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A data-driven Boolean model explains memory subsets and
evolution in CD8+ T cell exhaustion
Geena V. Ildefonso 1 and Stacey D. Finley 1,2,3✉

T cells play a key role in a variety of immune responses, including infection and cancer. Upon stimulation, naïve CD8+ T cells
proliferate and differentiate into a variety of memory and effector cell types; however, failure to clear antigens causes prolonged
stimulation of CD8+ T cells, ultimately leading to T cell exhaustion (TCE). The functional and phenotypic changes that occur during
CD8+ T cell differentiation are well characterized, but the underlying gene expression state changes are not completely
understood. Here, we utilize a previously published data-driven Boolean model of gene regulatory interactions shown to mediate
TCE. Our network analysis and modeling reveal the final gene expression states that correspond to TCE, along with the sequence of
gene expression patterns that give rise to those final states. With a model that predicts the changes in gene expression that lead to
TCE, we could evaluate strategies to inhibit the exhausted state. Overall, we demonstrate that a common pathway model of CD8+ T
cell gene regulatory interactions can provide insights into the transcriptional changes underlying the evolution of cell states in TCE.
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INTRODUCTION
CD8+ T cells play a crucial role in anti-tumor immunity, but they
often undergo T cell exhaustion (TCE), limiting their anti-tumor
effect to clear tumor cells. Exhausted CD8+ T cells are a group of
dysfunctional T cells that are present in chronic infections and
cancer1,2. An important characteristic of these exhausted T cells
that persist during continuous antigen stimulation is upregulation
and sustained expression of the inhibitory receptor, programmed
cell death protein 1 (PD1), which is also a marker of T cell
activation3,4. Similar to other immune cells, exhausted T cells are
heterogeneous and include intermediary subsets of T cell states
with unique characteristics, such as distinct responses to
immunotherapies and gene expression profiles.
Recently, progress has been made in understanding TCE. For

example, the definition and identification of exhausted T cells
have changed from being based on the cells’ phenotype to being
classified at the transcriptional and epigenetic levels5,6. The ability
of T cells to use identical underlying genomes to generate
differentiated cells with diverse gene expression profiles has
prompted interest in understanding how a common set of
transcription factors drives differentiation. Furthermore, various
models have been proposed6–8 to account for the progression of T
cell states from the acute phase of immune responses to
exhaustion. Two core differentiation models have been proposed
to reflect the transcriptional profiles of T cell subsets: the “linear”
and “circular” models6,8. The circular model (Fig. 1a) proposes that
naïve T cells (TN) can cycle between memory (TM) and exhausted
(TE) intermediary states, resulting in an oscillating (On-Off-On or
Off-On-Off) pattern of transcriptional changes over time before
reaching the terminal state (TT). This sets up a recurring cycle of T
cell differentiation (TN → TM ↔TE →TT). Conversely, the linear
model (Fig. 1b) proposes that signal strength and duration of
signals are key determining factors of T cell differentiation. This
results in gene expression patterns that change gradually (On-Off
or Off-On) as cells progress toward their terminally differentiated

state. Moreover, this sets up the progressive loss of memory-
associated gene expression and gain of exhausted-associated
gene function during CD8+ T cell differentiation (TN → TM → TE
→TT). In both the circular and linear differentiation models,
antigen-specific signals transduced through the T cell receptor
(TCR) play an important role in driving the transcriptional changes
that underlie exhausted T cell characteristics9,10. Many of the
primary transcription factors involved in CD8+ T cell activation
and differentiation have been identified, including TCR, activator
protein 1 (AP1), nuclear factor of activated T cells 1 (NFATC1), and
PD1. However, efforts to target CD8+ T cells therapeutically and
inhibit their exhaustion are hindered by the lack of a mechanistic
understanding of the gene regulatory pathways and differentia-
tion subsets driving T cell exhaustion.
Mathematical modeling is needed to understand the complex

interplay of the many genes that mediate T cell exhaustion.
Specifically, Boolean models have emerged as a tool to study
biological systems where it is of interest to understand the
dynamics of cellular states and functions under different condi-
tions. Previous Boolean models of T cell activation have been
developed, integrating pathways from TCR stimulation and co-
stimulatory molecules11,12. These models have been applied to
study the activation of T cells via TCR and CD2812 when they
encounter tumor cells and Natural Killer cells with CD4/CD8 co-
receptors11. The predictions of Boolean models are typically
examined once they reach a stable behavior. At this point, the sets
of interactions have converged to an attractor end state, which is
interpreted as a physiological endpoint. However, it is important
to also examine the transitions that lead to the attractors in order
to investigate the progression of T cell states. We aim to leverage
previous modeling work to systematically evaluate the transitions
between transcriptional profiles of different subsets of T cells and,
ultimately, gain insight into strategies to inhibit T cell exhaustion.
In this work, we adapted a literature-derived, data-driven

