well as those lacking consensus in
segmentations (what may lead to uncertain values of the volumes)
were also excluded. Not all chemotherapies (CTs) are able to cross
the blood-brain-barrier (BBB), including pertuzumab or trastuzu-
mab45,46. Such CTs target primary tumors but are known to have
no effect on metastatic lesions due to the protecting effect of the
BBB. Lesions that are not irradiated and with drugs known as not
able to cross the BBB, were consider as untreated.
Each BM in our dataset was carefully revised to determine

whether or not it satisfied the inclusion criteria. To do so lesion
segmentation was necessary in many cases to assess its growth
dynamics. Finally, 96 BMs from 69 patients were included in the
study. Of these, 10 were untreated, 16 had received chemotherapy
(CT), 30 WBRT or SRS (radiation therapy) and 40 received both
treatments. A summary of patient characteristics used for the
study is provided in Table 1.

Imaging and follow-up
The volumetric contrast-enhanced T1-weighted MR imaging
sequence used to delineate the BMs and compute their volumes
was gradient echo using 3D spoiled gradient-recalled echo or 3D
fast-field echo after intravenous administration of a single dose of
gadobenate dimeglumine (0.10 mmol/kg) with a 6-to 8-minute
delay. MRI studies were performed in the axial or sagittal plane
with a 1.0 T (n= 5), 1.5 T (n= 357) or 3.0 T (n= 55) MR imaging
unit. Imaging parameters were no gap, slice thickness of
0.52–2.0 mm (mean 1.3 mm), 0.4–1.1 mm (mean 0.5 mm) pixel-
spacing and 0.4–2.0 mm sacing between slices (mean 1.0 mm).
Typical time spacing between MRI studies for BM follow-up was

about 3 months for the institutions participating in the study. In
our dataset, the median time between the first two MRI studies
was 3.04 months while for the second it was 2.64 months.

Tumor segmentation
T1-weighted images were retrospectively analyzed by the same
image expert (B.O.-T.) and reviewed by both an image expert with
more than 6 years of expertise in tumor segmentation (J.P.-B.,
D.M.-G. or V.M.P.-G.) and a senior radiologist with 27 years of
experience (E.A.). Segmentations were performed by importing
the DICOM files into the scientific software package MATLAB
(R2019b, The MathWorks, Inc., Natick, MA, USA). Each BM lesion
was automatically delineated using a gray-level threshold chosen
to identify the CE tumor volume. Segmentations were then
corrected manually, slice by slice, using an in-house software as
described in ref. 47. Necrotic tissue was defined as hypointense
tumor regions inside CE tissue. CE and necrotic areas of the lesions
were reconstructed, the tumor interfaces rendered in 3D. Tumor
volume was computed as the volume within the surface
delimiting CE areas.

Experiments in animal models
The human lung adenocarcinoma brain tropic model H2030-BrM3
(abbreviated as H2030-BrM)48 was injected into the hearts of nude
mice to induce the formation of brain metastasis from systemically
disseminated cancer cells. H2030-BrM was cultured in an RPMI1640
medium supplemented with 10% FBS, 2 mM l-glutamine, 100 IU ml−1

penicillin-streptomycin and 1mg ml−1 amphotericin B. Brain
colonization and growth of metastasis were traced using non-
invasive bioluminescence imaging, as BrM cells express luciferase.
On administration of the substrate D-luciferin, bioluminescence
generated by cancer cells was measured over the course of the
disease. The increase in photon flux values is a well-established
correlate of tumor growth in vivo48. The experiments were

performed in accordance with a protocol approved by the Centro
Nacional de Investigaciones Oncológicas (CNIO), the Instituto de
Salud Carlos III and the Comunidad de Madrid Institutional Animal
Care and Use Committee. Athymic nu/nu mice (Harlan) aged 4-6
weeks were used. Brain colonization assays were performed by the
injection into the left ventricle of 100 μl of PBS containing 100,000
cancer cells. Mice anaesthetized with isofluorane were injected
retro-orbitally with D-luciferin (150mg kg−1) and imaged with an
IVIS Xenogen machine (Caliper Life Sciences). A bioluminescence
analysis was performed using Living Image software (v.3).

Cell culture
H2030-BrM was cultured in an RPMI1640 medium supplemented
with 10% FBS, 2 mM l-glutamine, 100 IU ml−1 penicillin-
streptomycin and 1mg ml−1 amphotericin B.

Ethical approval
We have complied with all relevant ethical regulations. Human
data were obtained in the framework of the study MetMath
(Metastasis and Mathematics), a retrospective, multicenter, non-
randomized study approved by the corresponding institutional
review boards: Fundación Instituto Valenciano de Oncología,
Hospital Universitario HM Sanchinarro, Hospital Regional Universi-
tario de Málaga, MD Anderson Cancer Center and Hospital
Universitario de Salamanca.
Animal care and experimental procedures were performed in

accordance to the European Union and National guidelines for the
use of animals in research and in accordance with a protocol
approved by the CNIO and Comunidad de Madrid Institutional
Animal Care and Use Committee (H2030-BrM3 cells).

