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Assessing biological network dynamics: comparing numerical
simulations with analytical decomposition of parameter space
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Mathematical modeling of the emergent dynamics of gene regulatory networks (GRN) faces a double challenge of (a) dependence
of model dynamics on parameters, and (b) lack of reliable experimentally determined parameters. In this paper we compare two
complementary approaches for describing GRN dynamics across unknown parameters: (1) parameter sampling and resulting
ensemble statistics used by RACIPE (RAndom CIrcuit PErturbation), and (2) use of rigorous analysis of combinatorial approximation
of the ODE models by DSGRN (Dynamic Signatures Generated by Regulatory Networks). We find a very good agreement between
RACIPE simulation and DSGRN predictions for four different 2- and 3-node networks typically observed in cellular decision making.
This observation is remarkable since the DSGRN approach assumes that the Hill coefficients of the models are very high while
RACIPE assumes the values in the range 1-6. Thus DSGRN parameter domains, explicitly defined by inequalities between systems
parameters, are highly predictive of ODE model dynamics within a biologically reasonable range of parameters.
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INTRODUCTION
As the sophistication and scope of experimental methods in
molecular and cell biology continues to grow, there is an
increased need to use this data to synthesize a coherent
understanding at the systems level. Experimental methods are
successful if they isolate and study a particular feature of a
complex system in isolation. The need to understand function of
complex systems “as a whole" by combining partial insights is a
goal of systems biology1. One of the principal demonstrations of
the fact that such a unified insight has been achieved is to
construct a mathematical model.
In this paper, we discuss dynamical models that are built to

represent the behavior of networks. Networks are often con-
structed from experimental data by postulating pairwise interac-
tions of chemical species, e.g genes, their products, proteins and
other molecules. The methodologies for discovery of such
connections have varied levels of reliability, but none of them
can measure the interaction between multiple effectors, or the
range of behaviors of the network under varying conditions.
Mathematical models are asked to integrate the local pairwise
interactions and make predictions about the network behavior in
conditions that are not directly experimentally accessible2.
The principal challenge for model construction and validation is

parameterization. The network structure constrains potential
dynamics but does not uniquely determine it. In fact, the behavior
of the network in different conditions, perhaps embedded in
different individual cells, may be different precisely because the
underlying kinetic parameters have changed. While there are
several methods to determine the structure of the network, it is
very difficult to measure parameters, especially because they may
depend on precise experimental conditions. Because of this, even
comparing a model prediction to an experiment is challenging; if
the parameters for the experiment do not agree with the
parameters of the model when simulated, a correct model may
give a disappointing fit. On the other hand, having a good fit does

not guarantee that the model is generalizable beyond the
conditions that have been fit. Therefore, validation of a model
should require that the description of the behavior of the model is
provided not only for particular set of parameters, or for a
particular initial condition, but includes a broad range of potential
dynamics across parameters and initial conditions.
In this paper we compare two different approaches to

describing a range of potential dynamics of a network. RACIPE3

relies on random but judicious sampling of parameters and initial
conditions with an ODE (Ordinary Differential Equation) based
simulation that describes the interactions in the form of Hill
functions, while DSGRN4–7 uses combinatorial computations to
analyze all multi-level Boolean models compatible with the
network dynamics. DSGRN embeds8 discrete Boolean models into
a continuous framework of switching systems9–16, which then
permits the use of ideas from bifurcation theory to understand
changes in dynamics as a function of parameters. This close
relationship between Boolean and ODE descriptions leads to
rigorous mathematical results that link dynamics described by
DSGRN and that of smooth ODE systems with sufficiently steep
nonlinearities17,18. There are also explicit results for the size of
allowed perturbations of equilibria predicted by DSGRN to systems
with ramp nonlinearities19. DSGRN has been used successfully to
describe complex dynamics of networks ranging from cell cycle20

to EMT network21. RACIPE has been used to describe the dynamics
of networks of varying sizes and biological contexts to understand
the role of network topology in leading to various emergent
phenotypes22–24. However, the role of parameters in the emer-
gence of various phenotypes remains to be understood.
There is a long tradition of comparing the dynamics of

continuous-time ODE models and discrete time Boolean models
or more general multilevel discrete models. The pioneering
study25 showed remarkable robustness of the segment polarity
gene network in Drosophila melanogaster modelled by a large
system of ODEs. This was followed by a study of the Boolean
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model26 of the same system that was also able to reproduce both
WT and several mutant expression patterns, supporting the notion
that the source of robustness is in network topology. A more
recent effort uses the HillCubes approach27 to approximate
Boolean functions by ODE models. The resulting software Odefy28

takes a Boolean model and produces a corresponding ODE model.
These models show good correspondence on the T-cell receptor
signaling model27; the same construction was used in ref. 29 to
observe correspondence in dynamics between discrete and
continuous models of the human cell cycle.
In this paper we compare RACIPE and DSGRN approaches to

study dynamics of gene regulatory networks (GRNs). In Section
“Analysing RACIPE data to identify parameter attractor-repertoire
bound-aries” we use RACIPE to generate parameter samples and
simulate dynamics of three two-node networks: Toggle Switch (TS),
Double Activation (DA) and Negative Feedback loop (NF). We
attempt to find parameters of the network that would predict
behaviors like monostability vs. bistability. We do not observe any
clear associations between individual parameters and GRN
dynamic behavior. We hypothesise that the reason is that such
behaviors depend on combinations of parameters, rather than on a
single parameter. Since a combinatorial explosion prevents us from
testing predictions based on all possible combinations of several
parameters, we turn to DSGRN methodology. There is a direct
translation between RACIPE parameters and DSGRN parameters,
with the exception of the Hill coefficient n that is a parameter in
RACIPE, but is missing in the DSGRN switching ODE model since
this model corresponds to the RACIPE model in the limit n→∞.
However, DSGRN provides explicit decomposition of the parameter
space (Fig. 4) into domains that have invariant dynamical behavior,
which is directly computable without use of ODE simulations.
We are therefore able to compare RACIPE simulations to DSGRN

predictions by locating the RACIPE parameter within a particular
DSGRN parameter domain. We find a very tight fit for when the
RACIPE samples Hill coefficients from range 10–100. Perhaps
surprisingly, we also find that this fit does not deteriorate much
when we sample Hill coefficients from range 1–10. Since this lower
range is biologically more plausible, this suggests that the DSGRN
parameter domain decomposition predicts dynamics for the
biological range of Hill coefficients n.
We then test the close match between RACIPE simulations and

DSGRN predictions on a three-node network Toggle Triad (TT). We
find the same above mentioned good agreement.
Finally, we test an ensemble agreement between these two

approaches. To do this we ask whether the frequency of
dynamical behavior pooled across all parameter samples of
RACIPE matches the frequency of dynamical behavior pooled
across all parameter nodes of DSGRN. We find disagreement that
persists for all values of n. We are able to fully explain this
disagreement as caused by a non-uniform sampling of individual
DSGRN parameter domains by RACIPE. In particular, for the
examined two-node networks, the DSGRN parameter node that
predicts bistability is sampled much more often than the nodes
that predict monostability. When corrected for the nonuniform
sampling, the agreement between DSGRN predictions and RACIPE
simulations is restored.
By integrating the ideas from RACIPE and DSGRN, our results

provide a way to deepen our understanding of the boundaries in
the parameter space between distinct dynamical behaviors.

