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Knowledge-based mechanistic modeling accurately predicts
disease progression with gefitinib in EGFR-mutant lung
adenocarcinoma
Adèle L’Hostis1,6, Jean-Louis Palgen1,6, Angélique Perrillat-Mercerot1, Emmanuel Peyronnet1, Evgueni Jacob1, James Bosley1,
Michaël Duruisseaux2,3,4, Raphaël Toueg5, Lucile Lefèvre5, Riad Kahoul 1, Nicoletta Ceres1 and Claudio Monteiro 1✉

Lung adenocarcinoma (LUAD) is associated with a low survival rate at advanced stages. Although the development of targeted
therapies has improved outcomes in LUAD patients with identified and specific genetic alterations, such as activating mutations on
the epidermal growth factor receptor gene (EGFR), the emergence of tumor resistance eventually occurs in all patients and this is
driving the development of new therapies. In this paper, we present the In Silico EGFR-mutant LUAD (ISELA) model that links LUAD
patients’ individual characteristics, including tumor genetic heterogeneity, to tumor size evolution and tumor progression over time
under first generation EGFR tyrosine kinase inhibitor gefitinib. This translational mechanistic model gathers extensive knowledge on
LUAD and was calibrated on multiple scales, including in vitro, human tumor xenograft mouse and human, reproducing more than
90% of the experimental data identified. Moreover, with 98.5% coverage and 99.4% negative logrank tests, the model accurately
reproduced the time to progression from the Lux-Lung 7 clinical trial, which was unused in calibration, thus supporting the model
high predictive value. This knowledge-based mechanistic model could be a valuable tool in the development of new therapies
targeting EGFR-mutant LUAD as a foundation for the generation of synthetic control arms.
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INTRODUCTION
Lung cancer is one of the most frequently diagnosed cancers and
the leading cause of cancer mortality worldwide1,2. More than
40% of newly diagnosed lung cancers are in a metastatic state3.
Based on European and American guidelines (respectively4,5), the
main treatment options currently available for patients with lung
adenocarcinoma (LUAD)—representing 40% of all lung cancer6,
are surgery, radiation therapy, chemotherapy, immunotherapy,
and targeted therapy.
Alterations such as gene mutations or fusion lead to uncontrolled

receptor tyrosine kinases (RTK) signaling and an oncogenic signal,
leading to strong activation of downstream pathways converging
on common signaling effectors that elicit tumor development7.
Molecularly targeted therapies have markedly improved clinical
outcomes in patients with LUAD defined by the detection of
oncogenic mutation or fusion in RTK-like epidermal growth factor
receptor (EGFR). The EGFR tyrosine kinase inhibitor (TKI) gefitinib
was the first targeted therapy for the treatment of advanced EGFR-
mutant LUAD approved by both the European Medical Agency
(EMA) and the Food & Drug Administration8. However, as all EGFR-
mutant LUAD eventually develop resistance to treatment this
disease is still one of the most deadly cancers9.
The development of new molecularly targeted therapies comes

with a high human, time, and financial cost10–12. Yet, a large
amount of data and knowledge resulting from biological
experiments of last decades at different scales (from the molecular
level to the population level) and in various conditions (in vitro
cultivated cells, animal experiments, human studies) are now
publicly available for integration to support new insights and

progress13. Drug development decision making could benefit
from being informed and rationalized by the integration of these
heterogeneous data. Knowledge-based mechanistic computa-
tional models represent a valuable tool to bridge quantitatively
experimental data that are heterogeneous in scale and nature. In
particular, they provide insights to study the rare mutation
combinations, such as KRAS (Kirsten rat sarcoma gene) or BRAF (B
rapidly accelerated fibrosarcoma gene) co-occurring with EGFR
mutation. They can provide both the dynamics of the biological
entities included in the modeling and clinical outputs of patients.
Another interest of mechanistic disease models lies in their
modularity: models of other treatments can therefore be easily
integrated into such models of physiopathological processes14.
Such a model can be used to predict the clinical outcomes of a

virtual patient, implemented as a digital twin of a real world
patient, in response to distinct sets of treatments, allowing
prediction of clinical outcomes of a target population of such
patients, based on the corresponding virtual population (Box 1)
and can serve as a support for clinical development of new drugs.
Such mechanistic models have been developed in the past for

oncology application. For instance, Milberg et al.15 developed a
model of detailed anti-tumor immune response in a context of
melanoma, including several immune cell interactions linked to
tumor diameter evolution. Dogra et al.16 reported a model linking
the pharmacokinetics of several treatments on cell cycle progres-
sion in triple-negative breast cancer. Others, such as Barber et al.17

