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A systems biology approach to define mechanisms,
phenotypes, and drivers in PanNETs with a personalized
perspective
Silke D. Werle 1,6, Nensi Ikonomi 1,6, Ludwig Lausser1,2, Annika M. T. U. Kestler1, Felix M. Weidner 1, Julian D. Schwab1, Julia Maier1,3,
Malte Buchholz4, Thomas M. Gress4, Angelika M. R. Kestler5 and Hans A. Kestler 1✉

Pancreatic neuroendocrine tumors (PanNETs) are a rare tumor entity with largely unpredictable progression and increasing
incidence in developed countries. Molecular pathways involved in PanNETs development are still not elucidated, and specific
biomarkers are missing. Moreover, the heterogeneity of PanNETs makes their treatment challenging and most approved targeted
therapeutic options for PanNETs lack objective responses. Here, we applied a systems biology approach integrating dynamic
modeling strategies, foreign classifier tailored approaches, and patient expression profiles to predict PanNETs progression as well as
resistance mechanisms to clinically approved treatments such as the mammalian target of rapamycin complex 1 (mTORC1)
inhibitors. We set up a model able to represent frequently reported PanNETs drivers in patient cohorts, such as Menin-1 (MEN1),
Death domain associated protein (DAXX), Tuberous Sclerosis (TSC), as well as wild-type tumors. Model-based simulations suggested
drivers of cancer progression as both first and second hits after MEN1 loss. In addition, we could predict the benefit of mTORC1
inhibitors on differentially mutated cohorts and hypothesize resistance mechanisms. Our approach sheds light on a more
personalized prediction and treatment of PanNET mutant phenotypes.
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INTRODUCTION
Pancreatic neuroendocrine tumors (PanNETs) are the second most
common epithelial neoplasms of the pancreas, after pancreatic
ductal adenocarcinoma (PDAC)1–3. PanNETs account for around
2% of all pancreatic neoplasms, but their incidence has doubled in
the last 30 years1,2. In 2020, World Health Organization (WHO)
classified PanNETs into two major subgroups, the well-
differentiated PanNET G1 and G2, and the poorly differentiated
NECs4. PanNETs are subclassified into grades (G) ranging from 1 to
3 based on their proliferative activity as assessed by the
proliferation marker protein Ki-67 (Ki-67) labeling index and
mitotic rate1,2,5. In 2017, the WHO revised the previous classifica-
tion of pancreatic neuroendocrine neoplasms by transferring well-
differentiated PanNETs with proliferation rates >20% from the
undifferentiated tumor group (PNECs) to the well-differentiated
group PanNET G1/G2 as a novel PanNET G3 subgroup6. This was
necessary because a fraction of well-differentiated PanNETs with
proliferation rates >20%, which would have been classified as
NECs according to the WHO 2010 classification, have a tumor
biology and require a treatment strategy that is closer to that of
well-differentiated tumors than to that of NECs. Further classifica-
tion can be made based on hormonal secretion into functional
and non-functional tumors5,7.
The majority of PanNETs are indolent and slow-growing tumors

that still preserve malignant potential. As a result, most of these
tumors are moderately malignant8. There is a high degree of
heterogeneity in tumor behavior, ranging from nearly benign to
extremely aggressive1. Most PanNETs grow and eventually
metastasize to the liver, making this progression the most

common cause of death for these tumors2,8. Overall, the biological
behavior of PanNETs is still largely unpredictable8. As with their
progression, the pathogenesis of PanNETs is also largely
unexplored8. Approximately 10% of PanNETs are part of familiar
endocrine tumor syndromes and are therefore generated by
germline mutations. The most common germline mutation is
menin-1 (MEN1). Sporadic PanNETs arise from somatic mutations.
Here again, 44% of cases harbor a MEN1 mutation, 43% a death-
domain associated protein/ATRX Chromatin Remodeler (DAXX/
ATRX) mutation, and 14% report mutations in the mechanistic
target of rapamycin (mTOR) pathway (e.g., tuberous sclerosis
protein (TSC))2,5,8.
Overall, the pathogenesis and progression of PanNET is largely