RESULTS
Analysing RACIPE data to identify parameter attractor-
repertoire boundaries
Using RACIPE, a parameter-agnostic approach that estimates the
steady states of gene regulatory networks over a large parameter
space, we aim to understand the regions of parameters that lead

to a particular dynamical behavior of the network. Each parameter
set specifies a system of differential equations whose dynamics in
the attractor-repertoire space exhibits a long term behavior like
steady states, periodic oscillations and multistability. In order for
these behaviors to be observable, they must be stable, i.e., they
must attract nearby initial conditions. We will use the word
“attractor-repertoire" to denote different types of stable behavior
of a system. Therefore the goal is to describe for each network a
collection of attainable attractor-repertoires together with descrip-
tion of parameter domains that parameterize systems with that
attractor-repertoire (See Methods).
We start by analysing a simple gene regulatory network

called the Toggle Switch (TS): a network with two nodes and
two edges, or equivalently “links”, such that each node inhibits
the production of the other (Fig. 1a). In the context of GRNs,
nodes can be transcription factors or RNA molecules. We
simulated TS using RACIPE, obtaining a map between para-
meter sets and the corresponding steady states (Fig. 1b). We
discretized these steady-state values for ease of analysis, so that
each steady state belongs to one of the four categories: high-
high (11), high-low (10), low-high (01) and low-low (00). High
and low levels of RACIPE steady states are defined based on
whether the steady state level is higher (1) or lower (0) than the
ensemble mean, where the ensemble is identified by the
collection of parameter sets sampled by RACIPE. Simulating TS
using RACIPE gives us two types of behavioral information: a)
the number of steady states emergent from each parameter set
(Fig. 1c, b) the category of the steady state(s) given by each
parameter set (Fig. 1d). The dominant dynamical behavior is
monostability, with one node at a high level of expression and
the other node low3.
We then sought to understand the contribution of individual

parameters in distinguishing between the categories of a given
emergent behaviour. RACIPE samples five types of parameters
(Fig. 2a). For TS, which has two nodes and two edges, the
parameters are labelled as follows

● Node level parameters

– PA (PB): Production Rate of node A (or B)
– γA (γB): Degradation Rate of node A (or B)

● Edge level parameters

– iBA: Inhibition fold change of the effect A on B
– aBA: activation fold change of the effect A on B
– nBA: Hill coefficient of the effect A on B
– θBA: Threshold for the effect of A on B.

Analogous effects of B on A will have subscripts AB.

The details of the ODE system are given in Methods section. We
first checked if the distributions of any of the individual
parameters can delineate monostability from multistability. We
find that while there are no clear delineators, the bistable
parameters show a lower frequency of low Hill coefficient, low
production rate, and high degradation rate (Fig. 2b, Supplemen-
tary Fig. 1).
Given the non-linearity of the system, it is understandable

that no individual parameter can separate the monostable
parameter sets from bistable parameter sets, implying that
some combination of parameters together should be able to
make the distinction between the two classes of parameter sets.
To test this hypothesis, we then performed PCA separately on
monostable and bistable parameter sets. In both cases, the first
four axes of PCA together could explain > 95% variance (Fig. 2c,
legend). At first glance, the primary contributors to the variance
(highest coefficient in PCA axes) for both monostable and
bistable parameter sets are the two production rates and two
thresholds corresponding to the two edges in TS. Furthermore,
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in PC1 of the monostable parameter sets, the coefficients of the
production rates have opposite signs, while the same coeffi-
cients in bistable parameter sets have the same sign. In PC2, the
reverse pattern is observed, i.e., same sign in monostable
parameter sets and opposite sign in bistable parameter sets.
The threshold parameters had a stronger presence in PC3 and

PC4 in both monostable and bistable parameter sets. However,
while threshold parameters are exclusively limited to PC3 and
PC4 in monostable parameter sets, they also contributed to PC1
and PC2 in bistable parameter sets. This indicates higher
complexity of the description of the parameter set that exhibits
bistability.

Fig. 2 Identifying attractor-repertoire boundaries in RACIPE parameter space. a Depiction of attractor-repertoire space boundaries in
RACIPE. The parameter space is defined by the ranges of the five types of parameters. Each sampled parameter set can be monostable
(unicolored ovals) or multistable (multicolored ovals). The attractor-repertoire boundary (green closed curve) separates monostable parameter
sets from multistable parameter sets. b Distribution of Production rate of A (left) and Hill coefficient of A→ B link (right) for monostable and
bistable parameter sets in toggle switch. c Barplot depicting the Principal component coefficients 1-4 for the four top parameters obtained
from PCA of monostable (left) and bistable (right) parameter sets for toggle switch.

Fig. 1 Output of RACIPE for Toggle Switch (TS) network. a TS network structure. b Heatmap representing all solutions from all parameter
sets obtained via RACIPE. Red color indicates high, white indicates moderate and blue indicates lower expression levels of the node variable
labelled to the left. c Frequency of monostable (x-axis label 1) and bistable (x-axis label 2) parameter sets sampled by RACIPE. d Frequency
distribution of individual attractor-repertoires obtained from RACIPE for TS.
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To better understand the patterns observed in PCA, we moved
on to ask if the production rate and threshold value can delineate
bistability from monostability. We generated a density plot of
monostable and bistable parameters along the axes of both
production rates, to identify the ranges of the production rates
that are observed most frequently in mono and bistable cases.
These plots indicated that while monostable parameter sets show
higher incidence when two production rates are very different i.e.
Prod_of_A≫ Prod_of_B and Prod_of_B≫ Prod_of_A, or when
both production rates are low, in bistable parameter sets we see a
higher incidence of approximately equal production rates
Prod_of_A ≈ Prod_of_B (Fig. 3a). Furthermore, the production
rates in bistable parameter sets had a higher chance of being
above the median production rate (50) sampled by RACIPE. A
similar visualization involving threshold parameters revealed that
both threshold values tend to be lower than median and similar to
each other in bistable parameter sets (Fig. 3b). No clear trend was
observed for threshold in monostable parameter sets, suggesting
that threshold values being smaller is necessary but not sufficient
for bistability.
These patterns can be interpreted as follows: high production

rate of A and low threshold from A to B implies a higher chance of
the inhibition from A to B being active; similarly, a high production
rate of B and low threshold from B to A implies a higher chance of
the inhibition from B to A being active. Hence, we hypothesized
that occurrence of bistability in TS requires both links to be
simultaneously active. On the other hand, the emergence of
monostability is associated with asymmetry of the production
rates, where one of them is higher than the appropriate threshold,
while the other one is lower than its threshold. Therefore we
hypothesize that monostability occurs when one of the links is
significantly stronger than the other, while bistability occurs when
both links have similar and high strength.