Boolean model13 of CD8+ T cell gene regulation stimulated by
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positive and inhibitory receptors, TCR and PD1, respectively. This
model has not previously been applied to study the dynamics of
genes that characterize TCE. We hypothesized that diverse gene
regulatory interactions are responsible for TCE rather than the
dysregulation from a single gene through distinct intermediary T
cell states. We applied the model to quantitively investigate the
evolution of T cell states of gene regulation along the path to
exhaustion. Our systems analysis identifies eight attractor states
comprised of distinct patterns of gene expression corresponding
to TCE in response to T cell activation. The sequence of changes in
gene expression that gives rise to these eight cell states includes
four paths represented by the circular model and four paths
represented by the linear differentiation model. Furthermore, the
attractor states are predominately characterized by the activation
of exhausted-associated genes. With the predictions of the
transcriptional patterns leading to T cell exhaustion, we simulated
interventions that inhibit TCE. In silico PD1 blockade through
repression of NFATC1 is predicted to lead to seven attractor end
states, predominately produced by the circular differentiation
model leading to terminal pro-memory attractor states. Overall,
our results show that a common gene regulatory pathway model
of CD8+ T cell activation can display a wide array of observed
behaviors seen experimentally, including in response to inhibiting
TCE. As such, the model can be used to identify novel therapeutic
targets.

RESULTS
Population-level dynamics display fractional activation of
primarily exhausted-associated genes
The dynamics of the adapted Boolean model of gene regulatory
interactions provide an avenue for exploring the evolution
between naïve and terminally exhausted T cell states. We utilized
this model to investigate the transcriptional regulation of CD8+ T
cell differentiation that exists through diverse gene patterns over
time and to generate novel hypotheses about the gene expression
changes underlying TCE. We generated time courses by simulating
the model 10,000 times and examined the influence of
“proliferative pro-memory” (PP) and “effector exhausted” (EE)
associated genes over time. Each end state (ES) is classified as
either PP or EE based on the total number of associated genes at
the end of each time course (“Materials and methods”).
The model predicts that in response to initial stimulation by TCR

and the IL family13, the fractional activation of EE genes primarily
dominates over time (Fig. 2a). The fractional activation of EE genes
exhibits a rapid-onset, short-term peak in the first four time steps
following initial stimulation. In comparison, the model predicts
that the fraction of PP genes on only exceeds the fraction of EE
genes that are on for time steps five through seven. This suggests

that the initial influence of EE-associated genes is driving the
general dynamics of the T cell population. After those initial times,
the overall trends for both PP and EE activation are comparable,
and we see by time step 13, the fraction of genes active in both
groups is below 10% for the remaining time steps.
Next, we obtained the frequency of simulations remaining at

each time step (Fig. 2b). This frequency represents the in silico
cells that have not reached their terminal end state at a particular
time. Notably, only a small fraction of the total simulation of cells
(<500 out of 10,000) terminate in the first nine time steps.
Following this, there is a quick decline in the number of cells that
have reached their end state from the initial 10,000 to less than
half of the total by time step 13. At that point, only a small number
of cells (<20) remain before reaching their end state by the end of
the simulated time. The results in Fig. 2 show there are more EE
genes turned on (>50%) in the cells that reach a terminal end
state in the first few time steps. In all, the results from examining
the overall dynamics of the population reveal dominance toward T
cell exhaustion from early time steps before the majority of cells
reach terminal differentiation.

Network analysis identifies eight distinct end-state attractors
of T cell exhaustion
Once we established the overall population-level dynamics
predicted by our model, we proceeded to evaluate how the
model input impacts the terminal end state for each simulated T
cell. This allowed us to identify the network of interactions that
comprise the final state for an individual T cell following initial
stimulation. Utilizing the generated time courses representing
single cells, we aimed to determine the influence of transcriptional
activation of PP and EE genes. The predicted outputs from 10,000
simulations resulted in eight attractor end states, consisting of a
broad range for the number of cells in each end state (Fig. 3a).
The model predicts that distinct combinations of PP and EE

genes are on for each end state. Specifically, the eight end states
identified by the model are defined by PD1, NFATC1, NR4A1, AP1,
BLIMP1, TCF1 and BCL6 expression (Fig. 3b–i). We observed three
common gene modulators of terminal T cell differentiation: PD1,
NFATC1, and NR4A1. These are not unexpected since these genes
create a positive feedforward loop with each other following TCR
stimulation within the network structure. Interestingly, the model
predicts that end states ES1 (Fig. 3b), ES4 (Fig. 3e), and ES8 (Fig. 3i)
exhibit an equal number of PP and EE genes turned on. However,
these end states are classified as terminally exhausted due to AP1
and AP1 DNA binding activity, which are known to positively
regulate T cell exhaustion14,15. This prediction agrees with
experimental evidence showing that the ratio of NFATC1 and
AP1 is important during the decision-making process for pro-

