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Computational modeling of AMPK and mTOR crosstalk in
glutamatergic synapse calcium signaling
A. Leung1 and P. Rangamani 2✉

Neuronal energy consumption is vital for information processing and memory formation in synapses. The brain consists of just 2%
of the human body’s mass, but consumes almost 20% of the body’s energy budget. Most of this energy is attributed to active
transport in ion signaling, with calcium being the canonical second messenger of synaptic transmission. Here, we develop a
computational model of synaptic signaling resulting in the activation of two protein kinases critical in metabolic regulation and cell
fate, AMP-Activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) and investigate the effect of glutamate
stimulus frequency on their dynamics. Our model predicts that frequencies of glutamate stimulus over 10 Hz perturb AMPK and
mTOR oscillations at higher magnitudes by up to 36% and change the area under curve (AUC) by 5%. This dynamic difference in
AMPK and mTOR activation trajectories potentially differentiates high frequency stimulus bursts from basal neuronal signaling
leading to a downstream change in synaptic plasticity. Further, we also investigate the crosstalk between insulin receptor and
calcium signaling on AMPK and mTOR activation and predict that the pathways demonstrate multistability dependent on strength
of insulin signaling and metabolic consumption rate. Our predictions have implications for improving our understanding of
neuronal metabolism, synaptic pruning, and synaptic plasticity.
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INTRODUCTION
Calcium signal transduction in dendritic spines during neuronal
signaling is closely linked to synaptic plasticity1–5. Synaptic
plasticity is the structural and molecular modification of synapses
resulting in sustained changes in synaptic signaling strength2,6,7.
There are many potential mechanisms by which calcium signaling
leads to long-term plasticity (LTP), the process by which synaptic
connections are strengthened with high-frequency stimulus, but
the relative contribution of these different mechanisms is unclear8.
One such mechanism is metabolic plasticity, which is the
adaptation of cellular energy production in response to metabolic
stress associated with calcium signaling9–11 and is the focus of our
current work. Electrical signaling, including the reversal of
presynaptic and postsynaptic ion fluxes, accounts for a vast
majority of ATP consumption in mammalian neuron signaling12,13.
During an action potential, energy consumption is estimated to
transiently increase up to 130 percent over basal ATP flux with
most of this energy attributed to ion signaling, actin and
microtubule turnover, and lipid and protein translation12–14.
Therefore, the coupling of metabolic plasticity with ion dynamics
is necessary for dendritic spines due to a drastic increase in energy
consumption during neuronal signaling11. In addition, there are a
variety of energetically expensive processes in the dendritic spine
that are necessary to induce long-term potentiation (LTP)
including actin remodeling, protein translation, endocytosis, and
exocytosis14. The frequency of neurotransmitter signaling (Fig. 1a)
is believed to be critical in the induction of LTP in dendritic spines
and also increases the consumption of cellular energy due to the
increased rate of active transport of ions to restore resting
potentials13.
The two primary means of energy production within neurons

are glycolysis and oxidative phosphorylation in the mitochon-
dria15,16. Glycolysis, the metabolism of glucose in the cytosol, is

often upregulated during neuronal stimulus through increased
import of glucose from extracellular space and protein kinase-
dependent activation of enzymes.17,18. Mitochondrial oxidative
phosphorylation produces a large portion of cellular energy that
supports increased energy demand. However, oxidative phos-
phorylation requires pyruvate and oxygen consumption to
generate ATP in the mitochondrial matrix through mitochondrial
metabolism of pyruvate driving the electron transport chain. In
actively signaling neurons, mitochondria are observed to form
spatially stable pools near the base of dendritic spine, suggesting
that they can cater to the increased ATP demand by localizing ATP
production proximal to the dendritic spine19. It has also been
observed that calcium influx from the extracellular space impacts
the mitochondrial membrane potential, resulting in higher ATP
generation20. This provides a route for calcium, the main second
messenger system in signaling, to interact directly with the energy
production in a frequency-dependent manner. The thermody-
namic constraints of ATP production in the mitochondria are
explored in Garcia et al. 21.
In actively signaling regions of neurons, mitochondria often

form spatially stable pools proximal to the axonal bouton and the
dendritic spine19. While axons have a generally higher density of
mitochondria due to their need to support high rates of
neurotransmitter exocytosis, dendrites during signaling are able
to stabilize mitochondria to support high rates of energy
consumption19,22. Mitochondrial motility and distribution are
critical for supporting synaptic plasticity by supplying energy at
synapses23. Computational modeling has demonstrated that key
morphological features, along with signaling characteristics such
as frequency, duration, and calcium amplitude, may enhance
mitochondrial plasticity24.
Calcium influx (Fig. 1b) indirectly modulates neuronal glycolysis

and mitochondrial metabolism via enzymatic activation
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(CAMKII25), but the means by which neurons regulate the energy
production local to the dendritic spine remains unexplored20. A
possible avenue for feedback between neuronal energy con-
sumption and metabolic production is through cellular energy
sensors and kinases. Adenine monophosphate-activated Protein
Kinase (AMPK) is a candidate molecule for the coupling between
calcium dynamics and cellular metabolism due to its unique
function as the cellular energy stress sensor20,26. The γ subunit of
this heterotrimeric protein is able to adapt to changing ratios of
AMP and ATP, exposing a phosphorylation site and enabling
kinase functionality27. Upstream protein kinases of AMPK include
CAMKK2, LKB1, AKT, mTOR, and PI3K, and may regulate AMPK
activity depending on phosphorylation site25,28,29. The down-
stream targets of AMPK include phosphofructokinase (PFK),
mitochondrial biogenesis, and inhibition of energy-consuming
pathways like lipid synthesis and gluconeogenesis. Calcium-
Calmodulin activated Kinase Kinase 2 (CaMKK2) enables direct
feedback from the calcium signaling pathway to AMPK. Calcium
also creates an energy imbalance because of increased energy
demand by ion pumps and exchangers, which increases AMP/ATP
ratio and activates AMPK11,25,26,30. AMPK activated by calcium,
phosphonucleotide binding, or allosteric activation pathways
leads to feedback to dynamically enhance energy production.
AMPK has been shown to increase the import of glucose into
neurons by promoting trafficking of glucose import receptors
GLUT3 to the plasma membrane31. Furthermore, AMPK upregu-
lates glycolysis by modulating PFK activity during energy stress in

cardiac cells as well as mitochondrial morphology and motility in
neuronal axons32,33.
One critical downstream target of AMPK is mammalian target of

rapamycin (mTOR); select interactions are shown in Fig. 1c. mTOR
is a well-conserved protein across mammalian cell types, but
occupies a unique niche in neurons. While classically mTOR forms
a protein complex that regulates protein translation and
mitophagy34, mTOR has also been shown to be critical in synapse
formation11,34–36. In presynaptic boutons, mTOR forms a complex
with Rictor, mTORC2, which is necessary for bouton formation34. In
postsynaptic dendritic spines, mTOR forms a complex with Raptor,
mTORC111. mTORC1 has been shown to influence the translation
and transport of α-Amino-3-hydroxy-5-methyl-4-isoxazolepropio-
nic acid (AMPA) receptors and scaffolding proteins needed for the
clustering of AMPAR, a critical step in synaptic plasticity37.
Abolishment of mTOR activity in both presynaptic and post-
synaptic cells has been performed in live neurons and shows a
decrease in the number of spines and plastic ability35,37. The exact
mechanisms by which the calcium-AMPK-mTOR signaling axis is
regulated in neurons are yet to be explored. In particular,
exploration is needed to bridge the activity of calcium signaling,
which typically occurs on the timescale of milliseconds, to the
function of protein kinases (AMPK, mTOR, AKT), which can occur
on the timescale of hours to days. AMPK and mTOR are also both
downstream targets of the insulin receptor substrate (IRS)
signaling cascade, which can bridge the intracellular response to
a systems level change in insulin. Downstream of mTORC1 are
several transcription regulators, for example, Sirtuin1 (SIRT1) has