To test this hypothesis, we adapted a measure of link strength30

to explain the emergence of certain phenotypes in GRNs. The link
strength takes the following non-dimensional form:

LSAToB ¼ PA � nBA
γA � θBA � iBA

(1)

We generated a scatter plot of the log value of the link
strengths on either axis (Fig. 3c). Interestingly, using a logarithm
transformation on these two parameters converts the set of
sampled parameters into a circular cloud where parameters that
support bistability form a small section of the cloud. Note that this
section is in the region that corresponds to both links being strong
and similar in value, which is consistent with our hypothesis that
both links should have similar and high strength for bistability.
We further tried to delineate different attractor-repertoires (10,

01, 01-10 etc) of mono- and bistability using link strength S2. Low
link strength (<3) for both links leads to 00 attractor-repertoire. For
a majority of the parameter sets displaying attractor-repertoire 10,
link strength of A to B is low. Similarly for attractor-repertoire 01,
link strength of B to A is low. However, we find it hard to
distinguish between 11 and 01-10 attractor-repertoires using link
strength analysis. Furthermore, for attractor-repertoires 10 and 01,
there exist cases with high link strength for both links.
While link strength can delineate the monostable and bistable

parameter sets better than any individual/combination of para-
meters tried so far, the boundary between bistability and
monostability and that between individual attractor-repertoires
is not completely sharp. This leads to uncertainty in prediction of
multistability of a parameter for TS. Therefore we tried to clarify
and sharpen this boundary through DSGRN.

Fig. 3 Link strength delineates monostable and bistable parameter sets. a Density distribution of the parameters Production rate of A and
B for monostable (panel label - 1) and bistable (panel label - 2). The color scale varies from purple (low) to green (medium) to yellow (high).
Higher density indicates higher number of parameters in the corresponding region. b Same as a, but for Thresholds for A→ B and B→ A links.
c Scatterplot between the link strength values demonstrating the separation of parameter domains by link strength.
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DSGRN inequalities define clear boundaries separating
attractor-repertoires
DSGRN (Dynamic Signatures Generated by Regulatory Networks)
is a modeling platform that assigns to a GRN a switching ODE
system with undetermined parameters4–7. The parameters include
a threshold value, as well as low and high production rates
assigned to each edge and a decay rate assigned to each node. At
each node, if the combination of high and low values transmitted
along the incoming edges is higher than a particular threshold of
an outgoing edge, this edge is activated. In the case where this is
an activating edge, a high production rate is triggered; when there
is a repressing edge, a low production rate is triggered. Using
these parameters, DSGRN provides an explicit finite decomposi-
tion of the parameter space into parameter domains, such that for
all parameters in each domain the state transition graph (STG) (see
Methods section for detailed description), the attractor-repertoire
is invariant.
The parameters of the switching ODEs that are used by DSGRN

can be related to the parameters used by RACIPE formalism
(Methods “Translating Shifted Hill functions to DSGRN”). We
therefore asked if DSGRN inequalities can be used to delineate
parameter spaces in RACIPE and predict the outcome of
the dynamics at parameters sampled by RACIPE. As a first step,
we carefully compared the structure of the ODE models used in
RACIPE and DSGRN (see Methods).
There are two major differences between RACIPE and DSGRN.

First, while RACIPE uses model equations with a finite Hill
coefficient (sampled by default between 1 and 6), DSGRN uses
piece-wise constant nonlinearities that can be obtained as a limit
of Hill functions where the Hill coefficient n→∞. Second, in
DSGRN the production rate for a node is calculated independently
for each incoming edge, followed by combining these production
rates together (taking a product) to get the net production rate of
the node. In RACIPE, each node is assumed to have a basal
production rate which gets multiplied by a fold change parameter

for each incoming edge. Assuming that each incoming edge has
an equal contribution to the basal production rate, we establish a
one-to-one correspondence between the parameters of RACIPE
and DSGRN, with the exception of the Hill coefficient. With this
translation between these two approaches, we find that the
link strength formalism described previously has a similar form as
the inequalities obtained from DSGRN that define the
parameter nodes.
DSGRN does not predict what attractor-repertoire will be

attained for a given initial condition or specific real-valued
parameter set. However, an explicit switching ODE system can
be constructed that does and faithfully reflects the predictions of
DSGRN, see Methods “Translating Shifted Hill functions to DSGRN”.
This framework allows a direct comparison between a RACIPE
simulation and the corresponding DSGRN prediction for a set of
initial conditions and parameters for a given GRN. “Switching
system” and “DSGRN” may be used interchangeably in what
follows.
Using this correspondence we imposed the inequalities

calculated in DSGRN onto RACIPE parameter sets, and obtained
a attractor-repertoire distribution for each parameter domain,
where a parameter domain is defined by a unique combination of
inequalities (Fig. 4). Because DSGRN corresponds to a RACIPE
model where the Hill coefficient n approaches infinity, i.e. for very
steep Hill nonlinearities, we expect that as n gets larger, the
correspondence between DSGRN prediction and RACIPE simlua-
tion will improve. However, this argument does not provide any
information on the accuracy of this prediction for relatively small
values of n. Somewhat surprisingly, most of the monostable
parameter nodes show nearly identical behavior between RACIPE
simulation and DSGRN prediction, even at relatively small values
of Hill coefficient n ∈ {1,…,10}. However, at low values of n the
central parameter node (parameter node 4, Fig. 4) shows larger
discrepancies. For these sets of parameters DSGRN predicts
bistability between steady states 01− 10, i.e., any parameter set
obeying the inequalities will exhibit bistability with the states

Fig. 4 Depiction of the parameter domains/nodes calculated by the DSGRN inequalities for TS41. Each box represents a parameter node.
The inequalities that define the parameter node are given in the lower part of the corresponding box. At the top of each box, the integer
provides a reference to each parameter node, followed by the description of the attractor-repertoire at each parameter sample satisfying the
inequalities, as predicted by DSGRN.
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being 10 and 01. RACIPE on the other hand shows a more
heterogeneous attractor-repertoire distribution, with predomi-
nant attractor-repertoire still being bistable 01− 10, but also
registering monostable states 10 and 01 (Fig. 5 center panel,
parameter node 4).
To check whether the increase in the Hill coefficient will bring the

RACIPE simulations and DSGRN predictions closer together, we
modified the RACIPE parameters by sampling Hill coefficient values
uniformly from various ranges (1− 10, 10− 50, 50− 100, 100− 1000)
and compared the parameter node-wise attractor-repertoire frequen-
cies with those of DSGRN (Fig. 5). While the Hill coefficient range of
50− 100 shows near identical results as that of DSGRN, even range of
10− 50 is similar to DSGRN within reasonable error (<5%). Further
probing of parameter node 4 in RACIPE revealed that, having both
Hill coefficients greater than 5 is enough to get the frequency of
bistable attractor-repertoire (10-01) to be greater than 90%
(Supplementary Fig. 3).
We observed similar trends for the other two node network

motifs: Double Activation (DA) and Negative Feedback loop (NF),
(see Supplementary Fig. 4, 5, and 7). For both of these networks,
RACIPE shows similar results as DSGRN at moderately high Hill
coefficient values (>10). Therefore, DSGRN inequalities can be
used to clearly delineate RACIPE parameter space into different
attractor-repertoires. Furthermore, DA network shows bistability
for parameter node 4 (FP(00-11)), which for some parameter sets is
lost in RACIPE at lower values of Hill coefficient, but s recovered
with increase in Hill coefficient values.
NF shows particularly interesting trends. The “frustration" in NF