Von Bertalanffy growth model
Solving (1), with b= 0 leads to

VðtÞ�βþ1

�βþ 1
� V�βþ1

0

�βþ 1
¼ αðt � t0Þ; (2)

where V(t) is the volume (as a function of time t) of a BM, V0 is the
volume obtained from the first segmentation of a BM, α is the
energy intake coefficient, and β is the metabolic scaling exponent
(as in Eq. (1)). Since there is information about the dynamics at
three time points (t0, V0), (t1, V1) and (t2, V2) obtained by image
segmentation, the two parameters α and β can be completely
determined by evaluating (2) at the times t1, t2, giving

1� ðV1=V0Þ�βþ1

1� ðV2=V0Þ�βþ1 ¼
t1 � t0
t2 � t0

: (3)

Equation (3) is an algebraic equation for β that was solved using
the MATLAB function fzero (which returns the root of a
nonlinear function) for each set of known values V0, V1, V2, t0, t1,
t2. A sensitivity analysis was performed to ensure the robustness of
the method for the computation of β.
The growth exponent β provides information on the shape of

the tumor growth curve, which cannot be directly interpreted as a
growth rate, e.g. the speed of volumetric growth. Figure 6a shows
examples fitting the same pair of volumes and time points (initial
and final), with different values of β while subfigure 6b shows that
for a fixed value of α, beta represent the aggressiveness of the
tumor. Figure 6c, d, illustrates that any fixed value of β (chosen
there arbitrarily as β= 1, i.e. exponential growth and β= 5), is
compatible with different speeds of volumetric growth.

Sensitivity analysis of the exponents calculation
To ensure the robustness of the growth exponent β computation,
some well-known growth curves were studied: exponential, cubic,
Gompertz and logistic. For each type of growth, 100 sets of points
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(t1, t2, t3), (V1, V2, V3) were randomly chosen and β was computed.
For the exponential and cubic growths, the same value was
obtained independently to the chosen points (Fig. 7b1-b2). In the
case of Gompertz and logistic growths a set of β values was
obtained (Fig. 7b3-b4). When adding a random error from -20% to
+20% to the curves, a wider range of values for β appears, but
such values are located around the values obtained without error
(Fig. 7c).

Longitudinal growth analysis: individual growth exponents
for mice
In animals, more than three volumetric points were available and a
different method was used to calculate the growth exponent for
each mouse. Measurements at 7, 14, 18, 21, 25 and 28 days were
usable from 24 mice, however at 25 and 28 days, the measured
volume was close to the total brain volume and it was assumed
that growth would be affected by limitations of space. Thus, to
avoid confounding effects coming from mechanical constraints,
the latter two time points were excluded from the analysis. A
discretization of Eq. (1) was performed, and taking logarithms on
both sides

ln
Vi � Vi�1

ti � ti�1

� �
¼ ln αþ β ln Vi ; (4)

the slope of the straight line that best fits all the points for each
mouse corresponds to the growth exponent β. Four mice were
excluded because of volume decrease, leading to the use of 20
mice for β computation.

Sensitivity to small changes in volume when computing beta
In order to test the sensitivity to little fluctuations in the data, a
random error smaller or equal to ±5% was added to each volume.
For each BM, the procedure was carried out 200 times in order to
compute β* for each set of random errors. It was imposed that the
average of the 200 calculated β* have a difference less than 0.5
from the computed β for the measure volumes, that is to say,
jβ�av � βj< 0:5.

Longitudinal growth exponents: Group calculations
An iterative method was used to automatically compute the
optimum β*, that is, the one giving the lowest relative error to the
segmented volumes for each group. A sweep was performed on
β0 ¼ ½0; 3� with 300 steps and on V 0

0 ¼ ½0; V1� and V 0
1 ¼ ½V0; V2�,

with 500 steps for each. To each β0 and each pair ðV 0
0; V

0
1Þ there

corresponds a single value of V 0
2 from Eq. (3). Then, the sum of

relative errors of the three segmented volumes for every BM
(V0, V1, V2) was computed using the formula:

Relative error ¼ jV 0
0 � V0j
V0

þ jV 0
1 � V1j
V1

þ jV 0
2 � V2j
V2

; (5)

the smallest is retained, that is to say, the combination of
ðV 0

0; V
0
1; V

0
2Þ that best fits (V0, V1, V2), given each β0 (pseudocolor

plots in Fig. 3a). Finally, the β* value for which the sum of all errors
(Fig. 3b) is minimum and therefore corresponds to the best fit for
the whole subgroup, is observed.