or Yu et al.18 used statistical models to link tumor characteristics
with the clinical outcome progression-free survival. In 2020,
Nagase et al.19 published a Bayesian model tumor radius evolution
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of EGFR-mutant NSCLC treated with 1st generation TKI. However,
to our knowledge, a mechanistic model that targets the same
population, and that links key molecular and cellular cancer
evolution actors to disease progression and clinical outcomes, as
observed in clinics, is still missing.
Based on the recommendations from EMA20 with respect to

physiologically based pharmacokinetic modeling and the Amer-
ican Society of Mechanical Engineers (ASME) Verification &
Validation (V&V) 40 standard published by the FDA, model
development could be summarized in four main steps: (1)
definition of model context of use20,21, (2) construction of a
knowledge model describing the patho-physiological interplay of
biological phenomena within the context of use, (3) implementa-
tion of a computational model by translating knowledge model
into mathematical equations, (4) calibration of the model
parameters to ensure that simulations reproduce expected
behaviors observed in the real world.
In addition to the four main steps, we propose a fifth one (5),

namely the validation of the model22, in order to assess model
credibility by challenging its predictability in reproducing real-
world data that were not used to build the model nor to
calibrate it.
We present in this article a mechanistic model built based on

those guidelines with the additional validation step (fifth step),
integrating multiscale phenomena, with a context of use to
predict tumor evolution and disease progression over time of
EGFR-mutant LUAD patients treated with gefitinib. Other settings
such as additional treatments or placebo in humans are deemed
out of the scope of this work. We present here the in silico strategy
used to build the In Silico EGFR-mutant LUAD (ISELA) model, its
validation ensuring the reliability of its prediction and the use of
the model to identify individual characteristics linked to clinical
outcome.

RESULTS
Visual predictive checks
As a verification criterion of calibration success, as well as correct
estimation of parameter values and distribution amongst the
population, visual predictive checks were performed on the
experimental dataset used for calibration (Figs. 1, 2 and 3).
For the in vitro calibration of the model, the model faithfully

reproduced the time at which ERK and AKT proteins reach their
maximal activation levels, and the maximal activation observed
(following epidermal growth factor (EGF) or hepatocyte growth
factor (HGF) stimulation) as shown in Fig. 1.
On in vitro KRAS mutated spheroid simulation, the model

output matched the experimental data, both in terms of tumor
radius evolution, and maximal depth for cell viability observed in
these conditions (Fig. 2a, b). On the mice xenografted with
patient-derived tumor (carrying exon 19 deletion mutation, with
or without co-occurrence of PIK3CA mutation), either treated with
gefitinib or untreated and based on the dynamics observed in
literature, the ISELA model reproduces accurately the evolution of
tumor volume over time (Fig. 2c–f).
The selected range of acceptable model output variation,

materialized by the error bars, was defined as the maximum
between two times the associated standard deviations and 20% of
the mean. This approach allows coverage of heterogeneous
calibration datasets: we were able to constrain the model on
datasets composed of one or few numbers of experiments and/or
datapoints, as well as datasets lacking standard deviation. Finally,
the penalizations were applied to the selected range of variation
without assigning specific weight to the mean. To note, in one
condition (namely EGFR mutant with placebo), the simulation
tended to provide a tumor volume that was slightly lower than the
observed one, while remaining in the experimental uncertainty
that was huge in this particular setting.
In the human setting, the ISELA model was able to match a

realistic TTP for 97% patients included in the calibration process
(one virtual patient displaying a higher TTP than their real world
counterpart), supporting its reliability with respect to clinical
outcome prediction (Fig. 3).
To conclude, calibration constrained the ISELA model by finding

a set of parameter values allowing it to represent biological
behaviors consistent with data extracted from the literature. Thus
these steps increased the credibility of the ISELA model. However,
a validation step is needed to formally assess the performance of
the model and in particular its prediction capacity in its context of
use.

Box 1 Definition of virtual patients and virtual population

A Virtual Population is a modeling technique used to describe a cohort of virtual
patients. Each individual virtual patient is characterized by a unique set of
parameter values, which are named descriptors. The number of patients is
specified. The vector of descriptor values are sampled from a vector of patient
descriptor distributions (e.g., age, sex, or co-mutation profile), using their
probabilistic distributions and correlations derived from the target population, in
order to represent its reported variability. With these inputs to the computational
model, the individual outcomes of the virtual patients (i.e., tumor size evolution
and time to progression for the In Silico EGFR mutant LUAD (ISELA) model) are
simulated.