network (i.e., while A activates B, B inhibits A, causing the state of
the system to oscillate31) leads to the prediction of cycles in
DSGRN at parameter node 4. For the corresponding parameters,
RACIPE at lower values of Hill coefficients (<10) predicts
predominant monostability. We wanted to check if any of the

parameters have been mislabelled as monostable while they are
actually oscillatory, since RACIPE cannot identify oscillations. First,
we confirmed whether the output of RACIPE is actually a steady
state by imposing the condition that the derivative of all nodes
should be small for steady states (see Methods section) We find
that for all parameters predicted by DSGRN to be cyclic, the steady
state obtained from RACIPE satisfied the derivative condition with
a tolerance value of 10−4. Interestingly, as we increased the range
of Hill coefficient to 10− 50, RACIPE predicts all of these
parameter sets to have ten steady states, which is the maximum
number of steady states RACIPE can detect for a given parameter
set. None of these states have a low derivative. Because DSGRN
predicts cycles for these parameter sets, we categorised the
parameter sets that show ten states in RACIPE, with none of them
being a steady state, as cyclic.
The analysis so far suggests a transition from monostability to

multistability (cyclic behavior for NF) in some RACIPE parameters
as the Hill coefficient increases, a frequently observed pattern in
GRNs32. This observation implies that the parameter sets that
showed monostability at low Hill coefficients can acquire a new
behavior as the Hill coefficient increases. These new behaviors will
be more or less detectable numerically depending on the relative
size of their basins of attraction. It is desirable to have a prediction
not only of attractor-repertoire type and number, but also the
relative sizes of their basins of attraction.
An analytical computation of the volume of the basins of the

attraction in bounded region of attractor-repertoire space even for
a simple system like TS is intractable due to nonlinearities.
However, the boundaries of the basins of attraction for the TS
switching system can be analytically computed (Methods section
“Basin of attraction boundaries for bistable Toggle Switch”). Then
any initial condition can be analytically associated to its long-term
attractor-repertoire by its relation to the basin boundaries. The

Fig. 5 Attractor-repertoire distribution of the switching system against different ranges of Hill coefficients in RACIPE for TS. The
switching system is represented by yellow colored bars. Default RACIPE conditions are represented by the dark blue colored bars. The range
of Hill coefficients in each case is reported in the color-legend.
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fraction of sampled initial conditions that go to a given attractor-
repertoire is then an estimate of the relative basin size for that
attractor-repertoire. There is no similar analytic boundary calcula-
tion for RACIPE, but the relative basin size can be numerically
approximated by taking the fraction of initial conditions that
converge to a given attractor-repertoire. We use these approxima-
tions to compare RACIPE basin sizes with various Hill coefficients
to the limiting behavior in the switching system.
For comparison purposes, we defined a scalar “basin strength”

to be the product of the fraction of initial conditions that converge
to each detected attractor-repertoire. For monostability, this
fraction can be at most 1 and for bistability it is maximally 0.25
(0.5*0.5 for equal basin sizes). We then calculated the difference
between the RACIPE basin strength and DSGRN basin strength.
The difference can range between −1 and 1, such that −1 is
attained for parameter sets where RACIPE predicts monostability
(basin strength 1) while DSGRN predicts an uneven bistability (i.e.,
low value of basin strength). Since the analysis is carried out for
parameter sets belonging to parameter node 4, the basin strength
for DSGRN will always be less than 0.25, making the upper limit for
the difference 0.25.
In Fig, 6, we plot this difference for a collection of 10000

randomly chosen parameters for both high and low Hill
coefficients. We observe that for a given parameter set, as the
RACIPE Hill coefficients increase, the basin strength of RACIPE
simulations get closer to that of DSGRN basin strength (left and
middle panels). This means that DSGRN boundary computations
can be used to predict the relative sizes of basins of attraction.
In larger networks for which analytical boundary computations

in DSGRN are infeasible, an estimation of basin of attraction size
for the switching system can be made analogously to RACIPE by
numerically computing the fraction of initial conditions that
converge to each attractor-repertoire. In Fig. 6 (right), we compare
the analytical assignment of attractor-repertoire via basin bound-
ary to this numerical approximation. We see that such a switching
system approximation identifies the correct attractor-repertoire in
about 95% of cases, making the contribution of the numerical
simulations to the error in prediction about 5%.

Similarity between RACIPE and DSGRN holds for Toggle Triad
So far, we have found that in all three two-node networks that we
studied, there is close correspondence between RACIPE and
DSGRN. This suggests that DSGRN inequalities are able to describe
how the dynamical behavior of the RACIPE model depends on
parameters and delineate parameter regions of different attractor-
repertoires. We now examine if these results hold for larger
networks. To do this we chose Toggle Triad (TT), a three node
network that can be viewed as a coupling of three toggle switches
with two embedded negative feedback loops (see Fig. 7). The
most interesting feature of TT is that it can exhibit tristability
(High-Low-Low, Low-High-Low, Low-Low-High).
Since each node in a toggle triad has two inputs, the number of

DSGRN parameter nodes is much higher than that for the two

node networks. Therefore, instead of focusing on a particular
parameter node, we decided to study the distribution of attractor-
repertoires across RACIPE parameters sample sets. In Fig. 8a, we
compare attractor-repertoire predictions at each parameter given
by RACIPE simulations to the predictions given by switching
system simulations (equivalent to predictions by DSGRN). As with
the two node networks, the similarity between RACIPE and DSGRN
predictions increases with increasing Hill coefficient. We further
probed the similarity between the predictions in terms of the
frequency of attractor repertoire for a moving window of Hill
coefficient ranges (Supplementary Fig. 6). As a control case, we
first looked at the TS network, where we previously observed that
Hill coefficients of 5 could lead to a similar attractor-repertoire
distribution as that of DSGRN (i.e., most parameter sets
corresponding to parameter node 4 converge to 10-01 attractor-
repertoire) (Fig. 5). The Jensen-Shannon Divergence (JSD)33

between the attractor repertoire frequency distributions saturates
after a Hill coefficient of 7, indicating maximum similarity
befigtween DSGRN and RACIPE (Supplementary Fig. 6a). For TT,
this saturation is observed beyond a Hill coefficient of 20
(Supplementary Fig. 6b). Furthermore, the absolute JSD values
are significantly higher than that observed for the toggle switch.
We repeated similar analysis for larger networks having four
nodes. The toggle square is a cyclic chain of four toggle switches
connected end-to-end (i.e, A to B, B to C, C to D and D to A),
thereby having eight edges. The GRHL2 network is a biological
network22 with seven edges. Both these networks showed a
higher JSD value, which is clearly visible at the limit of high Hill
coefficients (Supplementary Fig. 6c, d). The formalisms of DSGRN
and RACIPE are directly related as shown before (Methods Section
“Translating Shifted Hill functions to DSGRN”), and thus JSD must
converge to zero in the limit of large Hill coefficient. Hence, we
attribute this increase in JSD to the accumulation of numerical
errors in the simulation, caused by the use of Euler method of
integration and other factors. A numerically accurate implementa-
tion of RACIPE should hence improve the similarity between the
distributions of attractor-repertoire distribution as the relation
between the two formalisms suggests.