Fig. 1 Synaptic signaling consumes energy to transduce neuronal signals and support neuronal function. During high-frequency synaptic
signaling, represented with glutamate stimulus in (a), proportionally larger quantities of ATP are allocated to restoring resting potential of
ions, like those shown for calcium illustrated in (b). At high frequencies, this may challenge the energy production capacity of neurons, which
utilize glycolysis and oxidative phosphorylation to convert glucose to pyruvate and then produce ATP in dendritic mitochondria. The
decreasing cellular energy state (higher AMP/ATP ratio) promotes the phosphorylation of AMPK, a kinase which promotes the production of
cellular ATP, but also has an intricate feedback loop with mTORC1 and mTORC2 downstream of the insulin signaling cascade, shown in (c),
which have implications in protein translation and synaptic plasticity. In this work, we develop and analyze a computational model to study
the interactions of these pathways, illustrated in (d), in response to a synaptic stimulus across several timescales. Created with BioRender.com.

A. Leung and P. Rangamani

2

npj Systems Biology and Applications (2023)    34 Published in partnership with the Systems Biology Institute

1
2
3
4
5
6
7
8
9
0
()
:,;



been shown to regulate neuroprotective pathways and may have
a role in dendritic spine formation38,39. A multi-timescale model
that represents these different systems can shed light into the
crosstalk between these two pathways.
In this work, we use computational modeling to explore how

the calcium-AMPK-mTOR signaling axis could couple neuronal
energy states and mTOR activity. Computational modeling has
vastly contributed to our understanding of neuronal signaling and
synaptic plasticity1–3,40–43. However, very few of these models
feature the importance of metabolic feedback mechanisms known
to be critical in synaptic formation and activity. We built our model
based on prior models in the literature, utilizing a calcium
signaling model that incorporates the effect of endoplasmic
reticulum (ER) and mitochondria on calcium signaling and
mitochondrial ATP production44. We complement this calcium
model with a model linking cellular energy state via adenine
nucleotide balance with AMPK activation45. Finally, we explore the
AMPK and mTOR crosstalk, by integrating the insulin signaling
model within a calcium and metabolism model29.
Our model predicts that a wide range of stability behavior is

possible depending on glutamate stimulus, neuronal energy
consumption, and the behavior of downstream components of
the insulin signaling pathway. Glutamate signaling frequency can
influence key characteristics in the dynamics of vital protein
kinases and can drastically increase the magnitude of AMPK and
mTOR phosphorylation and total signaling observed during
stimulus. In addition, we observe that internal metabolism (ATP
hydrolysis), external metabolism (insulin signaling), and neuronal
frequency directly influence the system response, with parameter-
dependent oscillations. The multiple stable states of this system
implies that the crosstalk between extracellular signals (Fig. 1d),
such as glutamate and insulin, culminate in changes to internal
metabolic systems such as AMPK and mTOR activation rates.
Further exploration of the crosstalk between pathways may
elucidate the relation between neuronal metabolism and signal
processing in dendrites.

RESULTS
Within a signaling synapse, the presynaptic neuron releases
glutamate vesicles from low frequencies (0.1 to 1 Hz) to high
frequencies (10 to 100 Hz). Low-frequency signaling is often
associated with long-term depression and synaptic pruning, while
high-frequency signaling is believed to induce long-term poten-
tiation (LTP), the mechanism behind neuronal learning46,47. Each
pulse of glutamate triggers a calcium influx into the post synaptic
site requiring a significant cellular energy cost in the form of ATP
consumption for the restoration of resting ion potentials and
various housekeeping processes (Fig. 1b). As frequencies rise,
there may be a critical point at which the ATP production from
neuronal metabolism is overwhelmed by the energy demand. At
this critical juncture, if the neuron is unable to adequately scale
energy production, we hypothesize that the neuron may not be
able to form sustained LTP and opt to undergo LTD. The metabolic
plasticity, or the ability of the neuron to scale metabolic
production to energetic demand, must be modeled alongside
the closely coupled calcium signaling cascade to understand how
the neuron is able to induce synaptic plasticity during periods of
extreme energy stress. In what follows, we investigate the
crosstalk between synaptic signaling and metabolic plasticity.

Model constraints and parametric sensitivity analysis
We first analyzed the system behavior in the absence of any
glutamate stimulus to investigate how the coupled signaling
networks behave. After a brief initialization period, we see a rapid
equilibration of all species to an apparent steady state, shown in
Supplementary Figure 1. Many trajectories on the short,

millisecond to second, timescale equilibrate nearly instanta-
neously including calcium, receptors, AMP/ATP, and AMPK.
However, several species, like mTORC1, mTORC2, and IP3, take
much longer to reach a steady state, on the second to minute
timescale. Since the initial conditions are misaligned with the
steady state determined by key parameters, there is a brief
initialization period before equilibration. For example, as the
AMP/ATP ratio is much higher than the steady-state value, this
induces AMPK activity which leads to mTOR and AKT activity.
Nevertheless, the resulting transient behavior fades after 200 sec-
onds as the dampened oscillations reduce to a fixed point,
representing the system at rest. All subsequent simulations use
this resting state as initial conditions before stimulus.
The steady-state behavior of the model is dependent on both

parameters and initial conditions. However, due to the complexity
of the pathway and the large amount of species and parameters,
not all parameters have an equivalent effect on the end result of
the model. To understand the complexity of the biological system
posed in Fig. 1 we first attempted to reproduce findings of
experimental works. In Fig. 2a, we compared the simulation of
AMPK, mTORC1, and AKT phosphorylation relative to steady state
to the experimental results of Marinangeli et al. 26. Our model
predictions under 10 Hz of glutamate stimulus align well with their
experimental values of differentiated primary neurons stimulated
with Bic/4-AP protocol. However, to characterize the uncertainty of
the model predictions, we then quantified the effect of
parameters on model output.
Through global sensitivity analysis of the system using the PRCC

method, we obtained correlation values of each parameter to the
model predictions of AMPK, AKT, mTORC1, and mTORC2
phosphorylation. In Fig. 2b, we show histograms of the steady-
state values of the model predictions as a probability density
function in which the x-axis denotes the steady state concentra-
tion and the y-axis denotes the number of parameter sets that
predict the steady state. For AMPK concentration, the predictions
are well distributed with a mean value of 0.011 μM. AKT also
showed similar characteristics, with a mean value of 4.5 nM. This is
consistent with expected model behavior as AKT is directly
downstream of AMPK. mTORC1 and mTORC2 are both skewed
heavily left with mean values of 0.012 and 0.07 μM, respectively. In
Fig. 2c–e, we plot heatmaps for the PRCC values of each
parameter in the model and the effect on steady-state values of
AMPK, AKT, mTORC1, and mTORC2 phosphorylation. We grouped
the parameters into sets corresponding to their most relevant
biological pathway. Figure 2c corresponds to the parameters most
closely related to insulin receptor signaling, originally derived in
Sadria et al. 29. While most values are close to the mean value,
parameters downstream of AKT appear to have the most influence
on mTORC1 and mTORC2. AKT is most strongly impacted by VIR, a
parameter which represents the intercellular activity of the insulin
receptor signaling and will be investigated.
Next, in Fig. 2d, we plot the PRCC heatmap for the parameters