Fig. 1 Quantitative visual predictive check of calibration step 1 results. The correspondence between simulation outcome and observed
data, after calibration, was assessed (a, b) for the activation of pathways downstream to EGFR and cMET (cellular mesenchymal epithelial
transition). The observational data corresponds to the area defined by both maximal phosphorylation rate (dashed line) and time of that
maximum following the indicated stimulation.
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Fig. 2 Quantitative visual predictive check of calibration step 2 results. The correspondence between simulation outcome and observed
data, after calibration, was assessed for tumor evolution. a Evolution of spheroid tumor size; the observational data corresponds to the mean
tumor radius overtime with estimated error bars (taken as maximum between 2 standard deviations and 20% of the mean). b Maximal depth
at which living tumor cells can be found (viable depth) in tumor spheroids; the observational data corresponds to estimated viable depth
observed on in vitro spheroids. c–f The observational data corresponds to the mean tumor volume overtime, with estimated error bars (taken
as maximum between 2 standard deviations and 20% of the mean). For the evolution of tumor radius and volume, the percentage of data
intervals that are reached by the model simulation is also indicated.
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Validation process
We performed a validation process to assess the reliability of the
ISELA model predictions. We aimed to ensure that the model is
able to reproduce biological and clinical behaviors extracted from
independent clinical datasets that were not used to build nor
calibrate the model. In the following, we compare the ISELA model
predictions with the data extracted from ref. 23. The model is
deemed as successfully validated if it respects the thresholds set in
the “Materials and methods” section on raw coverage and
bootstrapped LR-test thresholds.

Generation of the virtual population. As explained in the “Materials
and methods” section, we generated a virtual population ten times
larger than the real population size. Table 1 provides statistical
comparison illustrating how close the generated virtual population is
from the clinical data, as detailed in “Materials and methods” section.
The Virtual population did not differ significantly from the real

population, for any of the compared characteristics: the virtual
population generated was therefore representative of the provided
Lux-Lung 7 population characteristics. As a result, simulation outputs
can rightfully be compared to real world clinical data, as the inputs
match.
We then compared the outputs of the simulations to the Lux-Lung

7 inferred TTP to evaluate whether the ISELA model reproduces
accurately the Lux-Lung 7 trial.

Comparison of survival curves between simulated and real popula-
tion. We provided the output of the model using a classical

Kaplan–Meier survival curve, defined by the with the survival curve
computed on the entire Virtual Population and with its 95%
bootstrapped prediction interval (PI), overlaid with the TTP deduced
from the Kaplan–Meier curves extracted from ref. 23 (Fig. 4).
As seen in Fig. 4, the ISELA model fulfills both validation criteria

detailed in the “Materials and methods” section: 98.5% of
experimental data are covered by the model prediction interval
and only 0.6% of bootstrapped LR tests are significant (not able to
reject the null hypothesis defined as: no difference between
observed and simulated populations). These results support that
observed and simulated TTP data are not statistically different. The
ISELA model is thus considered as validated, as per the initial
objective. As a consequence it increases the credibility of both the
model predictions, and its matching of the real world population.

Exploration of the individual tumor size evolution. Exploration of
model outcomes within the virtual population of the validated
ISELA model was performed on the tumor size evolution
dynamics.
The tumor radius evolution over time is an output of the ISELA

model that was calibrated on in vitro and on mice with success
(see Figs. 1 and 2). Tumor radius can be followed every day during
the simulation for each individual patient treated with gefitinib, as
displayed in Fig. 5. As expected, the vast majority of the patients
show a decrease of tumor size at first, followed by a relapse of the
tumor which becomes gefitinib-resistant and increases in size,
though this relapse time differs among patients (see Fig. 5).
When stratifying the patients based on the co-occurence of the

KRAS mutation, it was noted that tumors harboring the KRAS
mutation resist gefitinib, as expected24, compared to other

Fig. 3 Visual predictive check of the calibration step 3 results.
Predicted versus observed time to progression (TTP) are displayed
for the virtual patients (single dot) best matching each of the real
world patients. Each prediction (dot) is considered accurate if the
associated point lies in the blue ribbon representing the interval
between TTP (dashed line) and TTP minus 2 months (dotted line),
2 months being the time lapse between two medical visits as
reported in ref. 46, namely the observation time uncertainty22. In
brief, when medical visits occur every n month, then if TTP is
reported at visit m, it means that the exact time of progression
occurred between the visit m-1 and the visit m, hence the
uncertainty in TTP measurement. The percentage of prediction
within the observed time uncertainty range (% in OTU) corresponds
to the percentage of dots that are in the uncertainty area (blue area,
reported TTP - 2 months). Pearson correlation coefficient is also
provided.

Table 1. Comparison of baseline characteristics between virtual
population and real population from ref. 23.