Fig. 1 Proposed CD8+ T cell differentiation models result in unique gene expression patterns over time. a In the circular model of CD8+ T
cell differentiation, naïve T cells (TN) cycle between memory (TM) and exhausted (TE) intermediates before reaching a terminal differentiated
state (TT). b In the linear model, CD8+ T cells differentiate depending on the gradual acquisition of memory- or exhausted-associated genes.
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memory versus exhaustion in CD8+ T cells16,17. AP1 is turned off
in end state ES5 (Fig. 3f); however, activation of BLIMP1 mediates
terminally exhausted T cells in this end state. Finally, the model
predicts that only end states ES6 (Fig. 3g) and ES7 (Fig. 3h) are
classified as PP cells. These are the only end states in which TCF1
and BCL6, genes classified as terminally pro-memory, remain on
despite residual activation of PD1 and NFATC1. Activation of TCF1
and BCL6 would not be predicted solely by examining the model
structure. Again, the model prediction agrees with experimental
evidence, as activation along the TCF1-BCL6 axis has been shown
to modulate T cell development and exert positive effects on
differentiation to drive and maintain the immune response of
CD8+ T cells18,19. Altogether, our modeling results clearly illustrate
that a common set of network interactions can exhibit significant
differences in the transcriptional profiles that influence terminal T
cell differentiation.

Evolution of CD8+ T cell states reveals circular and linear
differentiation models through distinct gene expression
activation patterns
Next, we explored whether the evolution of gene activation
predicted by the model follows circular or linear differentiation.

Thus far, we have shown that the population dynamics of T cells
exhibit differences in fractional activation of both PP and EE genes
(Fig. 2), and the end state of individual cells have different network
structures (Fig. 3). Together, these results suggest that activation
of specific genes over time drives T cell response, leading to the
predicted end state. Therefore, to investigate the evolution of T
cell progression, we examined the state changes over time for
each end state identified. We were particularly interested in the
expression pattern for each gene as a cell progresses through
intermediary states to reach its terminal end state. To this end, we
chose a representative cell from each of the eight end states (see
“Materials and methods” for details) and tracked the changes in
the expression of each gene over time. We note that the overall
dynamics in each end state for all simulations and the number of
simulations that have not reached their terminal end state are
comparable with each other (Supplementary Figs. 1 and 2). We
utilized these gene expression patterns to classify the T cell state
at every time point.
The model predicts distinct sequences of gene expression

leading to the terminal state. The first two time steps across all
cells represent the naïve state (TN) for a T cell, following the initial
stimulation by TCR and the IL family. We can then visually observe

Fig. 2 Fractional activation profiles following initial T cell activation. a Fraction of PP (pink) and EE (green) gene activation for all simulations
over time. b Number of simulations that have not reached their terminal end state.
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differences between the fractional activation of PP and EE genes
and patterns of genes that turn on and off in each cell over time.
In particular, we observed five groups of single cells (SC) (SC1 (Fig.
4a), SC2 (Fig. 4b), SC3 (Fig. 4c), SC4 (Fig. 4d), and SC5 (Fig. 4e))
characterized by an oscillatory pattern of expression of PP and EE

genes. These groups are classified as following the circular model
of differentiation. In comparison, three other groups exhibit a
more gradual increase in their expression of PP or EE genes (SC6
(Fig. 4f), SC7 (Fig. 4g), and SC8 (Fig. 4h)), following the linear model
of differentiation. Within the circular models, T cell state

Fig. 3 Terminal attractor networks from the Boolean model. a Frequency distributions of simulations residing in each network attractor.
Bars are color-coded to reflect the terminally differentiated T cell state, pro-memory (pink) or exhausted (green). b–i Terminal attractor
networks from (a). Colored nodes and arrows represent the genes remaining active (ON) in their attractor network; gray nodes and connected
arrows represent the genes that are inactive (OFF).
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progression is driven by the activation of pro-memory genes, such
as BCL6, TCF1, and FOXO1, as well as exhausted genes, including
BATF and IRF4. This results in a cycle between the PP and EE states
(TM and TE, respectively) before reaching the terminal (TT) state of
T cell exhaustion (green) state. Interestingly, the model simulations
predict that the groups that follow the linear model can terminate
in different end states. Specifically, the SC3 (Fig. 4c) and SC8 (Fig.
4h) groups terminate in an exhausted end state through residual
activation of PD1 and NFATC1, while the SC6 and SC7 groups
terminate in a pro-memory state (pink), driven by activation of
TCF1 and BCL6. It is important to note that despite the equal
number of PP and EE genes in SC1, SC4 and SC8 (Fig. 4a, d, h),
these cells are classified as terminally exhausted because of the
sustained activation of AP1, a positive regulator of TCE14. Finally,
model simulations predict that SC2 (Fig. 4b), SC4 (Fig. 4d), and SC5
(Fig. 4e) are the only groups where AKT, mTOR, and glycolysis are