associated with metabolism. For this segment of parameters,
AMPK is most strongly impacted by oxidative phosphorylation
parameters and the AMPK activation parameter. AKT, mTORC1,
and mTORC2 are not strongly influenced by metabolic parameters
at steady state. Finally, in Fig. 2e, we plot the PRCC heatmap for
calcium-related parameter values. The magnitude of these terms
are very small relative to the effect shown in Fig. 2c, d. Overall, we
found that the model is very sensitive to parameters correspond-
ing to oxidative phosphorylation, ATP consumption, and insulin
signaling. While this implies that the model output is not
particularly sensitive to calcium values at steady state, this
sensitivity analysis uses simulations without stimulus to obtain
steady state. The importance of many calcium parameters is
captured by glutamatergic stimulus, which is explored in the
following sections. Furthermore, we then take the results of the
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sensitivity analysis and inform further analysis by selecting three
parameters of key biological importance.

Low-frequency neuronal stimulus reveals low amplitude
transient behavior
After establishing the steady-state behavior in the absence of
stimulus (Supplementary Figure 1), we perturb the systemwith a 1 Hz
glutamate pulse for 50 seconds, which is representative of typical LTD
induction protocol48. Glutamate stimulus induces a calcium influx
(Fig. 3a) into the cytosol through the glutamatergic receptors, which
consequently induces ATP consumption related to ion transport,
increases the AMP/ATP ratio (Fig. 3b), and therefore AMPK activation.
This AMPK activation (Fig. 3c) then leads to an initial increase of
mTORC1 (Fig. 3d), mTORC2 (Fig. 3e), and ULK1 (Fig. 3f).
Cytosolic calcium attains a peak calcium concentration of

0.8 μM and decays rapidly to the baseline concentration of 0.2 μM
(Fig. 3a). Due to the increased energy consumption associated
with the calcium pumps, AMP/ATP ratio increases during synaptic
signaling to a peak value of 0.01012 from its baseline value of
0.0101 (Fig. 3b). We note that both calcium and the AMP/ATP ratio
(Fig. 3b) match the frequency of the input glutamate. pAMPK also
shows a corresponding dynamic (Fig. 3c); phosphorylated AMPK
increases by a marginal amount. However, instead of solely being
influenced by glutamatergic signaling, AMPK also receives signals
from the insulin system, thus has longer timescale oscillations. The
magnitude of change for critical terms like mTORC1, mTORC2, and
ULK1 are fairly small during 1 Hz stimulus of glutamate. In
response to this AMPK activation, mTORC1 and mTORC2 both
deviate a maximum of 0.5% but the trajectories observed are

different; mTORC2 during stimulus reaches a higher peak value
relative to its baseline oscillations while stimulus appears to lead
mTORC1 to only slightly increase its amplitude (Fig. 3d, e).
Changes in ULK1 follow similar trajectories to mTORC2 with a 1.2%
change in activation decaying shortly after stimulus ends back to
unstimulated values (Fig. 3f).
While the oscillationmagnitudes are quite low in this case, it must

be noted that the stimulus profile is most associated with LTD and
therefore the energy demand and subsequent activation of
downstream kinases of AMPK is expected to be low. However, this
result is notable because it shows the crosstalk between two
disparate signaling cascades through AMPK as a common vector.
Through calcium and energy consumption, neuronal stimulus leads
to direct changes in AMPK activation that influence the activity of
mTORC1 and mTORC2. In the case of low-frequency stimulus and
base parameter values, there is little influence, but these results
suggest that signaling frequency may impact this crosstalk.

Effect of glutamate stimulus frequency on AMPK/mTOR
pathway
We next investigated the effect of glutamate stimulus frequency on
the activation profiles of key model outputs. The glutamate input
stimuli, shown in Fig. 4a–c, was varied from 0.1 Hz to 50 Hz,
reflective of the range of potential stimulus frequencies in a
signaling neuron47. While in Fig. 3, we show only minor changes in
state and overall signaling effect, as stimulus frequency increases,
cytosolic calcium concentration, and ATP consumption also increase
(Fig. 4d, e). The change in calcium concentration is dependent on
the frequency of glutamate stimulus (Fig. 4d); as stimulus frequency

Fig. 2 Sensitivity analysis reveal key parameters regulating system behavior. The model describing AMPK and mTOR phosphorylation due
to glutamate-stimulated calcium influx contains 163 parameters and 60 equations in a well-mixed model. a Comparisons between model
predictions of phosphorylation ratios relative to initial state after 10 Hz synaptic activation and experimental results from Marinangeli et al.
2018 primary neuron cells stimulated via Biciculin/4AP protocol. b Probability density functions of steady-state concentrations of pAMPK,
pAKT, pmTORC1, and pmTORC2 resulting from a global sensitivity analysis of 10,000 parameter values for each 163 parameters in a 20%
range. c Heatmap of PRCC values describing the correlation between parameter value and system output for AMPK, AKT, mTORC1, and
mTORC2 phosphorylation for a subset of parameters belonging to the insulin signaling system. d Heatmap of PRCC values describing the
correlation between parameter value and system output for AMPK, AKT, mTORC1, and mTORC2 phosphorylation for a subset of parameters
belonging to the neuronal metabolism system. e Heatmap of PRCC values describing the correlation between parameter value and system
output for AMPK, AKT, mTORC1, and mTORC2 phosphorylation for a subset of parameters belonging to the calcium signaling system. Color
scale represents PRCC values.
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increases, calcium amplitude increases and the higher frequencies
are filtered out (also see refs. 2,49). There is a corresponding ATP
consumption that leads to an increase in the AMP/ATP ratio (Fig. 4e),
which leads to AMPK activation (Fig. 4f). In low levels of stimulus
frequency, mTORC1 (Fig. 4g) and mTORC2 (Fig. 4h) oscillate around
the baseline value. When AMPK is activated in higher magnitudes,
we observe a large initial perturbation from the baseline oscillatory
pattern that results in damped oscillations that eventually return to
steady-state concentrations. The maximum amplitude of the
deviations from steady state of mTORC1, mTORC2, and ULK1
(Fig. 4g–i) are dependent on the amplitude of AMPK activation, and
therefore glutamate stimulus frequency. Increasing stimulus fre-
quency does not appear to significantly lead to a phase shift in
frequency for any species, but most notably increases the initial
magnitude of oscillations.
The AUC over 100 s (Fig. 4j) represents the total amount of a

species within the system during short-term response to signaling
pulse trains. Since the concentrations of each species can be
orders of magnitude apart, we normalized each AUC to the
baseline activity profiles to obtain a relative AUC value. In Fig. 4j,
we observed a frequency-dependent increase in the AUC of
AMPK. However, for mTORC1 and mTORC2, only very minor
increases in AUC were observed, 1% and 2%, respectively. At low-
frequency conditions (0.1 and 1 Hz), the AUC of all species does
not change significantly. As frequency increases, AMPK activation
increases proportionally to the highest stimulus frequency, where
AMPK’s AUC increases by 5% after exposure to 50 Hz stimulus for
5 s. While the overall magnitude of change for mTORC1’s AUC is
lower in comparison to pAMPK and mTORC2 for all frequencies,
there is a slight increase as frequency increases.