Characteristics Lux-Lung 7
(n= 159)

Virtual population
(n= 1190a)

p-value

Gender, n (%)

Men 53 (33.3) 100 (33.6) 1.0

Women 106 (66.7) 790 (66.4)

Age in years - median
(range)

63 (36-89) 62.7 (32.7–88.7) 0.9

EGFR mutation, n (%)

Exon 19 deletions 93 (58.5) 701 (58.9) 0.8

Exon 21 L858R point
mutation

66 (41.5) 489 (41.1)

Smoking status, n (%)

Never smoker 106 (66.7) 789 (66.3) 0.98

Former smoker 19 (11.9) 136 (11.4)

Current smoker 34 (21.4) 265 (22.3)

Ethnicity, n (%)

Asian (%) 88 (55) 712 (55.2) 0.93

Non-asian (%) 71 (45) 588 (44.8)

Clinical stage at
screening, n (%)

IIIb 3 (1.9) 33 (2.8) 0.73

IV 156 (98.1) 1157 (97.2)

Statistical comparisons were made using the Fisher test, except for age
which was assessed with a t-test.
aThe virtual population was built with 1190 virtual patients, which
corresponds to 10 times the size of the real population that displayed a
progression event (TTP), as detailed in the “Materials and methods”
section.
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tumors. Indeed, when size was compared at 6 months to baseline,
different patterns were observed ranging from an increase in
tumor size to a decrease in tumor size, patients harboring KRAS
mutation being in the first case (Fig. 6).

To go further and identify the key parameters that impact the
change in tumor size and the resulting time to progression, we
performed a sensitivity analysis on all individual patients
characteristics (Fig. 7).

Fig. 4 Kaplan–Meier curves illustrating the TTP for the observed population of the Paz-Arés et al. dataset and the corresponding
simulated Virtual Population. The raw time-to-event curve from literature (blue curve) represents TTP deduced from Paz-Ares et al. The
simulated time-to-event curve (light green curve) is fitted with a prediction interval (PI) computed by bootstrapping (light green area). The
validation metrics are displayed in the middle of the plot, and are detailed in the section “Virtual population generation and statistical
analyses for validation”. The number of patients at risk is shown below the plot. LR log-rank, PI prediction interval. All patients received a daily
dose of 250mg gefitinib starting at day 0 of the simulation onwards.

Fig. 5 Individual and population tumor size evolution within the virtual population. a The individual tumor radius dynamics over time of
each of the 1190 patients from the Virtual Population are represented. b The median (dark blue), 25–75% (intermediate blue), and 2.5–97.5%
(light blue) confidence intervals are given for the overall population. a, b All patients received a daily dose of 250mg gefitinib starting at day 0
of the simulation onwards.
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Both analyses on tumor radius and TTP consistently identified
the immune system (2 parameters), neo-angiogenesis (1 para-
meter), tumor initial size (2 parameters), initial size of the resistant
subclone (1 parameter), as well as 1 parameter encompassing the
impact of implicit mutations on cell proliferation cancer hallmark
as critically impactful on both outputs of interest.

DISCUSSION
The in silico EGFR-mutant lung adenocarcinoma (ISELA) model
presented in this paper is a predictive and reliable mechanistic
model of tumor growth evolution for patients treated with
gefitinib with TTP as primary outcome. This model includes
patients’ individual characteristics variability observed in
literature. The model was designed with knowledge and data
available in public literature. The calibration outcome and the
corresponding visual predictive checks show the successful
calibration with more than 85% of patients accurately repro-
duced. Visual predictive checks are a valuable tool widely used
in the field of modeling in particular in pharmacodynamics25,26,
which helped build credibility for the calibrations performed. To
go even further, and to assess the credibility of the ISELA for
prediction, a formal validation of the model output with respect
to an independent dataset showed agreement with the real

world clinical data. These results underline the capacity of the
model in predicting tumor progression in a population of
patients with EGFR-mutant LUAD treated with gefitinib.
The predictive accuracy of the model has been validated on

population-based data extracted from ref. 23, based on two
metrics: bootstrapped log-rank tests (more than 99% of tests
were negative) and clinical data coverage (more than 98% of
coverage was observed). As a consequence of this validation,
the ISELA model predictions are deemed reliable on EGFR
mutant LUAD patients at the population level, for patients that
do not experienced severe toxicity, death, or treatment
discontinuation.
One advantage of the mechanistic approach is that each

parameter holds a pathophysiology-related meaning: causality
between disease-related biological phenomena is inherent to
the knowledge-based model, easing the interpretation of the
impact of parameter values on clinical outcomes, especially
interesting in the context of uncommon populations. Explora-
tion of rare populations was therefore realized, and we
compared EGFR mutant LUAD population with and without
KRAS mutation: the obtained results were in line with reported
knowledge, namely (i) consistency in the population character-
istics: KRAS is an uncommon mutation, around 2.5% reported on
trials based on a population with EGFR mutant LUAD27 and