active together. Intuitively, we can understand this sequence of
interactions following TCR stimulation, where AKT becomes active
if PD1 is not active. Active AKT then triggers the activation of
mTOR, which results in glycolysis. These signals immediately
become deactivated following PD1 activation. Our predictions
agree with experimental evidence, where studies have shown that
activation of naïve CD8+ T cells can also trigger alterations in
metabolism20–22.

Population-level T cell dynamics from PD1 blockade display
fractional activation of memory-associated genes
Following the identification of distinct network interactions
comprising two T cell differentiation models, we proceeded to
evaluate how perturbing the network (“Materials and methods”)
impacts the dynamics of the population compared to cells with

Fig. 4 Evolution of T cell states and associated differentiation models. a–h Single T cell (SC) tracking intermediary states defined by PP
(pink) or EE (green) gene activation (SC1-SC8). Each SC simulation heatmap displays the evolution of gene activation (colored; ON) or
inactivation (white; OFF). Frequency distribution bars above the heatmap show the fraction of PP or EE genes at each time step. Diagrams for
each SC simulation represent a simplified visualization of the evolution of each intermediate T cell state from naïve state (TN) to terminally
differentiated state pro-memory (TT, pink) or exhausted (TT, green).
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the baseline network (wildtype, WT). Drawing on published work,
we specifically focused on perturbing interactions that affect PD1.
Recent experimental studies23 have focused on attempting to
block the PD1 pathway using anti-PD1 antibodies during the
naïve-to-memory CD8+ T cell transition, based on results showing
that PD1 can be modulated between these stages of T cell
differentiation24,25. However, the role of PD1 in CD8+ T cell
differentiation remains poorly characterized. To address this gap,
we encoded a PD1 checkpoint blockade in the model by
repressing NFATC1, a known activator of PD126. We simulated
time courses similar to WT to examine the effect on transcriptional
activation of PP and EE genes. The model predicts that with PD1
blockade, in response to initial stimuli, the fractional activation of
PP genes primarily dominates over time (Fig. 5a). The fractional
activation of PP genes exhibits a quick, transient peak in the first
three time steps following the initial stimulation. In comparison,
we observed that the fraction of activated EE genes is only
prominent in time step four. This initially suggests that the
influence of memory-associated genes is driving the general
dynamics of the population. The long-term behavior for activation

of both PP and EE genes over time is similar, and by time step 15,
the fraction of active genes in both groups is below 10% for the
remaining time steps.
In addition to examining the influence of the PD1 blockade on

the fractional activation profiles for PP and EE genes, we also
observed the frequency of simulations remaining before reach-
ing their terminal end state (Fig. 5b). The results show that
blocking PD1 delays cells reaching their terminal end state
compared to WT (Fig. 2b). Notably, we only observe fewer total
simulations (<10) that conclude in the first 10 time steps, in
contrast to the quick decline in the number of cells from the
total 10,000 to less than half of the total by time step 15. It is
interesting to note that more than half of the total population
reaches its terminal state within the first several time steps, and
only a small number of cells (<50) remain before reaching their
end state by the end of the time course. Overall, the results from
examining the dynamics of the population with PD1 blockade
reveal the dominance of the PP genes before cells reach their
end states.

Fig. 5 Fractional activation profiles following initial T cell activation and PD1 blockade. a Fraction of PP and EE gene activation for all
simulations over time in response to PD1 blockade. b Number of simulations remaining before reaching terminal end state with PD1 blockage
(blue) compared to wildtype (gray; from Fig. 2b).
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Network analysis with PD1 blockade identifies seven distinct
end-state attractors of T cell exhaustion
In order to elucidate the mechanisms by which T cells respond to
a PD1 checkpoint blockade, we simulated a population of
10,000 single cells and examined the terminal differentiated end
states. Model prediction outputs revealed seven attractor end
states, with a broad frequency distribution (Fig. 6a). The majority
of simulation outputs (~86%) go to end states ES1 and ES2, both
terminally PP end states. We can see that the overall end-state
network structure has differential activation combinations of PD1,
NFATC1, NR4A1, AP1, BLIMP1, BCL6 and TCF1. There are two
common gene modulators across the seven end states, NFATC1
and NR4A1 (Fig. 6b–h). These are interesting because previous
studies have proposed that the NFATC1-NR4A1 axis controls the T
cell exhaustion program27 and NR4A1 has stronger control over
the regulation of T cell dysfunction28. Therefore, we classify ES4
(Fig. 6e), the only end state composed solely of the two common
gene modulators, as terminally pro-memory. More intriguing is
that despite the PD1 blockade, two of the end states, ES3 (Fig. 6d)
and ES6 (Fig. 6h), remain terminally exhausted. For ES3, although
we removed the ability for NFATC1 to activate PD1, AP1 can still
activate PD1, which provides an alternate route for PD1 to remain
active. In the case of ES6, residual activation of BLIMP1 causes this
end state to remain terminally exhausted despite the absence of
PD1. Interestingly, ES1 (Fig. 6b) and ES2 (Fig. 6c) are terminally PP
end states and display similar networks, with BLIMP1 remaining
activated, inhibiting the activation of pro-memory-associated
genes TCF1 and BCL6. Lastly, ES7 (Fig. 6h) is the only terminally
PP end state with activated TCF1. In all, these results reveal that
PD1 blockade influences T cell terminal end states to be classified
as PP cells.