Fig. 6 Switching system and RACIPE at high Hill coefficient show similar basin strengths as DSGRN.

A

BC

Fig. 7 Toggle Triad (TT) network structure.
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Taking a closer look at the attractor repertoires predicted by
RACIPE and DSGRN for Toggle Triad, we see a higher frequency of
tristable attractor-repertoire 002-020-200 in DSGRN and in RACIPE
with high Hill coefficients compared to RACIPE with lower Hill
coefficients. Among the parameter sets that are tristable in
DSGRN, greater than 30% of them show tristability at low Hill
coefficients in RACIPE. Of the remaining 70%, more than half show
bistability equally distributed between 002-020, 002-200 and 020-
200, which are all different subsets of the tristable attractor-
repertoire, see Fig. 8b. To eliminate the possibility that at low Hill
coefficients, the tristability is not detected due to a smaller
number of initial conditions, we simulated these networks for an
increased number of initial conditions. We found that for 1000 and
10000 initial conditions, we do not observe the missing steady
states for any initial condition. The difference in basin strengths
also vanishes between the switching system and RACIPE (Fig. 8c),
suggesting that these parameter sets that showed bistability at
low Hill coefficient gain another steady state as n increases.

Contribution of the parameter sampling in RACIPE to the
differences in RACIPE and DSGRN
Both RACIPE and DSGRN are capable of predicting the ensemble
level behavior of a GRN. Given the similarities between RACIPE
and DSGRN formalisms at high Hill coefficient, we compared the
ensemble distributions, i.e. frequency distribution of individual
attractor-repertoires obtained across all sampled parameter sets
for RACIPE and all parameter nodes for DSGRN for the 2-node
networks TS, DA and NF. Unlike the comparisons across individual
parameter nodes, the ensemble frequency distribution of RACIPE
predicted a higher frequency for the 01− 10 attractor-repertoire
as compared to DSGRN (Fig. 9a). As the differences in the model
formalism should diminish at high Hill coefficient values, we
looked at the distribution of parameters sampled by RACIPE with

respect to the DSGRN parameter domains. Interestingly, we find
that RACIPE’s sampling method is highly biased towards the
parameter node 4, which explains the prediction of high bistability
from RACIPE at high Hill coefficient Fig. 9b). Importantly, while
DSGRN parameter domains decompose the parameter space into
disjoint number of parameter domains (for TS, DA and NF there
are 9 domains), this method is agnostic on where the biologically
relevant parameters lie. If we assume that the RACIPE methodol-
ogy samples biologically relevant parameters, then the non-
uniform distribution of samples may be taken as a hypothesis
which of the parameter domains are more important. The results
here suggest, that even though only 1 out of 9 DSGRN parameter
domains supports bistability, this domain is sampled by more than
50% of RACIPE parameters and hence it is more important than
the ratio 1/9 would suggest. After normalizing the attractor-
repertoire frequencies by the number of RACIPE parameters in
each parameter node, the ensemble frequency distribution does
match DSGRN predictions (Fig. 9c).
With the default range of Hill coefficients 1− 6, RACIPE’s ensemble

distribution is much closer to that of DSGRN (Supplementary Fig. 7).
We have seen before that RACIPE samples the bistable/cyclic
parameter sets (parameter node 4) with higher frequency relative
to the other parameter nodes of DSGRN. However, at low Hill
coefficients, this bistability/cyclicity deteriorates to monostability for a
significant fraction of parameter sets belonging to parameter node 4.
This deterioration serves to compensate for the biased sampling
RACIPE conducts, thereby making the ensemble attractor-repertoire
distribution of RACIPE at Low Hill coefficient similar to the
corresponding DSGRN distribution.

DISCUSSION
Modeling gene regulatory networks is qualitatively different than
modeling physical systems like those in celestial mechanics and

Fig. 8 Comparison of RACIPE and DSGRN for Toggle Triad. a Bar graph depicting the change in mean frequency of attractor-repertoire
occurrence for RACIPE with Hill coefficient between 1 and 10 (purple), 50 and 100 (green) and switching system (yellow). The error bars
represent mean ± standard deviation. b attractor-repertoire frequency distribution for parameter sets that exhibit tristability in switching
system in RACIPE model with n∈ [0, 10]. c The difference in basin strengths for switching system and RACIPE with low Hill coefficients (right)
and RACIPE with high Hill coefficients (left).
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ecology34. While the behavior of the latter is described by
equations stemming from physical laws and whose parameters
are well-defined measurable physical quantities, the models of
GRNs describe dynamics on a spatial scale where the first principle
models do not apply. For this reason, neither the functional form is
fixed, nor the parameters are known. The parameter measurement
for such descriptive models is challenging since the parameter is
often only defined in the context of the model. Given these
challenges, it is imperative to devise modeling approaches that
deal with parameter uncertainty and describe the dynamics of the
GRN in a way that describes the diversity of GRN dynamics across
parameters.
In this paper, we compare two such complementary

approaches. On one hand, RACIPE3 judiciously samples para-
meters for a reasonable Hill function model of GRN and uses this
ensemble as a description of network dynamics. On the other
hand, the DSGRN4 description of the parameter space using all
collections of monotone Boolean functions compatible with the
network dynamics can be related to switching ODE models and
allows precise descriptions of parameter regions with given
dynamics by explicit inequalities. Each of these approaches has its
limitations. Sampling parameters in high dimensional parameter
spaces may miss some dynamics and RACIPE does not come with
a guarantee of completeness of represented dynamics in the set
of samples. On the other hand, DSGRN can be directly linked only
to models with very high Hill coefficient n→∞, which are not
biologically realistic. However, DSGRN inequalities do give a
detailed functional/phenotypic description of the parameter
space, which is lacking in RACIPE. For a given GRN, DSGRN is
able to clearly separate the boundaries of the parameter domains,
where each domain defines a unique phenotype (mono/
bistability, nature of the steady states obtained) emergent from
the GRN. Hence, measuring the applicability of such descriptions
to RACIPE could lead to an efficient mapping of the phenotypes to
the corresponding parameter regimes of biological systems
governed by GRNs.
We compared these methods to see if we can combine their

advantages and mitigate their disadvantages. We established a
translation between RACIPE and DSGRN models, allowing us to
categorize RACIPE sampled parameter sets into DSGRN parameter
domains. As expected, we find very good agreement between the
phenotypes obtained from DSGRN and RACIPE with high Hill
coefficients. Somewhat surprisingly, we also find a very good
agreement for low ranges of n ∈ [1, 6], specifically in predicting
monostability. The bistable parameter nodes from DSGRN always
exhibited a mix of mono- and bistability in RACIPE. We further
found that RACIPE’s sampling is strongly biased towards multi-
stable/oscillatory parameter domains of DSGRN. Despite the