Fig. 6 Evolution of tumor radius stratified by KRAS mutation. a The change in tumor radius at 6 months compared to baseline is displayed
in a waterfall plot, with a stratification on KRAS mutation. b The median, 25–75%, and 2.5–97.5% confidence intervals are given for the two
subpopulations carrying or not carrying the KRAS mutation. c The distribution of tumor radius change at 6 months compared to baseline is
displayed for the two subpopulations carrying or not carrying the KRASmutation. All patients received a daily dose of 250mg gefitinib starting
at day 0 of the simulation onwards.
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2.35% in the virtual population defined earlier; (ii) consistency
in the efficacy of gefitinib in KRAS and EGFR mutant LUAD: first-
generation EGFR-TKIs, i.e., gefitinib and erlotinib transiently
down-regulates also the activity of mutant KRAS and related
downstream signaling pathways24; (iii) consistency in TTP of
KRAS and EGFR mutant LUAD patients: Patients harboring KRAS
mutations are associated with a shorter time to progression
during TKI-treatment24. Being able to reproduce behaviors that

were not the focus of this study increases the credibility of to
the model.
The ISELA model can be further improved. Currently,

individual behavior description should be interpreted with
caution, as some characteristics were not available at the
individual patient level, thus correlations between descriptors
were extrapolated from the calibration process. To the best of
our knowledge, it is difficult to access individual data on tumor
size evolution over time, tumor mutational burden (e.g.,
number of driver mutations, number of clones in the tumor),
and individual patient characteristics (e.g., age, sex). Access to
such individual-based data would improve the calibration
process and the predictions made at individual level. Sensitivity
analysis of the model identified neo-angiogenesis and immune-
related phenomena as the two main drivers of TTP progression
and tumor size. These parts of the model currently remain
phenomenological. However, they could be further detailed as
part of the future development of the ISELA model, in order to
better study mechanistically how these phenomena impact on
clinical outcomes. This would also help to increase the domain
of applicability of the model.
The model could be extended to new contexts of use taking

into account new mutations or new treatments and thus be
adapted to support several drug development lines. One
advantage is that the ISELA model was planned and implemented
to allow enhancements as scientific knowledge progresses. Both
qualitative and quantitative advances can be used. As a
consequence, if new relevant information is found regarding the
physiopathology, it can be integrated in the existing model, rather
than rebuilding a model from scratch. Finally, to further explore
the advantages and drawbacks of the ISELA model one could
compare it with mathematical models applied to the same context
of use: patients with EGFR-mutant lung adenocarcinoma treated
with first-generation TKI.
In silico approaches such as the one presented in this article

provide tools to overcome frequent issues related to clinical trials:
they notably ensure the clinical equipoise by enrolling the exact
same virtual patients in control and investigational arms. As a
consequence, in silico models supporting drug development can
ease the development of new drugs improving the medical care
of patients diseases such as LUAD28,29.

MATERIALS AND METHODS
Development of the ISELA model
The ISELA model is a knowledge-based mechanistic model
designed to reproduce tumor size evolution and disease
progression of virtual patients matching real world patients with
EGFR-mutant LUAD treated with gefitinib, as illustrated in Fig. 8.
Together, virtual patients form virtual populations (see Box 1). The
clinical outcome deemed of interest is the time to progression
based on RECIST (Response Evaluation Criteria In Solid Tumors)
criteria30. Briefly, this corresponds to an increase of the largest
dimension of the tumor by 20% and of at least 0.5 cm.
A thorough review of more than 250 scientific papers was

performed to identify the main phenomena to include into our
EGFR mutant LUAD physiopathology model: (1) cell proliferation,
cell death, layering of cells in the tumor, carrying capacity due to
neo-angiogenesis and limited growth due to the immune system
impacting tumor growth, (2) impact of individual mutational
profile on these pathways, (3) signaling pathways that are
downstream of EGFR activation, (4) tumor heterogeneity stem-
ming from groups of cells sharing the same phenotype, namely
tumor clones; and (5) resulting clinical outcomes from physio-
pathology (Supplementary Information). Due to the model
modularity, (6) a gefitinib treatment model was added in order
to consider its impact on patients’ physiopathology as described

Fig. 7 Sensitivity analysis of the ISELA model. A Virtual population
of 5000 patients following the characteristics of the general
population was generated and their tumor size (a) and TTP (b)
analyzed by Tornado plots analysis to quantify the impact of each
parameter on these outputs. The median change in tumor size was
−14.3% and the median TTP was 8.06 months, values are provided
as “100 × (value in the low/high category−median value)/ median
value” and this represents the relative variability induced by each
parameter, in percentage. The 10 most impactful parameters are
provided in both cases, Note that version of the model, without
clonal duplication, was used to estimate the impact of each and
every parameter. This was done in order not to overwhelm the
sensitivity analysis with 75 parameters that corresponds to duplica-
tion of the same parameters through clones.
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in Table 2. The associated knowledge was validated based on
thoracic oncology scientific expertise. This allowed us to uncover
the knowns and unknowns of the target population character-
istics, and define appropriate simplifying assumptions when
needed. This biological knowledge was converted into mathema-
tical equations (ordinary differential equations—ODEs) to compu-
tationally model the corresponding biological phenomena. These
equations were implemented as groups of mechanistically related
equations, or submodels, and the integrated combination is the
ISELA model.
The ISELA model accounts for the heterogeneity in tumor with