Evolution of CD8+ T cell states with PD1 blockade reveals
circular subset differentiation models
We have shown that the population dynamics of T cell response to
a PD1 blockade exhibit dominance of PP gene activation (Fig. 5a)
and altered end-state networks compared to wildtype (Fig. 6). An
interesting and unexplored aspect of targeting PD1 in T cell
biology is that this inhibitory receptor is expressed not only on
chronically stimulated exhausted CD8+ T cells but also during the
early stages of T cell activation24,29. One of the main goals of
therapeutically targeting PD1 is to understand whether blocking
PD1 during the early phase has an inhibitory role similar to what is
seen in exhausted CD8+ T cells. To address these questions, we
investigated the evolution of T cell response with a PD1 blockade.
We sought to investigate the hypothesis that if PD1 was blocked
through NFATC1 repression, the intermediary states and terminal
end state of these CD8+ T cells would shift from EE to a terminal
PP state. We were particularly interested to see which genes
become activated as T cells progress through their intermediary
states. Toward this end, we chose a representative single cell from
each end-state group (Fig. 7a) to examine the overall progression
of T cell states. Similar to WT cells, we were able to utilize these
gene expression patterns to classify the state of each group of T
cell end states for every time point. We again note that the overall
dynamics for cells in each end state for all simulations and the
simulations that have not reached their terminal end state are
comparable (Supplementary Figs. 3 and 4).
We can visually observe differences between the activation

patterns of PP and EE genes in each group over time,
predominantly displaying pro-memory activation (Fig. 7). In
particular, we observed six of the seven groups follow the circular
model, SC1 through SC6 (Fig. 7a–f), while SC7 (Fig. 7g) follows the
linear model. Within the circular models, we observed increased
activity of metabolic genes in early time steps (NFkB, AKT, mTOR,
and glycolysis) before cycling between PP and EE genes. This
indicated that the PD1 blockade allowed for prolonged activation

of TCR and downstream activation of metabolism-associated
genes compared to WT cells. Cycling between PP and EE T cell
states was primarily driven by PP genes, BCL6, FOXO1, TCF1 and
EE genes, BATF1, BLIMP1, NFATC1, and STAT3 (Fig. 7a–f). This
resulted in a cycle between TM ↔ TE before reaching the
terminally PP (pink) state. Furthermore, the representative single
cell that followed the linear model, SC7 (Fig. 7g), terminates in a
PP end state through residual activation of TCF1 and NR4A1.
Lastly, it has been shown that PD1 is required for optimal CD8+ T
cell memory24. Interestingly, we observed oscillatory dynamics of
PD1 in each group, with differing activation time and length. We
can understand this intuitively through AP1 activity, where PD1
turns on and off following AP1 activation and inactivation,
respectively. In summary, we predict that for all single-cell groups,
PD1 is required to reach a pro-memory terminal end state as
T cells evolve through intermediary states.

DISCUSSION
We applied a computational modeling approach to explore T cell
states, motivated by published experimental studies. A recent
review of CD8+ T cell memory30 described how CD8+ T cells
containing identical underlying genomes could follow different
patterns of differentiation, ultimately generating subsets of cells
characterized by distinct gene expression. Importantly, the
authors emphasized that regulatory mechanisms underlying these
subsets, which include both memory and exhausted T cells, are
incompletely understood. However, they proposed that changes
in transcription factors drive the functional differentiation and
heterogeneity of these T cell subsets. The results presented in our
work are consistent with this view: a data-driven Boolean model
comprising core CD8+ T cell genes expressed in response to
stimulation (Fig. 8) predicts the fractional activation of memory
and exhausted-associated genes (Fig. 1), including differentiation
models (Fig. 3) that lead to terminal states (Figs. 2 and 4).
Furthermore, the model provides a framework for predicting
terminal end states and differentiation dynamics of cells with
altered gene regulatory networks (Figs. 5 and 7). Thus, the
dynamics predicted by the model align with experimental
observations and can be used to investigate the evolution of T
cell activation and exhaustion.
In this study, we adapted a data-driven Boolean model of CD8+