Next, in Fig. 4k and Fig. 4l, we characterized the damped
oscillatory behavior of the trajectories through its time to steady
state and amplitude. All three species have a similar trend in
which higher frequencies have longer times to steady state (TTS)
and higher amplitudes. Another point of note is that the increase
in TTS with respect to frequency is consistent up to 10 Hz, but
50 Hz shows a significant disparity between AMPK, mTORC1, and
mTORC2. Both AMPK and mTORC1 have TTS of around
200 seconds, while mTORC2 returns to steady state in 100 s. As
for amplitudes (Fig. 4l), AMPK maximum amplitude is significantly
higher due to direct activation from AMP/ATP ratio, a 36%
increase in amplitude during 50 Hz stimulus compared to 1 Hz
stimulus. mTORC1 has the lowest increase in amplitude due to
high-frequency stimulus, ~3% increase compared to steady state.
The maximum amplitude for mTORC2 is higher than mTORC1, but
even at 50 Hz, only 7.5% increase over steady state. Overall, there
is a separation between high-frequency and low-frequency
stimulus in the observed trajectories and metrics. While the
predicted AUC, TTS, and amplitude are similar between 0.1 and
1 Hz stimulus, the model predicts up to a 5% increase in AUC for
high-frequency stimulus and a significant increase in observed
oscillation duration.

Increasing basal energy consumption increases AMPK
activation
While calcium and other ion transport are known to be primary
drivers of energy consumption in neurons, there are additional
energy-consuming processes that require ATP in the dendritic
spine. For example, it is thought that actin, which is abundant in
dendritic spines, is one of the main non-signaling ATP sinks
through actin polymerization and remodeling50. In addition,

Fig. 3 Effect of a simple 1 Hz glutamate on AMPK/mTORC dynamics. At t= 0s, a 1 Hz pulse train over 50 s is applied to the system. Before
stimulus, the system was allowed to reach a steady state. During each pulse, 100 μM of glutamate is applied, which decays with a rate constant
of 200 ms. After the pulse train, the system was allowed to return to an apparent steady state with no additional glutamate input.
Concentration trajectories for a cytosolic calcium concentration, b cytosolic AMP/ATP ratio, c cytosolic phosphorylated AMPK concentration,
d phosphorylated mTORC1 concentration, e phosphorylated mTORC2 concentration, f phosphorylated ULK1 concentration are shown.
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protein and lipid turnover in neurons can consume up to 25% of
the total ATP consumed in brain tissue14,51.
To explore the interaction between the basal energy consump-

tion rate and the glutamate stimulus on AMPK signaling, we
designed a series of simulations using our model. In our model,
energy consumption is simplified as a lumped parameter
representing ATP hydrolysis in the cytosol, khyd. We varied this
parameter to capture the effect of different energy consumption
rates. We held our glutamate stimulus to 10 Hz because this
stimulus approximates the threshold of frequency necessary to
trigger change in mTOR (Fig. 4). In this set of simulations, all
variations had the same set of initial conditions, but at t= 0, khyd
was changed in addition to glutamate pulse trains of 10 Hz.
We found that varying khyd had led to direct changes in the

peak and steady-state behavior of AMP/ATP ratio (Fig. 5a). There
was no change in calcium dynamics since the calcium influx
depends on the NMDAR fluxes, which are not dependent on
hydrolysis rates. Compared to the baseline value, a 10-fold
decrease in khyd decreases the AMP/ATP ratio by a small amount
but a 3-fold increase in khyd increases AMP/ATP ratio dramatically.
This behavior is reflected in pAMPK (Fig. 5b), where a nonlinear
increase in pAMPK levels is seen for a 3-fold increase in the energy
consumption rate. Interestingly, changing khyd actually changes
the oscillation pattern for pmTORC1 (Fig. 5c). Increase in the
energy consumption rate translates the damped oscillations
observed in pmTORC1 at lower energy consumption rates into a

stable steady state, without any oscillations, at high energy
consumption rates. This effect is also seen in the dynamics of
pmTORC2 (Fig. 5d) and pULK1 (Fig. 5e) except that increasing
basal energy consumption increases the level of pmTORC2 and
pULK1. Further analysis of these variations reveals that the steady
state depends on the basal energy consumption (Fig. 5f).
Next, we characterize the effect of hydrolysis rates on the

dynamic features of AMPK, mTORC1, and mTORC2 signaling by
plotting the normalized AUC, TTS, and percent amplitude
(Fig. 5g–i). For AMPK phosphorylation, there is an increase in
AUC with increasing khyd. From the baseline value of khyd, reducing
khyd to a tenth of its original value roughly produces an AUC of
half. However, the increase of khyd to 2 × khyd and 3 × khyd increases
the relative AUC by 50% and 120%, respectively. For mTORC1,
while the increase in AUC with increasing khyd is apparent, the
magnitude of increase is not as high when compared to AMPK
and is within a few percent of the steady-state value. This trend
can qualitatively be observed in Fig. 5c, as the variations of khyd
from 0.1 to 2 × khyd have roughly the same trajectories, but the
variation to 3 × khyd increases the steady state substantially. For
mTORC2, the AUC increase from 0.1 to 1 × khyd is minor relative to
the change in khyd, however 3 × khyd produces a 20% jump in AUC.
2 × khyd and 3 × khyd both have proportional responses relative to
the change in khyd.
Next, the time to steady-state of AMPK (Fig. 5h) increases

slightly with both increasing and decreasing khyd from baseline

Fig. 4 mTOR oscillations are stimulus frequency dependent. The system was stimulated with four different glutamate frequencies: a 0.1 Hz
(blue), 1 Hz (orange), b 10 Hz (yellow), c 50 Hz (purple). After stimulus, simulations return to an apparent steady state with no additional
glutamate input. Trajectories are shown for d cytosolic calcium concentration, e cytosolic AMP/ATP ratio, f phosphorylated AMPK
concentration, g phosphorylated mTORC1 concentration, h phosphorylated mTORC2 concentration, i phosphorylated ULK1 concentration.
Quantitative metrics for AMPK, mTORC1, and mTORC2 in response to pulse trains of glutamate stimulus are also shown: j Area under the
curve (AUC) relative to the system without stimulus applied over the same integration window (100 s), k time to reach steady state, and
l amplitude change quantified as percent change from steady-state value.
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value. This is surprising, because for most metrics there appears to
be a consistent trend following hydrolysis rate. The mTORC1 and
mTORC2 TTS both follow similar trends of monotonic increase
relative to khyd. This could be caused by the 0.1 × khyd steady
state (blue curve) being further away from the initial state than the
1 × khyd case (represented by the orange curve).
Finally, the amplitude change (Fig. 5i) depends on the

magnitude of khyd since, as shown in Fig. 5f, the steady state is
dependent on khyd. Simulations with high changes in khyd had the
highest percent change in amplitude due to the initial equilibra-
tion. In general, the 0.1 × khyd and 3 × khyd simulations produced
the highest percent change relative to their individual steady
state. Thus, we found that the stability features of the AMPK/mTOR
pathway depend on the basal rate of ATP hydrolysis—increasing
ATP consumption allows the system to transition from an
oscillatory state to a stable steady state.