the modeling of a number of tumor clones with distinct genetic
background from one patient to another. From a computational
point of view, this is ensured by the duplication of each part of
the model corresponding to phenomena occuring at the clone
level. Namely, the following phenomena are duplicated to
account for clone heterogeneity: tumor growth, mutational
profile, EGFR, and downstream signaling pathways. As a
consequence, depending on the number of clones each virtual
patient carries in their tumor, the model runs with a set of 27 to
97 variables, 108 to 258 parameters, and 13 to 83 ODEs (ranges
for 2 to 16 clones and associated duplication), as indicated in
Table 2. The model structure is illustrated in Fig. 9, and the
equations of the model are provided in Supplementary
Information.
As indicated in Fig. 9, two model outputs are considered as

clinical endpoints: tumor radius and time to progression, deduced
from the tumor radius. Yet, the model does not consider censoring

due to toxicity, death, or treatment discontinuation. Patients who
did not display tumor progression at the follow-up cut-off, that is
to say at the end of the simulation, may be considered as being
right censored.

Model calibration
Following the model development detailed in the previous
section, the model was calibrated as advised in the EMA
guidelines20 and the V&V 4021. Calibration aims to find
parameter values and distributions such that the model
reproduces expected behaviors observed in the real world. It
is the first step to ensure the accuracy of a mechanistic model
and is performed prior to the validation process. We here
describe the calibration protocol applied to the ISELA model,
based on the data we found in literature. The corresponding
calibration process is composed of successive steps, and each
step has as its objective a specific model variable behavior
matching one or more specific computational constraints. Since
calibration steps are executed sequentially, the first calibration
steps are prerequisites for the following steps. They take into
account both quantitative and qualitative constraints, to
consider and reproduce the heterogeneous and multi-scale
data extracted from literature31 details the two first steps of the
process, where we aligned the ISELA model with:

● published in vitro dynamics to calibrate EGFR/cellular
mesenchymal epithelial transition (cMET) associated pathways
and tumor growth in vitro32–35.

Fig. 8 Quantification of tumor size evolution affected by clonal prevalence. A Tumor growth and heterogeneity. A solid tumor can be seen
as a group of tumor clones that harbor different phenotypes due to specific clone mutations. Upon drug administration, some clones will
shrink and may be destroyed, while others will resist and become dominant. By following the size of each clone, one can deduce the volume
of the tumor and its radius, and therefore the time to progression (TTP) according to the RECIST criteria (i.e., increase of 20% of the size of the
tumor radius). B Tumor radius evolution computed on each virtual patient (Box 1) and the time to progression is deduced from RECIST criteria.
C Tumor radius is followed for each patient of the virtual population (Box 1) and represented with a Kaplan–Meier visualization of the
probability of tumor non-progression (orange). N is the number of patients in the comparator experimental dataset. VPOP: virtual population;
TTP: time to progression. Created with BioRender.com.
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● published xenografted mice data (see Table 3)36–39 to
calibrate tumor growth in xenograft mice.

In addition, we performed two additional calibration steps to
increase the context of use of the ISELA model to humans They
both focus on finding values of the parameters related to human
neo-angiogenesis, immune system, and treatment-resistant clones
to reproduce the time to progression (TTP; i.e., duration between
start of the treatment administration and detection of tumor
progression) of patients found on literature:

● We reproduced individual clinical data (time to progression)
found in literature40–45, where patient characteristics such as
gender and type of EGFR mutant mutations are provided.

● We reproduced the population-level clinical data deduced
from the NEJ002 trial46, and deduced correlations between
patient descriptors. The extraction of the list of time-to-events
(for both PFS and OS) was realized using R package digitize47,
using the input survival times from graph reading; and the
reported number at risk. TTP was inferred based on the clinical
trial PFS and OS, as detailed in ref. 22. Therefore, the NEJ002
TTP dataset was deduced from the lists of time-to-events
corresponding to the PFS and OS of the Maemondo/NEJ002
trial. Under the hypothesis that patients who died before
disease progression are characterized by the same time to
event in the PFS and OS sets, we filtered out PFS events that
correspond to patients’ death, leaving only the time-to-events
corresponding to disease progression.

These two last steps were not intended to reproduce tumor size
evolution over time (as done in steps 1 and 2) since in vivo tumor
sizes are rarely reported in the literature in humans. Instead, the
goal was to reproduce the TTP, computed from the evolution of
the time tumor progression, according to the RECIST criteria.

The experimental data that were used in these four calibration
steps are listed in Table 3.
To use the same model structure in all settings (in vitro, in mouse,

and in human simulations), allometric scaling was used, as described
in ref. 31. In a nutshell, allometry theory refers to the impact of the size
of living creatures on their characteristics such as morphological and
physiological traits. In this paper, we used a common scaling law with
the following relationship Z= a×Mb with Z the studied characteristic,
M the organism mass, and a and b parameters called allometric
coefficient and allometric exponent, respectively48,49. As reference
weight for in vitro and mice, we used 2.63 g50 and 23 g51, respectively.
Visual predictive checks are performed as a verification criterion

of calibration success (see “Results” section).