differences, we found a striking similarity between the default
RACIPE phenotypic distribution and that obtained from DSGRN.
This agreement suggests that one can use explicit combinations
of parameters supplied by DSGRN to predict emergent pheno-
types for ODE models with realistic Hill coefficients. While
numerical differences exist between these two methods at the
limit of high Hill coefficients, we predict that these differences are
a product of numerically inaccurate implementation of the RACIPE
formalism. Inspired by this, we are working towards a better
implementation of RACIPE without the loss of computational
efficiency provided by the current formalism, to be reported and
analyzed in future works.
In this paper we compare RACIPE and DSGRN for relatively small

networks, both because parameter sampling of large networks
likely does not cover all dynamic behavior, and the number of
DSGRN parameter domains grows rapidly. However, recent
theoretical work18 shows that for a network of any size, the
stable equilibria in DSGRN examined in this paper perturb to
stable equilibria of models with sufficiently steep continuous
nonlinearities, which include Hill models18. Furthermore, for
particular perturbations of DSGRN to ramp nonlinearities (i.e.
constant functions joined by linear interpolation) one can
explicitly estimate how shallow the nonlinearity can be while
retaining DSGRN equilibria. Similar results were noted using the
HillCubes approximation27 of Boolean functions encoded in the
software Odefy28.
An important message from this study is the contribution each

of the methods can make to enhance the capability of the other.
Switching systems, being an approximation of DSGRN, can identify
the possibility of multistability for parameter sets with higher
accuracy than RACIPE, along with the nature of the states/
phenotypes. The approximation of DSGRN output by switching
systems is especially useful for networks of higher complexity,
where the computation of DSGRN parameter nodes can be
computationally expensive.

METHODS
Random Circuit Perturbation (RACIPE)
RACIPE3 is a tool used to simulate continuous dynamics of gene
regulatory networks (GRNs). For a given GRN, RACIPE constructs a
set of ODEs representing the interactions in the network. For a
node k, let Ak and Ik denote the set of all activating and inhibiting
input nodes to k respectively and xk denote the expression of

Fig. 9 RACIPE shows uneven sampling of DSGRN parameter nodes. a Comparision of attractor-repertoire frequency distributions for RACIPE
with high Hill coefficient (green) and DSGRN (red). b Distribution of DSGRN parameter nodes sampled by RACIPE. c Same as a, but RACIPE
attractor-repertoire frequencies are normalized by number of samples from the corresponding DSGRN parameter domains.
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node k. The dynamics of node k is given by the ODE

dxk
dt

¼ Pk
Y
j2Ak

Hs xj; θkj; nkj; akj
� �

akj

Y
j2Ik

Hs xj ; θkj; nkj; ikj
� �� γkxk (2)

where for node k, θkj is the threshold value for the edge from j to k,
Pk is the production rate, γk is the degradation rate, nkj is the Hill
coefficient, ikj < 1 and akj > 1 are the fold changes for the inhibitory
and activation edges, respectively. The function Hs is called the
shifted Hill function, given by

Hs x; T ; n; λð Þ ¼ λþ 1� λð Þ Tn

Tn þ xn
: (3)

RACIPE simulates this set of ODEs by uniformly sampling
parameter sets from a pre-determined range of parameters.
These parameter ranges were estimated from BioNumbers35. For
each parameter set, the ODEs are simulated using the Euler
method for multiple initial conditions. The parameters used for
each set of simulations and the stable states obtained towards
which individual trajectories converge are recorded as an output
of the simulation. We then verify the stability of the outputs via
the following condition:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

k2f1;:::;Ng
dxk
dt

2jx�k
N

s
< 10�4 (4)

where N is the number of nodes in the network.

Processing RACIPE data
For each parameter set sampled by RACIPE, the different initial
conditions generated converge to potentially several steady states.
Each steady state obtained from RACIPE is assigned a weight, equal
to the fraction of initial conditions that converge to the steady state
for the corresponding parameter set. This results in a M × (N+ 2)
table, where N is the number of nodes in the network and M is the
number of steady state-parameter set combinations. Since each
parameter can have more than one steady state, M >=N. The first
column showing the parameter ID, next N columns showing the
expression level of each node of the network and the last column
showing the weight for the corresponding steady state. The node
expression values are converted to weighted z-scores by scaling
them about their means:

zj ¼ xj � xj
σ

(5)

where the steady state expression vector of a node j across all
steady state-parameter combinations is given by by xj, xj is the
weighted mean of the steady state expression of node j, and σ is
the weighted standard deviation of the expression level. The
weighted z-scores are then binarised by assigning a value of 1 for
positive and 0 for negative weighted z-scores respectively. Hence,
each steady state is encoded as a string of zeroes and ones of
length that is the the number of nodes in the network.

DSGRN description
A regulatory network summarizes the activating and repressing
effects of molecular species on each other. A classical way to
model the dynamics associated to a regulatory network is to
introduce an ODE system for the concentrations of the various
molecular species. A common model is called a switching system,
in which each regulation event is regarded as a discontinuous and
instantaneous switch when a concentration crosses a threshold.
These systems are an approximation of the ODE model with
graded responses but admit a rather more comprehensive
analysis of its solutions11,13,14,36–38.
All ODE systems are dependent on a collection of parameters. In4,

we showed that switching systems induce a finite decomposition of

parameter space into semi-algebraic regions. Each region represents
a DSGRN parameter that contains all the information needed to
construct a state transition graph (STG) that captures a coarse
description of the dynamics in attractor-repertoire space of the
switching system. This graph is finite, and it is the same for all
parameters in the region represented by the DSGRN parameter. This
means that the analysis of the dynamics of the switching system over
all of the parameter space is computable.
The DSGRN approach collects all of the combinatorial para-

meters into a graph and computes the STG for each on4 A
condensed version of the STG called a Morse graph is a summary
of the global structure of the dynamics for each combinatorial
parameter. A Morse node of the Morse graph is a node
representing a strongly connected path component or recurrent
component of the STG, and it can be annotated with summary
information about the component. We now describe these
concepts in greater detail.
A regulatory network RN= (V, E) is a graph with network nodes

V= {1, 2,…, n} and signed, directed edges E⊂ V × V × {→ ,⊣}. For
i, j∈ V, we will use the notation (i, j)∈ E or i⊸ j to denote a directed
edge from i to j of either sign; i→ j will denote an activation or
positive interaction, and i⊣ j will denote a repression or negative
interaction.
We define the targets of a node i as T(i)≔ {j∣(i, j)∈ E} and the

sources of a node i as S(i)≔ {j∣(j, i)∈ E}.
A switching system takes the form

_xi ¼ �γixi þ Λiðσ ±
i1 ðx1Þ; ¼ ; σ ±

in ðxnÞÞ (6)

where each argument of Λi is either an increasing or decreasing
step function, σ+ and σ− respectively, defined by

σþ
ij ðxjÞ ¼

Uij if xj>θij;

Lij if xj<θij;

�
σ�
ij ðxjÞ ¼

Uij if xj<θij;

Lij if xj>θij;

�
(7)

where 0 < Lij < Uij represent lower and upper activation (repression)
levels of gene i by gene j and θij is the threshold for the regulatory
activity of gene i induced by gene j. Note that σþ

ij mediates an
up-regulation of i by j, while σ�

ij mediates a down-regulation.
We assume that all thresholds θij are distinct, which is a generic
assumption. The functions Λi(y1,…, yn), i= 1,…, n are of the form

Λiðy1; ¼ ; ynÞ :¼
Y
j

ðy j
i1 þ y j

i2 þ ¼ þ y j
ikðjÞÞ; (8)

where each ys occurs exactly once. Such a function is multi-linear
i.e. linear with respect to each yi, and has all coefficients equal to 1.
The collection of non-negative numbers γi, θij, Lij, Uij parame-

terizes the collection of systems (6). Let P be the collection of
regular parameters, i.e. those that satisfy

γiθij ≠Λið�Þ (9)

for all (i, j)∈ E. Since Λi( ⋅ ) has only finite number of values, P is a
generic subset of all non-negative parameters.