Insulin signaling and metabolic signaling interact to govern
stability features
Thus far, we have explored the impact of glutamate stimulus and
energy consumption on AMPK and mTOR activation. We next
investigated the role of the insulin response pathway and its
crosstalk with the glutamate pathway. Insulin receptor signaling is a
primary input in metabolism and influences the phosphorylation
state of AMPK, mTORC1, and mTORC2. In the model originally
developed by Sadria29, the insulin receptor substrate (IRS) directly
interacts with AMPK andmTORC2, resulting in regimes of oscillations
dependent on the rate of IRS phosphorylation. Since we included
this pathway in our model, we now explore the feedback
between the IRS pathway and AMPK pathway through the energy
consumption rate. In our model, the parameters controlling the IRS
phosphorylation rate and energy consumption rate are, VIR and khyd,

respectively. In Fig. 2c–e, parameters corresponding to VIR and khyd
had significant control over the steady-state concentrations of
AMPK, mTORC1, and mTORC2 under no glutamate stimulus. Here,
we investigated how VIR, khyd, in conjunction with glutamate
stimulus impact the AMPK-mTOR pathway.
In Fig. 6, we show how the stability of the model is dependent

on the magnitude of khyd and VIR. First, for hydrolysis (Fig. 6a, b),
we select two values of VIR to hold constant (5.7368 mM/s yellow
and 0.01 mM/s in purple) and vary the rates of khyd (1000 values
between 1 × 10−4 to 1 mM/s). We simulate the system in the
absence stimulus until steady state for each parameter combina-
tion and compute the minima and maxima as a function of VIR. We
observed that for the lower value of VIR, increasing khyd gives
a single unique steady state for both mTORC1 and mTORC2
(Fig. 6a, b). For higher values of VIR, we found that the stability
behavior has an oscillatory regime for low values of khyd and a
single steady state for high values of khyd. Thus, the hydrolysis rate
alone can alter the stability features of the coupled system. Next,
to obtain the relation between stability and VIR values, we select
two values of khyd and vary with 60 values of VIR (from 0.1 to
20 mM/s), shown in Fig. 6c, d. In Fig. 6c, we compute the minima
and maxima as a function of VIR to show the stability features for
two values of khyd, 0.0001 (blue) and 0.149 (red) [mM/s]. For low
and high values of VIR, minima and maxima curves converge to a
singular value. However, there is a range of VIR values in which the
curves diverge. In this range, we see oscillations similar to those
seen in the steady state of Fig. 3c–f. Values of VIR that result in
oscillatory behavior are correlated with hydrolysis; as khyd
increases, a smaller range of VIR produces oscillations. Compared
to a low value of khyd (blue, 0.0001 [mM/s]), a high value of khyd
(red, 0.149 [mM/s]) shows a significantly smaller range of values, as
well as a much smaller range of oscillations. This same approach is
taken with Fig. 6d for mTORC2.

Fig. 5 Cellular metabolic rate influences steady-state behavior of AMPK and mTOR independent of calcium. We apply a 10 Hz glutamate
stimulus for 5 s, however, at t= 0 s, we also change the value of baseline energy consumption throughout the cell and plot concentration
trajectories for a AMP/ATP, b active, phosphorylated AMPK, c active, phosphorylated mTORC1, d active, phosphorylated mTORC2, e active,
phosphorylated pULK1. Additionally, in (f), we compare the changes in steady state for pAMPK, mTORC1, and mTORC2 with respect to
changes in hydrolysis rate. In (g), we then compare how this change impacts AUC, normalized to the AUC of simulation with the base value of
the parameter. In (h), we plot the time to reach steady state and in (i), the relative magnitude of the first peak of AMPK, mTORC1, and mTORC2
to its new steady-state value as a result of energy consumption from glutamatergic stimulus.
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Finally, we varied both khyd and VIR and plot the same curves as
surface plots in 3D. For mTORC1 (Fig. 6e), rising VIR leads to an
increase in the steady state. Furthermore, increasing khyd reduces
the range of values that produce oscillatory behavior. Outside the
oscillatory regime, mTORC1 has a monotonic relationship with VIR.
Within the parameter range studied, the steady-state behavior of
mTORC1 is strongly related to the magnitude of VIR, while khyd has
diminishing impact past the oscillatory envelope. For mTORC2
(Fig. 6f), a similar regime of oscillations was found. However, for
mTORC2, VIR does not strongly affect the magnitude of mTORC2 at
steady state. In contrast to mTORC1, in which VIR was the primary
controller of mTORC1 steady state, khyd results in a much stronger
increase mTORC2 steady state for all values of VIR. Corresponding
contour plots highlight the oscillatory regimes for mTORC1
(Fig. 6g) and mTORC2 (Fig. 6h). In summary, the oscillations of
mTORC1 and mTORC2 that are observed in the model are
dependent on the values of khyd and VIR and we predict that high

energy consumption states (high values of khyd) result in
monostable steady states, while low values of khyd and enable
steady-state oscillations within a range of VIR values.

Signaling frequency, ATP consumption, and insulin signaling
modulate system response to energy stress. Thus far, we have
investigated the impact of glutamate frequency alone (Fig. 4) and
the bifurcation behavior of the metabolic pathways in Fig. 6. Next,
we show glutamate stimulus frequency, IRS, and hydrolysis rate
combine to influence the energy state of the system. In Fig. 7, we
observe the trends associated with changes in VIR and khyd under a
10 Hz stimulus pulse for 5 s. Trajectories for pAMPK, mTORC1, and
mTORC2 are shown in Fig. 7a–c. In these trajectories, the line color
refers to the magnitude of VIR while the line markers represent the
khyd magnitude. Qualitatively, increases in khyd correspond to small
concentration shifts of the trajectories predicted by VIR. For clarity,
we will refer to the parameter values relative to the base model

Fig. 6 Oscillatory regimes for mTOR activation are dependent on both metabolic activity and IRS. The system displays oscillatory behavior
dependent on both khyd and VIR rates. We show the dependence of a mTORC1 and b mTORC2 stability on khyd by selecting two values of VIR,
5.7368 [mM/s] (yellow) and 0.01 [mM/s] (purple). For each case, we simulate until an apparent steady state for a range of khyd and plot the
curves of minima and maxima at steady state. In the oscillatory region, the minima and maxima diverge and show an oscillatory regime,
denoted by yellow dashed line. Next, we hold khyd constant and vary VIR to obtain the stability profiles for c mTORC1 and d mTORC2
dependent on VIR For two values of khyd, 1 × 10−4 [mM/s] and 0.149 [mM/s] we simulate until an apparent steady state for a range of VIR, then
plot the curves of local minima and maxima at steady state for mTORC1 and mTORC2. For regions of monostability, outside of dashed lines,
the curves of minima and maxima converge to the steady state. In oscillatory regimes, within the dashed lines, the local minima and maxima
due to oscillations form an envelope. The size and shape of the envelope is dependent on both khyd and VIR. Then, to characterize this relation
in a 2D parameter space, we plot corresponding 3D surface plots for e mTORC1 and f mTORC2. We also plot the oscillation magnitudes for
g mTORC1 and h mTORC2, showing the parameter space that results in sustained oscillations.
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values (VIR,b and khyd,b). Concentration trajectories for AMPK are
shown in Fig. 7a. We observed that for most trajectories, the peak
activity corresponds with the time of the stimulus. In addition, for
the case of VIR = 10 × VIR,b (purple lines) for AMPK, the rate of khyd
appears to affect the phase of the oscillations as well. Interestingly,
this does not appear to be reflected in any other value of VIR as the
only oscillations of large magnitude at this frequency of stimulus
appear to be due to VIR.
For mTORC1 (Fig. 7b), we see a similar trend in the curves