Model validation
As detailed in the next two sections, model validation was
assessed on the Lux-Lung 7 clinical dataset, and based on the
simulation of a virtual population matching its characteristics.

Validation dataset. The Lux-Lung 7 trial (with PFS and OS
reported by ref. 23) was selected for three reasons:

● The characteristics of the patients enrolled in the trial
corresponds to the specified context of use of the
ISELA model,

● The treatment they received (gefitinib) is consistent with the
context of use of the model,

● The dataset was neither used for building nor calibrating the
ISELA model.

These are reported in Table 4.
To be able to compare the ISELA model TTP to the LUX-LUNG

7 dataset, the disease progression endpoint was similarly

Table 2. ISELA submodels specificities.

Submodel name Included biological phenomena Submodel components

1 Tumor growth Cell proliferation, cell death, layering of cells in the tumor, carrying capacity due to neo-
angiogenesis and limited growth due to the immune system impacting tumor growth

Variables: 5 X N

Parameters: 15

ODEs: 5 X N

2 Tumor mutational profile Mutational burden of the tumor Variables: 0

Parameters: 32+4 X N

ODEs: 0

3 EGFR signaling pathway Transduction of cell proliferation, cell survival signals Variables: 4

Parameters: 28+6 X N

ODEs: 0

4 Tumor heterogeneity Heterogeneity (co-existence of several distinct clones in the tumor) Variables: 0a

Parameters: 0a

ODEs: 0a

5 Clinical Disease outcomes Variables: 9

Parameters: 7

ODEs: 3

6 Gefitinib treatment Pharmacokinetics (PK) and mechanism of action of gefitinib Variables: 4

Parameters: 17

ODEs: 0

The number of clones N represented can vary from 2 to 16.
ISELA In Silico EGFR mutant LUAD, ODEs ordinary differential equations, EGFR epidermal growth factor receptor.
aPhenomena are taken into account by duplication of other submodels (variables, parameters, and ODEs).
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Fig. 9 Illustration of the In Silico EGFR mutant LUAD (ISELA) model. A Structure of the ISELA model: the different submodels of the ISELA
model (see Table 2) are labeled and their connecting variables are represented in light blue. The two main model outputs are also represented
(i) the biological one, corresponding to the radius of the primary tumor; (ii) the clinical one, corresponding to the time at which the tumor
progressed in size, according to the RECIST (Response Evaluation Criteria In Solid Tumors) criteria. B Focus on the EGFR signaling pathways
submodel: graphical representation of the EGFR signaling pathways variables corresponding to chemical compounds (yellow) to intracellular
proteins (light red) that link the connection variables (light blue). Mutations that impact the pathways are also represented in purple.

Table 3. References used for the calibration process, focusing on
implemented constraints on tumor size.

Author
(year)

Study type Biological processes

32 In vitro Intracellular pathway phosphorylation
profiles

33 In vitro Intracellular pathway phosphorylation
profiles

34 In vitro Intracellular pathway phosphorylation
profiles

35 In vitro Intracellular pathway phosphorylation
profiles

36 In vitro Ex vivo
37 Ex vivo Evolution of the proportion of

proliferative cells within the tumor
38 In vivo Estimation of the viable rim sizea of the

tumor
39 In vivo Estimation of tumor volume
40 Clinical data Time to progression
41 Clinical data Time to progression
42 Clinical data Time to progression
43 Clinical data Time to progression
44 Clinical data Time to progression
45 Clinical data Time to progression
46 Clinical data Time to progression

aRim size = distance between tumor core and tumor surface.

Table 4. Characteristics of the LUX-LUNG 7 population, reported by
Paz-Ares et al.23.

Characteristics Lux-Lung 7

Gender, n (%)

Men 53 (33.3)

Women 106 (66.7)

Age in years - median (range) 63 (36–89)

EGFR mutation

Exon 19 deletion (%) 93 (58.5)

Exon 21 L858R point mutation (%) 66 (41.5)a

Smoking status

Never smoker (%) 106 (66.7)

Former smoker (%) 19 (11.9)b

Current smoker (%) 34 (21.4)b

Ethnicity

Asian (%) 88 (55)

Non-asian (%) 71 (45)

Clinical stage at screening

IIIb (%) 3 (1.9)

IV (%) 156 (98.1)

Details from smoking status were retrieved from ref. 52 also reporting
analyses from the Lux-Lung 7 trial.
aOne of the patients with L858R was reported as having an additional
mutation in ref. 52 but not in ref. 23. For Vpop comparison this virtual
patient was considered in the L858R category.
bFormer smokers are considered as light ex former smokers from the
paper; while current smokers are considered as other current or former
smokers from the paper.
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derived from clinical PFS and OS, as explained in ref. 22 and
detailed in the calibration context. Therefore, the Lux-Lung 7
TTP dataset was deduced from the lists of times-to-event
corresponding to the PFS and OS of the Lux-Lung 7 trial. The
comparison of OS, PFS, and TTP is provided on Fig. 10. In the

absence of information about which patients did not display
tumor progression (and died without detectable progression),
we assume that the distribution of patients characteristics is not
altered in the subsets of patients who displayed tumor
progression.