State transition graph
The ordinary differential equation (ODE) system (6) admits a
discrete description of attractor-repertoire space that is a directed
graph called the state transition graph. The assumption that
thresholds are distinct implies that each variable xi has ∣T(i)∣
thresholds. The continuous attractor-repertoire space Rn consists
of Πn

i¼1ðjTðiÞj þ 1Þ domains D(α) where α is a multi-index with
αi∈ {0, 1, 2,…, ∣T(i)∣}. Let

X ¼ fα j α ¼ ðα1; ¼ ; αnÞ; αi 2 f0; 1; 2; ¼ ; jTðiÞjgg (10)

be a generalized hypercube consisting of nodes with labels α.
Each node represents a corresponding domain D(α)⊂ Rn.
We construct a state transition graph (STG) on X using the fact that

solutions in each domain D(α) converge toward its associated target
pointTðαÞÞ ¼ Λ1ðαÞ=γ1; ¼ ; ðΛnðαÞ=γnÞð . The STG is a graph
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representation of the asynchronous update of the discrete-valued
function Λ:D(α)→ T(α). This means that the STG is a graph on X with
edges between nodes α, β with ∣α− β∣≤1 assigned in the following
way

● if T(α)∈ D(α) then there is a self-edge α→ α;
● if ∣α− β∣= 1, αi= βi− 1 and the threshold between D(α), D(β)

is θ, then α→ β if Ti(α) > θ; and β→ α if Ti(β) < θ.

Note that we can view the STG as a multivalued map F : XX . The
DSGRN approach4–6,20,39,40 compresses the information about the
dynamics of F by computing the strongly connected path
components of the STG and the reachability conditions between
them. The strongly connected path components are the nodes of
a Morse graph, which is a Hasse diagram of a partial order imposed
by the reachability in the STG. For the purposes of this paper we
will be most concerned with Morse nodes that represent a single
node in the STG (and thus a single domain in the attractor-
repertoire space) where all edges point inwards. This signifies
existence of a stable steady state for the ODE (6) which will be
denoted as FP(β) where β ∈ H determines osition of this steady
state with respect to thresholds in the attractor-repertoire space.
For instance for the toggle switch, which has one thresholds in
each component the space H= {0, 1} × {0, 1} and thus the fixed
points FP can have signatures (00), (01), (10), (11).

Parameter space decomposition
The most important construction is the decomposition of the
regular parameter space P into a finite set of domains, such that
for all parameters p in one of these domains, the STG is the same.
Let RN= (V, E) be a regulatory network and let p 2 P. Then for

every i, every jn ∈ T(i) and every domain D(α) exactly one of the
following inequalities holds

ΛiðαÞ< γiθjn;i or ΛiðαÞ> γiθjn ;i: (11)

This collection of abstract inequalities, together with the threshold
order θj1;i<:::<θjjTðiÞj ;i defined by p defines a region R of parameter
space where every p 2 R induces the same set of inequalities. We
call such a collection of inequalities a DSGRN parameter.
We can organize domains of parameters in the form of a

parameter graph. with a node in a parameter graph (PG), we
complete the construction of PG by assigning edges to pairs of
nodes that correspond to domains that share a codimension-1
boundary in P.
Given RN= (V, E) we represent each DSGRN parameter as a

parameter node in a DSGRN parameter graph PG. Two nodes are
connected by undirected edge if there is a single inequality
change between the corresponding collection of inequalities.
The parameter graph is a product of undirected factor graphs,

PG= ΠiPGi, one associated to each vertex i∈ V. The class of
possible factor graphs is determined by the topology of network
node i and the algebraic expression Λi

4.
Given a node N 2 PG, each p 2 N defines the location of the

target points for each of the domains D(α). Importantly, this
location is independent on choice of p 2 N . Therefore the state
transition graph and Morse graph can be associated to a
parameter node N 2 PG:
While for a precise general definition of the parameter graph we

refer the reader to4,5,39, we will describe here its construction for
the 2-node network examples needed in this paper. For node i
with one input i− 1 and one output i+ 1, the value of Λi is either
Li,i−1 or Ui,i−1. Then there are three choices

γiθiþ1;i < Li;i�1 <Ui;i�1; Li;i�1 < γiθiþ1;i < Ui;i�1; Li;i�1 <Ui;i�1 < γiθiþ1;i

(12)

that form the parameter factor graph PGi. Note that in all the cases
of Toggle Switch, Dual Activation, and Negative Feedback loop

there are two nodes in the network and both nodes have one
input and one output. Therefore the parameter graph is a product
PG= PG1 × PG2 with 9 nodes depicted in Fig. 4. Note that in the
horizontal direction, i.e along the PG1 in the product, the
inequalities (12) with i= 1 are varying, while in the vertical
direction along PG2 the inequalities (12) with i= 2 are changing.

Basin of attraction boundaries for bistable Toggle Switch
In this section we derive analytical expression for stable manifolds
of the saddle point in TS based on a switching ODE system.
We consider switching system model of TS with equal decay

rates. If we need more general formulation, the below argument
can be modified. The model is

_x ¼ �γxx þ
Lxy y > θxy

Uxy y < θxy

�
_y ¼ �γyy þ

Lyx x > θyx

Uyx x < θyx

� (13)

The bistability region in the parameter space satisfies

Lxy < γxθyx < Uxy ; Lyx < γyθxy < Uyx : (14)

There are four domains in the state space (counterclockwise from
bottom right)

I : fx < θyx ; y < θxyg II : fx < θyx ; y > θxyg
III : fx > θyx ; y > θxyg IV : fx > θyx ; y < θxyg
Domain II contains equilibrium FP(0,1) and IV contain equilibrium
FP(1,0). We will consider domains I and III which are divided to
domains of attraction of two equilibria.