generated by increasing VIR values to 10 × VIR,b. While many of the
curves have a relatively low steady state and transient concentra-
tion as a result of the 10 Hz stimulus, The phase shift observed
with AMPK in Fig. 7a also leads to a shift in phase for mTORC1,
however, the steady state of these curves and direction of the
oscillations shifts. This is exemplified most by 1 × khyd,b and
2 × khyd,b, in which the relative size magnitudes of oscillations are
similar in magnitude, however the initial steady state is different.
Furthermore, oscillations are abrogated by higher values of khyd,
which is consistent with the higher non-oscillatory regime of
mTORC1 found in Fig. 6e. For mTORC2 (Fig. 7c), there are a
spectrum of states available to mTORC2 phosphorylation depen-
dent on khyd, but more strongly on VIR value. Similar to mTORC1,
mTORC2 has a phase shift in the oscillations, but not necessarily
the direction of the oscillations as the steady states are more
similar between 0.1, 1, and 2 × khyd,b.
The relative AUC of the trajectories in Fig. 7a–c are then

quantified and summarized in Fig. 7d–f. Since the curves can be
vastly different in magnitude, for ease of comparability all AUC’s
are ratios of the AUC of an unstimulated system under the same
integration duration and then normalized to the maximum AUC
for the selected trajectories. For AMPK (Fig. 7d), increasing VIR and
khyd both lead to increases in AUC, with larger increases correlated
to higher magnitudes of khyd. For mTORC1 (Fig. 7e), increasing VIR
increases mTORC1 AUC, but increasing khyd leads to slight increase
in mTORC1 AUC. Finally, for mTORC2 (Fig. 7f), the AUC for most of
the trajectories are similar to AMPK. However, the trend follows

that increasing both VIR and khyd also increases the mTORC2 AUC,
and perhaps mTORC2 has the highest sensitivity to khyd. The
largest magnitude increase of mTORC2 activation comes from
when both khyd and VIR are highest.
We next analyzed the interaction of the insulin substrate

strength, VIR, with the glutamate stimulus frequency (Fig. 8). VIR
influences the steady state and oscillatory values of AMPK activity
(Fig. 8a), which does not appear to be as strongly impacted by
glutamate frequency on this concentration scale. But, as shown
previously in Fig. 4, higher frequencies above 10 Hz induce large
transient pulses of AMPK activity. The primary influence of
frequency appears to be increasing the activity of AMPK during
stimulus. mTORC1 (Fig. 8b) is significantly more sensitive to the
magnitude of VIR than to the input frequency. This is the case for
the high-frequency cases of both 0.1 and 10 × VIR, in which no
dampened oscillations are shown after approximately 50 seconds.
A similar case is observed with mTORC2 (Fig. 8c), in which both VIR
and stimulus frequency impact the initial peak height. However,
particularly at cases of high frequency and also high VIR
magnitude, there are high amplitude oscillations and a delayed
return to steady state. Oscillations are still observed in 1 and
2 × VIR cases, but are less pronounced due to the wider range of
magnitudes from higher frequencies.
The relative AUC (Fig. 8d–f) is quantified in the same process as

Fig. 7. For AMPK (Fig. 8d), the relative AUC increases more with VIR
than stimulus frequency. The highest magnitude of AUC for AMPK
comes from both high stimulus frequency as well as high VIR
magnitude. For mTORC1 (Fig. 8e), while there is a clear increase in
AUC while VIR magnitude increases, any differences due to
frequency are minimal. This implies that the stimulus frequency
does not impact the overall signaling capacity of mTORC1, but
may impact the dynamics of signaling on short timescales.
Likewise, mTORC2 (Fig. 8f) similarly shows a dependence on VIR
magnitude for overall mTORC2 AUC. However, as frequency
increases, the AUC increases, but at a lower rate than changing the
insulin receptor signaling strength. Finally, we analyze interactions

Fig. 7 Insulin and cellular metabolism govern phosphorylation rates of AMPK, mTORC1, and mTORC2. a AMPK phosphorylation
concentration trajectories for a range of values for insulin receptor activity, VIR, and ATP consumption rates, khyd. b mTORC1 phosphorylation
concentration trajectories for a range of values for insulin receptor activity, VIR, and ATP consumption rates, khyd. c mTORC2 phosphorylation
concentration trajectories for a range of values for insulin receptor activity, VIR, and ATP consumption rates, khyd. d AMPK AUC normalized to
the maximum AUC value of AMPK. e mTORC1 AUC normalized to the maximum AUC value of mTORC1. f mTORC2 AUC normalized to the
maximum AUC value of mTORC1. Color for heatmaps are AUC relative to maximal AUC per graph.
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between signaling frequency and ATP consumption rate (Fig. 9).
As before, stimulus frequency appears to be the largest driver of
transient stimulus for AMPK (Fig. 9a). As frequency increases, the
time AMPK returns back to steady state is delayed, especially for
higher magnitudes of khyd. The rate of khyd can also significantly
raise the baseline values of AMPK activation, which is consistent
with its model function and AMPK’s activation conditions as the
AMP/ATP ratio increases with higher khyd. For mTORC1 (Fig. 9b),
khyd does not have a strong impact to the activation rates of
mTORC1, except at very high rates of khyd. The stimulus frequency,
however, has a strong correlation with increased amplitude of
mTOR1. For mTORC2 (Fig. 9c), frequency again shows an increased
transient amplitude increase, but not a significant change to the
overall trajectories. Likewise, khyd only appears to significantly
change the state of mTORC2 when it is very high, 10 × khyd,b.
The relative AUC (Fig. 9d–f) is quantified in the same process as

Fig. 7. For AMPK (Fig. 9d), the relative AMPK AUC shows a strong
dependence on khyd, but also a minor increase due to frequency. For
mTORC1 (Fig. 9e), frequency changes appear to affect the dynamics
of the system, but not necessarily the AUC. While the initial peak
heights increase, this does not appear to impact the overall signaling
capacity of the system. However, this may lead to differences in short
timescale activation profiles of mTOR and its downstream targets.
For mTORC2 (Fig. 9f), the AUC shows an overall increase with
hydrolysis rate. It also displays a minor increase due to signaling
frequency, particularly at higher hydrolysis rates. In summary, we
have shown that crosstalk between glutamate frequency and
metabolic signaling plays an important role in protein kinase
activity, which has implications on cell fate and neuronal function.
Glutamate signaling frequency appears to control the dynamic
behavior, including the amplitude change and observed oscillations,

however, cellular energy consumption controls the steady state,
which has a much stronger influence over AUC magnitude.