Virtual population generation and statistical analyses for validation.
The protocol described in Table 5 was applied to compare the
simulated output with the clinical data set.
The data processing and analysis were performed within R

Software, version 3.6.1 or above. In particular, we used the
following packages: survival, survminer, tidyr, data.table, jsonlite,
and ggplot2.

Sensitivity analysis. We chose to perform sensitivity analysis
based on a tornado approach. In a nutshell, a population of
5000 virtual patients was generated, based on the character-
istics of the general population (Supplementary Information), a
50/50 proportion of EGFR mutations (exon 19 deletions and
exon 21 L858R point mutation) was used. For each patient
characteristic, patients were split in two categories: low value
(those with value lower than the median) and high value (those
with value higher than the median) and the median output of
interest was computed for each category. The value used for
the comparison of all parameters is the difference between the
median output of interest in the complete virtual population
minus the median output of interest in each of these two
categories. The resulting values are plotted in tornado plots.
The advantage of such an analysis is that it does not rely on
statistical hypotheses on the distribution of the impact of the
parameter on the output of interest.

Fig. 10 Overall survival (OS, gray), progression-free survival (PFS,
light blue), and time to progression (TTP, dark blue curve) from
the Lux-Lung 7 dataset. TTP corresponds to the PFS curve after
removal of dead and censored patients. Median OS (24.4 months),
PFS (10.9 months), and TTP (9.0 months) are represented with
dotted lines highlighting the effect of data-process on time
corresponding to the median probability. OS and PFS data were
manually extracted from ref. 23, processed and plotted in R, version
3.6.3, with the packages survival (version 3.1-8) and survminer
(version 0.4.8).

Table 5. Summary of the 5-step validation protocol.

Step name Process

1. Generation of the virtual population Known distributions of patient baseline characteristics are extracted from available data, indicated on Table 4.

When information was only partial, some assumptions were made in order to obtain a well-defined distribution:

• Standard deviation was estimated from quantiles when not available.

• We assume that the population only contains common EGFR mutations (exon 19 deletions and L858R point
mutation).

For patients and population characteristics not reported in ref. 23 (e.g., preponderance of KRAS (standing for K
isoform of rat associated sarcoma protein) mutation, proportion of patients with mutation co-occurring with
EGFR mutations, exact TNM (tumor, lymph node, and metastatic) status), distributions and correlations identified
on the general population (from refs. 27,53–56) and from calibration steps 3 and 4 were used.

The generated virtual population was 10 times bigger than the real population, to allow bootstrapping and
estimation of a prediction interval (PI). For all virtual patients, duration of follow-up, which corresponds to the
maximal simulated time, corresponds to the period reported in the experimental clinical dataset.

2. Comparison of Virtual and real
population

For each patient characteristic, we compared baselines between Virtual population and real population from
LUX-LUNG 7 dataset: statistical comparisons are performed using the Fisher test for discrete characteristics and
the t-test for continuous ones to ensure that baselines are indeed not statistically different.

3. Kaplan–Meier curves visualization The TTPs of simulated patients are plotted in Kaplan–Meier visualization in R (built-in survfit function).

4. Computation of prediction interval The bootstrapped 95% PI of the simulated Kaplan–Meier curve was computed based on 1000 subsamples from
the Virtual Population for convergence, each sub-sampling having the same sample size as the real population.

5. Computation of validation metrics The final validation metrics are the following:

Raw coverage:

The raw coverage is defined as the percentage of the Kaplan–Meier curves extracted from ref. 23 that lie within
the prediction interval around the simulated curve in the Kaplan–Meier visualization. A validation threshold was
set to a coverage of 80% of the observed curve by the PI.

Bootstrapped log-rank test:

The bootstrapped log-rank (LR) test consists of performing multiple LR tests, each comparing TTP distribution
between the one from a sampled population taken from the Virtual population, namely bootstrapped
population, with the TTP distribution of the experimental dataset. The virtual bootstrapped population size used
for each test was equal to the size of the related real population. We computed 5000 LR tests as advised in ref. 22

and added 2000 tests to ensure convergence. If the percentage of statistically non-significant bootstrapped tests
(p-value > 0.05) is greater than a given threshold, the model is considered able to reproduce the observed
results. A validation threshold was set to 80% negative LR tests.

The model is considered as validated if both validation metric scores are above pre-defined thresholds.
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Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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