Domain III. The equations in this domain are

_x ¼ �γxx þ Lxy
_y ¼ �γyy þ Lyx

(15)

and the solution is

xðtÞ ¼ Lxy
γx

þ x0 � Lxy
γx

� �
e�γx t; yðtÞ ¼ Lyx

γy
þ y0 �

Lyx
γy

 !
e�γy t:

(16)

Note that as t→∞ this solution converges to ðLxyγx ;
Lyx
γy
Þ which by the

choice (14) of the parameter region, belongs to domain I. Therefore
for each initial condition (x0, y0) in domain III we can compute time
Txy(x0, y0) where this solution crosses θxy and the time Tyx(x0, y0) where
it crosses θyx. Importantly, if Txy(x0, y0) < Tyx(x0, y0) then (x0, y0) is in the
domain of attraction of FP(1,0) in domain IV, and if Txy(x0, y0) > Tyx(x0,
y0) then (x0, y0) is in the domain of attraction of FP(0,1) in domain II.
Consequently, the condition Txy(x0, y0)= Tyx(x0, y0) defines the
boundary between these domains of attraction.
The equations for Txy(x0, y0) and Tyx(x0, y0) are

θxy � Lyx
γy

¼ y0 �
Lyx
γy

 !
e�γyTxyθyx � Lxy

γx
¼ y0 �

Lxy
γx

� �
e�γxTyx : (17)

This gives

Tyx ¼ � 1
γx

ln
γxθyx � Lxy
γxx0 � Lxy

Txy ¼ � 1
γy

ln
γyθxy � Lyx
γyy0 � Lyx

(18)

This leads to the following equation for the separatrix between
two domains of attraction in domain III:

γy lnðγxθyx � LxyÞ � γx lnðγyθxy � LyxÞ ¼ γy lnðγxx0 � LxyÞ � γx lnðγyy0 � LyxÞ:
(19)
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Notice that the left hand side is a constant, while the right hand
side depends on the values (x0, y0).
Therefore domain of attraction within domain III of the fixed

point in domain IV (FP(1,0)) will satisfy

γy lnðγxθyx � LxyÞ � γx lnðγyθxy � LyxÞ< γy lnðγxx0 � LxyÞ � γx lnðγyy0 � LyxÞ;
(20)

while the domain of of the fixed point in domain II will have the
inequality reversed.

Domain I. The equations in this domain are

_x ¼ �γxx þ Uxy

_y ¼ �γyy þ Uyx
(21)

and the solution is

xðtÞ ¼ Uxy

γx
þ x0 � Uxy

γx

� �
e�γx t; yðtÞ ¼ Uyx

γy
þ y0 �

Uyx

γy

 !
e�γy t:

(22)

These equations are analogous to (22) with constants Lxy, Lyx
replaced by Uxy, Uyx, respectively. Therefore, in analogy with (19),
we have the following equation for the separatrix between two
domains of attraction in domain I:

γy lnðγxθyx � UxyÞ � γx lnðγyθxy � UyxÞ ¼ γy lnðγxx0 � UxyÞ
�γx lnðγxy0 � UyxÞ:

(23)

We use equations (19) and (23) to classify RACIPE-selected initial
conditions (x0, y0) as belonging to the basin of attraction of either
of the stable equilibria in domains II and IV.
Similar equations can be written for switching system of DA,

where domain I contains FP(0,0) and domain III contains FP(1,1).
The corresponding equations defining the boundaries of the
basins of attraction are:

γy lnðγxθyx � LxyÞ � γx lnðγyθxy � UyxÞ ¼ γy lnðγxx0 � LxyÞ � γx lnðγxy0 � UyxÞ:
(24)

for domain I and

γy lnðγxθyx � UxyÞ � γx lnðγyθxy � LyxÞ ¼ γy lnðγxx0 � UxyÞ � γx lnðγxy0 � LyxÞ:
(25)

for domain III respectively.

Translating Shifted Hill functions to DSGRN
The RACIPE model for the dynamics of a node k is given by

_xk ¼ Pk
Y
j!k

Hsðxj; θkj; nkj; akjÞ
akj

Y
jak

Hsðxj; θkj; nkj; ikjÞ � γkxk : (26)

with the requirement that a > 1 and i < 1. Shifted Hill functions are
monotone sigmoid functions. In particular, as n→∞, they
converge to switching functions. We note that Hs(0)= 1 and

lim
x!1Hs ¼ a or i:

It follows that the range of Hs for activating edges is (1, a), and for
inhibiting edges is (i, 1). Since the effect of an activating edge in
(26) is eHs

:¼ Hs

a , this range of eHs
is ð1a ; 1Þ. The final parameter of

RACIPE formalism is the basal production rate Pk at each
network node.
The DSGRN model for the dynamics of node k, assuming

product interactions between edges with common target node, is
given by

_xk ¼
Y
j!k

σþðxj; θkj; Lkj;UkjÞ
Y
jak

σ�ðxj; θkj; Lkj;UkjÞ � γkxk : (27)

The switching functions σ+ and σ− are defined in (7). We first observe
that in the limit n→∞ a half-saturation parameter θkj in H± of (26)
becomes the threshold θkj in functions σ±. Since they are equivalent,
we have chosen to use the same notation in both formalisms.
We now address conversion between the fold multiplication

parameters akj, ikj and basal rate Pk in (26) and parameters Lkj and
Ukj in (27). At first glance, there are more parameters in the DSGRN
model than in the RACIPE formulations. When the inputs to a node
k combine as a product, which is the case in both (26) and (27), the
key observation is that the highest value of this product at node k
is Pk in (26) and ∏j→kUkj in (27). Therefore a natural correspondence
is

Pk ¼
Y
j!k

Ukj: (28)

Converting a RACIPE Model to a DSGRN Model. Given a RACIPE
model, we choose to evenly attribute the basal production rate, Pk,
to each input edge by setting

Ukj :¼ P
1
mk
k ; (29)

where mk is the number of inputs to node k. The corresponding
DSGRN parameters are given by

for j ! k Lkj :¼ P
1
mk
k

1
akj

(30)

for j a k Lkj :¼ P
1
mk
k ikj (31)

With this choice of correspondence in parameters each shifted Hill
function in the RACIPE model converges to the corresponding
switching function in the DSGRN model as n→∞. A consequence
of Theorem 3.11 of18 is that the fixed points of the DSGRN model
are in one-to-one correspondence to the fixed points of the
RACIPE model for large enough n.

Converting a DSGRN Model to a RACIPE Model. Given DSGRN
model, we first compute the basal rate Pk for each k from (28). Let
mk be the number of incoming edges to node k. Then the
conversion between Lkj and akj, ikj is as follows:

for j ! k akj :¼ P
1
mk
k

Lkj
(32)

for j a k ikj :¼ Lkj
P1mk
k

(33)

In addition, since DSGRN corresponds to a limit as Hill
coefficients approach infinity, the Hill coefficient of RACIPE is
nkj=∞ for each k, j.
We remark that in this paper, we only use the conversion from

RACIPE to DSGRN. While the reverse operation is defined, it has
some undesirable properties. Let R be the transformation from a
RACIPE parameter sample to a DSGRN parameter sample and let D
be the transformation from a DSGRN parameter sample to a
RACIPE parameter sample. Then it is easy to check that D ∘ R= Id.
On the other hand, note that R ∘ D ≠ Id. In fact, some valid DSGRN
parameter samples do not result in valid RACIPE parameters,
because the assignment produces a RACIPE parameter with akj= 1
or ikj= 1. Therefore, D is not well-defined over all of parameter
space in the DSGRN framework.
A more subtle problem is the following. Let P � P be the domain

on which D is well-defined, and let p 2 P. Then one can check that
q= R ∘D(p)≠ p, and, furthermore, p, qmay not be associated to same
parameter node in the DSGRN parameter graph. Therefore, we
advise caution when interpreting the meaning of RACIPE parameter
samples that emerge from sampling in DSGRN parameter space
followed by transformation under D.
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Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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