DISCUSSION
In this study, we have investigated the crosstalk between calcium
influx in dendritic spines and mTOR and AMPK activation bridging
multiple timescales of signaling in the context of dendritic spines
using computational modeling. The pathways explored here have
significant implications for synaptic plasticity as the downstream
pathways of mTOR have been shown to be necessary for LTP and
LTD34. Our main predictions focus on the possible divergent
stability regimes in the system as a function of crosstalk between
signaling and metabolic pathways. We discovered that the model
displays a parameter-driven oscillatory pattern This allows neurons
to adjust their cellular response to stimuli based on energy usage,
external factors such as insulin signaling, and the frequency of the
signals received.
It is believed that synaptic plasticity is triggered mainly through

high-frequency signaling46. While the exact mechanisms con-
tributing to synaptic plasticity are unknown, various works have
shown that it is dependent on subcellular structure, calcium
signaling, metabolics, and many other intermediary proteins
including mTOR4,47,52,53. In addition, the mechanisms contributing
to synaptic pruning and loss of dendritic spine density are
unknown. In such complex processes, mathematical modeling
may be able to contribute strongly to our understanding of
crosstalk between signaling, metabolism, and synaptic plasticity.
We predict that the cellular response to energy consumption and

external cellular signaling are frequency dependent and produce
ranges of cellular stability behavior (Fig. 10). Specifically, the range

Fig. 8 Insulin signaling and glutamate frequency influence dynamic behavior of AMPK and mTOR phosphorylation. a AMPK
phosphorylation concentration trajectories for a range of values for insulin receptor activity and glutamate stimulus frequency. b mTORC1
phosphorylation concentration trajectories for a range of values for insulin receptor activity and glutamate stimulus frequency. c mTORC2
phosphorylation concentration trajectories for a range of values for insulin receptor activity and glutamate stimulus frequency. d AUC for
AMPK normalized to the maximum AUC value of AMPK. e AUC for mTORC2 normalized to the maximum AUC value of mTORC1. f AUC for
mTORC2 normalized to the maximum AUC value of mTORC2. Color for heatmaps are AUC relative to maximal AUC per graph.
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of oscillations between low and high energy states can contribute
to distinct signaling mechanisms. Furthermore, the oscillatory state
may serve as a buffer range between random or noisy neuronal
signals and high-frequency signals that invoke LTP in synapses.
While it is known that AMPK hyperactivation can contribute to
synaptic pruning54, these oscillations allow the system to reach
higher rates of AMPK activation without raising the relative AUC. In
this sense, oscillations controlled by the insulin systemmay regulate
the levels of energetic stress that a neuron can withstand before
triggering autophagy pathways. Although technically challenging,
pharmacological experiments for AMPK and mTOR activators in
dendritic spine could show a change in sensitivity to glutamatergic
stimulus and subsequently affect LTP and LTD.
Models of synaptic plasticity can be generalized to phenomen-

ological models (including rate-based models and spike timing-
based models) and biophysical models which generally focus on
calcium signaling and downstream signal transduction via
CAMKII7,55,56. However, looking forward, models of synaptic
plasticity can incorporate crosstalk effects of insulin on down-
stream components in biophysical models of synaptic plasticity.
Insulin signaling has been shown to regulate neuroplasticity in
both developing and adult brains57. While this can be explained
by reports that insulin can transiently induce potentials via
NMDA58,59, insulin has also been shown to impair NMDA-
dependent LTP60. Similarly, insulin may also attenuate AMPAR
signaling by inducing AMPA receptor internalization61. However,
the mechanism of action for these disparate actions of insulin
needs to be understood in the context of the dynamics of
intracellular signaling molecules like AMPK and mTORC.
AMPK may be critical in the low-energy response of neurons,

both from an intraceullar and systems level perspective30,62. While
AMPK is critical for the integration of inputs, mTORC is linked to
protein translation and autophagy, which can serve as outputs for
influencing cellular state. mTORC1, while active in presynaptic
neurons, is not expressed as heavily in postsynaptic dendritic

spines34. mTORC2, is expressed in dendritic spines and activated
during synaptic signaling34,62,63. There are additional reports that
mTORC2 is essential for synaptic plasticity34,64. Due to the
importance of insulin signaling and AMPK, further investigation
of the kinetics of mTOR is vital for our understanding of cellular
interactions leading to synaptic plasticity.
Future works in both modeling and experiments may focus

more on building upon knowledge of synaptic plasticity. For
modeling complex biochemical pathways, deterministic solver
methods are feasible due to high molecule numbers65. However,
incorporating stochastic solver methods may be able to capture
biological behavior, which is particularly important in multi-scale
problems like dendritic spines3,66 Finally, multivariate experimen-
tal measurements in spines during synaptic activity would be
needed to constrain the models and test model predictions.

METHODS
Model description
The model is constructed of 3 distinct modules (kinase activation,
metabolism, and calcium signaling) with ATP consumption
leading to AMPK activation as the key component that connects
all three systems. Calcium dynamics are well studied in neuronal
signaling literature, yet an often unexplored aspect is the crosstalk
between metabolism and calcium signaling. A simple model
representing glycolysis, oxidative phosphorylation, and energy
consumption is used to provide a baseline for ATP consumption.
Further, a model from skeletal muscle literature describing AMPK
and mTOR activation downstream of insulin receptor activation is
used to model the kinase activation. While there are definite
differences in kinase expression and activation between neurons
and skeletal muscle, both cells are excitable and undergo high
frequencies of calcium stimulus. As more data specific to human
neuron kinase activation becomes available, the parameterization
of this aspect of the model may be improved, but in this work we

Fig. 9 Glutamate frequency and metabolic stress lead to increases in AMPK and mTOR deviations. a AMPK phosphorylation trajectories for
a range of values for glutamate frequency and ATP consumption rates, khyd. b mTORC1 phosphorylation trajectories for a range of values for
glutamate stimulus frequency and ATP consumption rates, khyd. c mTORC2 phosphorylation trajectories for a range of values for glutamate
stimulus frequency and ATP consumption rates, khyd. d AUC for AMPK normalized to maximal AUC value. e AUC for mTORC1 normalized to
maximal AUC value. f AUC for mTORC2 normalized to maximal AUC value. Color for heatmaps are AUC relative to maximal AUC per graph.
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focus on crosstalk applications between glutamatergic calcium
signaling and kinase activation.
All differential equations are listed in Supplementary Table 1

and the fluxes for each reaction are listed in Supplementary Tables
2 to 4. Each parameter value used in the model is listed in
Supplementary Tables 5 to 8. Here, we describe the various
modules and the original sources for the reactions, where
applicable. The system is composed of models representing
AMPK and mTOR activation (Supplementary Table 2), calcium
dynamics (Supplementary Table 3), and receptor dynamics
NMDAR and AMPAR (Supplementary Table 4).

Calcium dynamics. Intracellular calcium is a critical cellular
second messenger that is closely linked to the induction of
synaptic plasticity67. In this model, we use reactions established in
legacy literature models of neuronal calcium1–3,43,68. Calcium
influx is initiated by glutamate binding to receptors on the PSD
described in receptor models. Calcium release from the endo-
plasmic reticulum (ER) is triggered through binding of IP3 to IP3R
on the ER membrane, as well as calcium-induced calcium release
by ryanodine receptors (RyR)69. These species are modeled as
concentrations in different cellular compartments and described
in the equations listed below:

d½Ca2þC �
dt

¼ JRYR þ JIP3 � JSERCA þ JPM þ JER;Leak � JBuff (1)

d½Ca2þER �
dt

¼ �JRYR � JIP3 þ JSERCA � JER;Leak � JER;Buff (2)

Here, Ca2þC represents the calcium concentration in the cytosol
and Ca2þER represents the ER calcium concentration. Flux compo-
nents of these differential equations are represented by Ryano-
dine (JRYR), IP3 Receptor (JIP3), SERCA pump (JSERCA), plasma
membrane calcium-atpase (JPM), ER calcium leak (JER,leak), and
buffering terms for the cytosol (JBuff) and ER (JER,Buff) and are fully
described in Supplementary Table 3.