T cells13 to examine transcriptional gene patterns and differentia-
tion along the path from naïve to exhaustion. We applied the
model to investigate various characteristics of T cell signaling. By
examining the transcriptional pattern of activation of PP- and EE-
related genes, we found the population of in silico T cells
associated with eight distinct terminal gene networks (Fig. 3),
even when starting from identical underlying networks. These
networks comprise global gene modulators, including known
effectors such as PD1, NFATC1, and NR4A1. Particularly, our results
highlight NFATC1 as a regulatory element that can be targeted, as
it is responsible for increasing the transcription of NR4A1 and
regulating PD1 gene expression. This is consistent with previous
transcriptomics studies28 that have suggested that NR4A1 may
have an important role in the early stages of the CD8+ T cell
response through cooperation with NFATC1, contributing to the
dysfunctional state of T cells.
The PD1 pathway is known to regulate dysfunctional T cells in

chronic infection and cancer, but the role of this pathway during
acute infection remains less clear. PD1 is expressed by all T cells
during activation, positioning this pathway to play an essential
role in shaping fundamental properties of CD8+ T cell responses
early during differentiation. Previous work24 showed that early T
cell responses in the absence of PD1 signals result in defects in
CD8+ T cell memory; however, a PD1 blockade only during the
early stages of infection resulted in optimal memory. PD1 gene
regulation has been shown in part to occur via the recruitment
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of NFATC1 to provide the molecular mechanism responsible for
the induction of PD1 in response to T cell stimulation26. Our
modeling analysis with a PD1 blockade through NFATC1
repression during early T cell response results in a terminal
pro-memory differentiated state (Fig. 7), consistent with our
initial hypothesis. The activation of PD1 reveals an oscillatory
pattern over time, resulting in a terminal pro-memory end state

for all seven subsets. This suggests that the PD1 pathway may
continue to function as a link to signals required for memory T
cell maintenance, consistent with previous experimental obser-
vations24,25,31. In addition, early T cell response results in
increased metabolic activity prior to PD1 activation. Naïve
T cells have been shown to possess a metabolically resting
phenotype, activated upon TCR stimulation32. This implies that

Fig. 6 Terminal attractor networks from the Boolean model with PD1 blockade. a Frequency distributions of simulations residing in each
network attractor. Bars are color-coded to reflect the terminally differentiated T cell state, pro-memory (pink) or exhausted (green).
b–h Terminal attractor networks from (a). Colored nodes and arrows represent the genes remaining active (ON) in their attractor network; gray
nodes and connected arrows represent the genes that are inactive (OFF).
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our model analysis supports the notion that metabolism is a
strong driver of CD8+ T cell differentiation and function. Lastly,
it is interesting to note that we observed an even distribution of
linear and circular differentiation models in WT cells; however,
with PD1 blockade, the differentiation path shifts toward
predominately circular. We attribute the shift to the oscillatory
dynamics of PD1 activation and inactivation when PD1 is
repressed by NFATC1. A future study could investigate the T cell
response at different time steps clarifying the mechanisms by
which NFATC1 repression of PD1 affects the TN → TM → TE
stages of CD8+ T cell differentiation and impact on metabolic
activity. This will be important for determining how to optimally
administer PD1 blocking agents alone and in combination with
other therapies to achieve durable improved immunity.
We examined how the gene expression pattern changes

between the intermediary T cell states along the path to
exhaustion. Our modeling analysis emphasizes the influence of

AP1 and BLIMP1 gene activation in driving terminal exhaustion,
despite opposition with activation of pro-memory-associated
genes, TCF1 and BCL6. It is important to note that the timing of
BLIMP1 versus TCF1 and BCL6 activation is crucial in determining
the progression of terminal T cell differentiation. Particularly, in
SC7 (Fig. 4g) and SC8 (Fig. 4h), we observed BLIMP1 activation and
deactivation only during the early stages of T cell response, with
subsequent activation of TCF1 and BCL6. Previous studies33 have
shown that the TCF1-BCL6 axis can repress T cell exhaustion and
maintain T cell immune response. These results indicate that
targeting this axis is a mechanism by which T cell-mediated
immunity may be enhanced during chronic infections and cancer.
Thus, we provide quantitative insights to motivate directly
targeting TCF1 and BCL6 in combination with BLIMP1 to further
investigate these genes as therapeutic targets.
Along with the findings produced by our work, we recognize