Stochastic discrete mesoscopic simulator of BMs longitudinal
dynamics and response to treatments
To illustrate how treatment could modulate heterogeneity and
influence the β values obtained from BM longitudinal growth data,

Fig. 6 Interpretation of the growth exponent β. a Growth behavior for several values of the growth exponent β when fixing initial and final
volumes and times. The growth exponent gives information about the shape of the curves. b Growth behavior for the same values of the
growth exponent β than in a when fixing initial volumes and α. c Growth behavior when fixing β= 1 and the initial volume, showing different
growth curves with different α but the same exponent. d Growth behavior when fixing β= 5 and the initial volume, showing different growth
curves with different values of α.
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as well as to provide an in silico testbed capable of simulating the
growth and evolution of BMs, an adapted version of the
mesoscopic model developed in ref. 23 was used. The mesoscopic
model is a discrete stochastic simulator of tumor growth, that
features clonal populations as the basic agent, instead of
individual cells. The spatial domain is divided into voxels, a 3D
generalization of a bi-dimensional compartment (commonly used
in medical imaging). Each voxel has a given carrying capacity K, so
it can harbor as much as K cells, that may belong to different
clonal populations. It is assumed that cells belonging to the same
clonal population and exposed to the same stimuli (microenvir-
onment, surrounding cell density, nutrient/oxygen availability) will
behave in the same way. Therefore, instead of assessing cell-by-
cell the outcome of any dichotomous success/failure process that
an individual cell may perform (such as division or death), the
number of cells in each clonal population that succeed in
performing such processes is assessed in a single step.
If the outcome of each individual process i performed by a cell

is considered as a random variable following a Bernoulli
distribution Xi ~ Bernoulli(Pi), with a probability Pi associated to
that process, then the joint outcome of an entire clonal population
of N identical cells performing such process can be considered as
a random variable following a binomial distribution X 0

i � B ðN; PiÞ.
In this way, by knowing the number of cells N attempting to
perform a process i, and the probability Pi of successfully
performing that process, updating the number of cells in a clonal
population is done by sampling the binomial distribution
associated with that process.
The processes considered in this version of the model are

division, death and migration. Note that mutations or phenotypic
transitions are disregarded, as cells are not allowed to change
from a given population to another. This assumption is grounded
in the short time scale of evolution of BMs. At each time step, the

cell number in each voxel is updated in a synchronous way (using
swapping matrices) by random sampling the binomial distribu-
tions corresponding to each process, voxel and clonal population.
The probabilities associated with these binomial distributions
were defined in the same way as in the original work23. The
version of the model used in this paper is adapted to simulate
BMs. It considers only two clonal populations, with different traits
and characteristic rates. The rates of division, death and migration
were fitted (using ABC rejection algorithm49) to mimic the lifespan
and volume dynamics of an actual BM.
One of these clonal populations is more aggressive than the

other; this is implemented by faster division and migration rates.
Namely, the advantage associated with the division process will
be vdiv∈ [1,∞), while the advantage associated with the migration
process will be vmig∈ [1,∞). These coefficients represent the ratio
between the characteristic rate (inverse of time) at which the
aggressive cells carry out the considered process, versus the
characteristic rate of the other cell type. Hence, the greater their
value, the greater the advantage associated with the aggressive
population. As an example, a vdiv= 2 would mean that the rate
of division of the most aggressive population is twice the rate of
division of the less aggressive population; in other words, the
division time of the most aggressive population is half the division
time of the less aggressive population. The range of parameter
values used in the model to perform simulations can be seen in
Table 2. A total of 720 simulations were performed for the
parameter exploration performed in Fig. 5.
The adapted version of the mesoscopic model for BMs was

coded in Julia (v. 1.1.1). Data processing and visualization of
simulation files was performed in Matlab (v. 2018b). The original
code for the mesoscopic model has been made available in the
repository https://github.com/JuanJS117/MesoscopicModel.

Fig. 7 Growth exponent β for different types of growth: exponential, cubic, Gompertz and logistic. a Growth function in blue with a ±20 %
error in green. b Computed β from Eq (1) for the different growth without error. c Computed β when a random error is taken into account.
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Statistical analyses
Statistical analyses were performed using the MATLAB software,
and also SPSS (Statistical package for the Social Sciences, v24.00
IBM) software. The normality of the variables was assessed via the
Kolmogorov–Smirnov test. The Kruskal–Wallis test was conducted
with adjustment for multiple comparisons, to determine statisti-
cally significant differences for non-parametric data (the scaling
law growth factor, β). P-values smaller than 0.05 were considered
to be statistically significant.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
All data that support the plots within this paper and other findings of this study are
available from the corresponding author upon reasonable request.
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