ATP production and consumption. ATP is rapidly consumed
during synaptic activation due to the export of ions as well as
many housekeeping reactions involved in synaptic plasti-
city13,14,19,70. ATP is generated by glycolysis and oxidative
phosphorylation. Glycolysis is a well-studied pathway in which
cells metabolize glucose into pyruvate to generate ATP16.
Computational models of glycolytic activity in neurons have
provided predictions for neurodegeneration, pathology, and
development71–73. Pyruvate, the end product of glycolysis, is
oxidized in mitochondria; in our model, oxidative phosphoryla-
tion is a function of mitochondrial potential computed by fluxes
of the electron transport chain, as described by Beard74. In
addition, as oxidative phosphorylation is enhanced by high
cellular calcium concentrations, we have incorporated this
dependence with a Hill-type equation on the flux which
represents mitochondrial energy production, JOP. In contrast,
ATP is hydrolyzed to ADP to provide energy for many reactions in
the cytosol. In our model, both ATP production and consumption
are modeled as mass action kinetics with kinetic parameters from
the literature74. However, the rates of energy consumption are
dependent on synaptic signaling12,13. In this model, we assume
that the active synaptic energy consumption is correlated with
the activity of active transporters, for example, SERCA and PMCA.
In addition to active energy consumption from synapses, global
energy consumption through maintenance and housekeeping
reactions add up to the overall energy consumption rate in the
model. ATP, ADP, and AMP are modeled in the cytosol as
described in equations listed below:

d½ATPC �
dt

¼ JGlyc þ JOP � JAK � JCK � 2JATPCA þ JAMPK (3)

d½ADPC �
dt

¼ �JGlyc � JOP þ 2JAK þ JCK þ 2JATPCA (4)

d½AMPC �
dt

¼ �JAK � JAMPK ; (5)

Fig. 10 Cellular response to glutamate stimulus in neurons is regulated by insulin sensitivity and metabolics. A schematic for the various
factors that lead into the decision between long-term potentiation and long-term depression.

A. Leung and P. Rangamani

12

npj Systems Biology and Applications (2023)    34 Published in partnership with the Systems Biology Institute



where ATP, ADP, and AMP are nucleotide concentrations over
time. The fluxes modeled in these equations include: Glycolysis
(JGlyc), Oxidative Phosphorylation (JOP), Adenylate Kinase (JAK),
Creatine Kinase (JCK), ATP consumption by SERCA and PMCA
pumps (JATPCA), and AMPK activation(JAMPK) and are given in
Supplementary Table 2.

Receptor models. Glutamate release into the synapse from the
presynaptic cell is modeled as a series of step functions during the
stimulus duration, with stimulus frequencies ranging from 0.1 to
100 Hz (Fig. 4a–c). The decay of glutamate within the synapse is based
upon time constants from experiments by Clements75. NMDAR and
AMPAR cascades are modeled as a multi-state receptor model with a
prescribed voltage76. These equations are included in Supplementary
Tables 5 to 8 and parameters in Supplementary Table 2.

AMPK and mTOR activation. AMPK and mTOR are coupled in an
intricate feedback loop involving several other protein kinases.
This system is directly downstream of insulin receptor signaling
and is derived from Sadria29 (shown in Fig. 1). Sadria et al.
developed an AMPK and mTOR signaling pathway for activity in
cancer cells, parameterized from experimental data of mTOR
activation in adipocytes of type 2 diabetes patients77. We have
adapted the signaling network and differential equations for
species including mTORC1, mTORC2, AKT, ULK1, SIRT1, IRS, and
have integrated metabolic activation of AMPK by AMP/ATP ratio.

Mathematical methods
The system of equations contains 60 species and 163 parameters.
All equations were solved as a system of ordinary differential
equations (ODE) using MATLAB’s built-in stiff solver, ode15s78.
These equations were integrated with a maximum timestep of
0.1 s, relative integration tolerance of 10−5, using backward
differentiation formulas with a maximum order of 4. Because
each stimulus requires an instantaneous change in concentration
and ODE solvers require a smooth, differentiable function, each
stimulus was discretized to an individual ODE solution using the
previous state as the subsequent initial condition, while glutamate
concentration was increased to 0.1 mM. Before each pulse train
simulation, the system was run to an approximate steady state,
around 10,000 seconds with no glutamate stimulus. The results of
this initial simulation are included in Supplementary Figure 1 and
all model files are included in the public repository (https://
github.com/aleung15/AMPKmTOR2022). In addition, we consid-
ered the role of noise in the glutamate stimulus of this system
(Supplementary Figure 2). Noise in computational modeling of
synaptic activity is frequently implemented due to the small
molecule numbers and short timescales in synapses2,3,42. How-
ever, due to large variance in molecules in the system, highly
nonlinear coupled system of equations, and the long timescales of
interest, we focus instead on the deterministic response to a pulse
train of glutamate stimulus.

Sensitivity analysis
The dynamics of the model are dependent on both parameter
values and initial conditions. The size and complexity of the system
suggest nonlinear behavior such that changes in parameters for a
single flux may lead to diverse response in the AMPK, AKT, mTORC1,
and mTORC2 concentrations. To elucidate the role of each
parameter in the system output we perform global sensitivity
analysis. There are many methods of global sensitivity analysis,
including correlation-based methods, variance-based methods, and
derivative-based method79. In this work, we use a Latin Hypercube
Sampling method to determine a sampling plan across a parameter
range of 20% of the original parameter values80.
Each parameter set is then simulated to an apparent steady

state and values for AMPK, AKT, mTORC1, and mTORC2 are

compared to the default values. We then perform a partial
correlation analysis to determine the Partial Rank Correlation
Coefficient (PRCC), which represents the linear dependence
between the parameters and output variables. This approach is
suitable for the analysis of the steady-state simulation, since many
of the non-linearities are introduced through the rapid glutama-
tergic and calcium signaling81.

Determination of system metrics
We use the following metrics to compare model outputs for
different inputs: steady state, time to steady state, maximum
amplitude, and area under the curve. Steady state was
determined by taking the derivative of phosphorylated AMPK,
mTORC1, and mTORC2 with respect to time. After the mean
magnitude of the derivative was computed to be lower than
1 × 10−6μM/s for a period of 30 s, the species was determined to
be at steady state. For the time to steady state, the same
computation was done, however the time at which the
derivative was lower than 1 × 10−6μM/s was determined to
be the time to steady state. Maximum amplitude was computed
to be the percent change relative to the steady-state value for
each condition. Finally, area under the curve (AUC) was
numerically determined by the integrating the predicted
phosphorylation time-course over a period of 200 s. In heatmaps
Figs. 7 to 9, the values of the AUC’s are taken relative to a system
without any stimulus or changes in parameters, then normalized
to the maximum AUC computed. This was done in order to
reduce the range of values on the color bar to be more reflective
of the changes in simulation conditions rather than the steady-
state concentrations of the species.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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