some aspects that can be addressed in the future. In Boolean

Fig. 7 Evolution of T cell states and associated differentiation memory models with PD1 blockade. a–g Single T cell (SC) tracking
intermediary states defined by PP (pink) or EE (green) gene activation (SC1-SC8) with simulated PD1 blockade via removal of NFATC1-mediated
activation of PD1. Each SC simulation heatmap displays the evolution of gene activation (colored; ON) or inactivation (white; OFF). Frequency
distribution bars above the heatmap show the fraction of PP or EE genes at each time step. Diagrams for each SC simulation represent a
simplified visualization of the evolution of each intermediate T cell state from naïve state (TN) to terminally differentiated state pro-memory
(TT, pink) or exhausted (TT, green).
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models, time is considered discrete, where a new state is updated
depending on defined Boolean functions. However, cell differ-
entiation is continuous; thus, future work could address this
limitation of Boolean modeling by converting the discrete Boolean
model to represent continuous dynamics seen in developmental
biology34–36. Additionally, the proposed Boolean model of CD8+
T cells can be expanded to include additional genes and pathways
known to play a role in T cell activation and response37–40 (i.e.,
Notch and MAPK), and additional T cell ligands10 (i.e., MHC class I,
and MCH class II) and receptors41–44 (i.e., CD4, CTL4A, and CD45).
Additionally, a limitation in our study is that the definition of pro-
memory or exhausted T cell state is solely based on the relative
number of PP and EE genes activated. Our motivation for
determining T cell state based on PP and EE gene count is the
fact that gene expression is the process by which information held
by a gene is converted into a function. Thus, we reason that the
gene activation count can determine T cell state. Future work can
explore the possibility of a weighted contribution of genes in
determining cell state transition45 in T cells or incorporate a
steady-state probability distribution function45 to estimate the
transition potential for each T cell state in the Boolean
network model.
Progress in T cell immunology research in the past decade has

led to significant advancement in our understanding of various
molecular factors driving T cell activation and memory forma-
tion. Despite the markedly high response rates and improved
overall patient survival following checkpoint blockade, most
patients did not experience durable cancer regression, and
blocking PD1 alone did not overcome CD8+ T cell exhaus-
tion23,31,46. The plasticity of CD8+ T cells strongly encourages
alternate strategies for targeting CD8+ T cell subsets in future
immunotherapy treatments. Improving our understanding of
the gene regulatory pathways that drive CD8+ T cell activation
and exhaustion and other T cell signaling pathways is thus
critical for developing improved therapies against these deadly
diseases. We have shown that a consensus model of CD8+ T cell
gene activation can display a variety of behaviors seen
experimentally and can predict novel targets for modulating
CD8+ T cell exhaustion. Overall, our work provides a solid
foundation for future work to study the regulatory pathways
that drive T cell decisions and responses.

MATERIALS AND METHODS
Boolean model of CD8+T cell exhaustion
We used a published large-scale network model of gene
regulation to investigate the progression of T cell states and
understand the evolution of gene expression patterns that lead to
terminally exhausted T cells. We used a previously published
Boolean model13, which they constructed through an extensive
literature-based network of gene regulatory interactions under-
pinning TCE in CD8+ T cells (Fig. 8a, b). Using clustered gene
expression time course profiles, Bolouri and coworkers were able
to assign the regulatory interactions underlying T cell exhaustion
into two groups defining an early “proliferative pro-memory” (PP)
state and a later state termed “effector exhausted” (EE)13. Thus, in
Fig. 8, each gene node in the network is color-coded based on its
impact along the path to TCE, labeled as either PP (pink) or EE
(green). There are 12 PP genes and 13 EE genes. This 25-node
network includes 22 rules (Supplementary Table 1) that integrate
immune inputs (TCR and PD1, yellow) with downstream signaling
events involved in T cell activation and exhaustion. The model
incorporates signaling events stimulated by the TCR, including
activation of key pro-memory genes, FOXO147–49, AKT50,51,
AP114,16, and NFATC252,53. Subsequent activation of these genes
results in mTOR54 activation leading to increased glycolysis55 or
self-renewed memory through BCL619,56 and TCF118,57,58. In
contrast, stimulation by PD129,59 or the IL signaling family
(IL260,61, IL1262,63, IL2164,65) promotes activation of well-known
drivers of T cell exhaustion, including NFATC126,53, BLIMP166,
BATF67,68, and IRF469,70.

Boolean model simulations
In Bolouri et al., the authors established a network of key
molecular interactions that are believed to underlie T cell
exhaustion. The model was simulated to execute the series of
22 logic statements in a specific order and was presented only as
an illustrative example. The authors ultimately found that the
model’s state trajectory is highly dependent on the specified
update sequence; however, they did not further examine or
present in their work the evolution of T cell state changes
influenced by PP or EE gene activation or intermediate transitory
states that arise. In our work, we extended the implemented R71

code corresponding to the adapted Boolean model developed by
Bolouri and coworkers13 to perform an in-depth exploration of T

Fig. 8 Boolean model of CD8+ T cell exhaustion. a Literature-based network diagram of key gene regulatory interactions underlying TCE.
Black arrows indicate activation; red lines with bars on the end indicate inhibition. Stimulating and inhibitory immune receptors are shown in
yellow with black dashed borders. Pink nodes represent proliferative pro-memory-associated genes; green nodes represent effector
exhausted-associated genes. b Schematic outline of T cell state progression from naïve to terminal differentiation.
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cell state changes that has not yet been completed by other
groups.
The variables in this model can take two values: 0 (inactive or

absent) or 1 (active or present). Boolean logic simulations are
designed to explore the characteristics of network attractor states;
however, understanding the acute and chronic CD8+ T cell
responses of interest requires examining the specific intermediate
transitory states. Ten thousand model simulations were imple-
mented as a series of logic statements that are executed in an
asynchronous update paradigm known to be representative of
biological systems35. This assumes only one random component
of the network is updated at each time step. The update
mechanism results in stochastic dynamics and leads to n possible
attractor end states. An attractor end state is reached if the
network evolves to a single stable state, known as a point
attractor. The WT and perturbed model terminate at the user-
defined maximum of 100 time steps if an attractor state is not
reached before the end of the time course.
Recently, it has been shown that NFATC1 can promote

antitumoral effector functions and memory CD8+ T cell differ-
entiation through regulation of PD1 expression upon T cell
activation72,73. We hypothesized that repressing the activation of
PD1 through NFATC1 would alter the evolution of T cell states and
shift T cells toward a terminal pro-memory state instead of an
exhausted state. We tested this hypothesis with an in silico
experiment. The PD1 blockade was implemented into the model
as an indirect inhibition of PD1 by removing the ability of NFATC1
to activate PD1 (Rule 23; Supplementary Table 1). In the WT model,
NFATC1 can activate PD1 (NFATC1 → PD1), and here, we removed
NFATC1 from the model, inhibiting PD1 activation. We imple-
mented the same steps of simulation and analysis carried out for
the WT case to be able to directly compare the changes with the
in silico perturbation.

T cell state differentiation network analysis
CD8+ T cells are heterogenous, with two main proposed models
of differentiation (circular and linear) describing how T cell
memory is formed following T cell activation6. In order to classify
each single CD8+ T cell and determine the gene regulatory
interactions that contribute to pro-memory and exhausted CD8+
T cell states, we proceeded through the following steps. First, the
ensemble of 10,000 Boolean model simulations from R, containing
the time courses of gene expression patterns, were exported for
analysis using the Python package Seaborn74. The single-cell
simulations consist of the 25 genes and 22 rules described in the
Boolean model of the CD8+ T cell section above, each with
unique binary output for each time step used for analysis. We
examined the trajectories for each cell transition leading to the
attractor state in order to investigate the evolution of network
behavior. Each model simulation that terminated in the same
attractor (i.e., identical gene pattern) was grouped together,
resulting in eight end states for WT and seven end states for the in
silico PD1 blockade. Next, for each group, we calculated the
number of PP and EE genes that were on for each simulation and
every time step. The dominating number of genes that were
activated at each time step determined the intermediate states of
each T cell before reaching the terminal differentiated state. PP
and EE gene labeling has been previously published13, supporting
our approach to assess the state of a T cell at each time step.
For all model simulations, we categorized the state at each time

step as PP or EE by counting the number of PP- and EE-associated
genes expressed. If the number of PP genes turned on exceeds
the number of EE genes on, the cell is defined as being in a PP
state. Alternatively, if there are more EE genes turned on, the cell is
in an EE state. The sequence of intermediate states was used to
determine the differentiation model classification. If the pattern of
dominating genes leads to a progressive loss of PP- or EE-

associated genes, these cells were classified as following the linear
differentiation model. For example, if a single cell simulation
resulted in a higher number of PP genes active in the beginning
time steps, then switched to a higher number of EE genes for the
remainder of the time course, the differentiation pattern would be
classified as following a linear model of differentiation (i.e., PP →
EE). Conversely, if the pattern of dominating genes cycled
between pro-memory and exhausted gene activation over the
time course, these cells were classified into the circular
differentiation model. In this case, if the dominating gene pattern
switches over time (i.e., PP → EE → PP), the single cell would be
classified as following the circular differentiation model. We
repeated this for all 10,000 model simulations to identify both the
terminal and intermediate T cell states and classify the type of
differentiation model T cells utilize to reach their terminal state for
WT and in silico PD1 blockade.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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