unknown mechanistically. This lack of knowledge directly reflects
the difficulties in the diagnosis and treatment of these tumor
types8. For functional PanNETs (around 10% of cases) that secrete
endocrine hormones, diagnosis requires extensive experience2,8. A
large proportion of well-differentiated PanNETs are diagnosed at
more advanced stages when they have metastasized1,2,9. Well-
differentiated non-functional PanNETs, particularly G1 and low G2
(<5%), can be addressed with a “watch and wait” strategy that
attempts to understand the specific tumor progression before
initiating treatment strategies8. A more aggressive approach
considers surgical resection, which is currently recommended for
functionally active PanNETs, well-differentiated non-functional G1/
low G2 tumors10. In the case of targeted therapies, mTOR
inhibitors have shown prolonged progression-free survival in
clinical trials and have been approved for clinical use11. However,
the administration of these inhibitors has been associated with
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resistance, adding another challenge to the therapeutic manage-
ment of these tumors11–14.
First, we studied two publicly available PanNETs datasets for

their ability to be categorized using a static classification

approach. Next, to unravel the behavior of PanNETs, we set up a
logical model to study the dynamic behavior of the molecular
pathways involved in PanNET progression. Given the largely
unknown mechanisms involved in PanNETs, we chose Boolean
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networks as a dynamic model. Boolean models allow the
reconstruction of interactions even when only qualitative knowl-
edge is available15. Regulatory dependencies are constructed
using logical gates, such as AND, OR, and NOT15,16. The final
regulatory interactions for each node are summarized in Boolean
functions15,16. In addition, as a rather simple modeling approach,
they allow to model large networks and to study their dynamic
behavior. The simplicity of this model derives from the fact that
nodes in the network can have either active (1/ON) or inactive (0/
OFF) states15,16. Despite this simple setup, Boolean models have
been successful in recapitulating and predicting novel regulatory
mechanisms in a variety of applications, such as cancer,
physiology, and aging17–21.
By considering the most frequently mutated genes in PanNETs

and the pathways involved, we were able to construct a large
Boolean model through literature searches that was able to
recapitulate the main phenotypic activities shown in PanNETs. By
investigating the dynamics of our model, we were able to predict
disease drivers and evaluate their impact in different mutational
landscapes. We integrated our model predictions with patient
profiles using a tailored foreign feature classifier approach.
Furthermore, we set up a tumor driver identification strategy that
could suggest first- and second-hit mutations after MEN1 loss
capable of inducing aggressive PanNETs. Finally, we tested the
application of mTORC1 inhibitors in various mutant conditions
and evaluated a potential mechanism behind mTORC1 resistance
emergence.

Overall, our model comprehensively describes the heteroge-
neous behavior observed in the mutational landscape of PanNETs
and could be applied to predict markers and resistance to gold-
standard treatments with a focus on a potential personalized
medicine approach. A workflow of the systems biology strategy
used to model PanNETs is depicted in Fig. 1.

RESULTS
Studying the classification of NETs in patient cohorts
A molecular mechanistic understanding of the development and
progression of PanNETs is paramount for both an early diagnosis
and effective treatment. In addition, experimental models to study
this type of tumor entities are also scarce and controversial in
terms of representativeness of the clinical condition22. Hence, to
gain some insights into the characteristics of PanNETs, we
performed first a multiclass classifier experiment on different
molecular profiles of patients with pancreatic neuroendocrine
tumors. The results are visualized in the form of a confusion matrix
(Fig. 2). Within the confusion matrix, each cell reports the
probability of that specific group to be classified as the
corresponding one in the matrix. Hence, if the multiclass classifier
would perfectly separate the different groups, a matrix with a
diagonal of ones would be expected, meaning that each group is
perfectly distinguished from the others in the system.
Here, we utilized two datasets (GSE73338 and GSE117851)

reporting expression profiles of PanNETs patients grouped by
functionality and metastatic status or by reported mutations,

Fig. 1 Workflow of the modeling strategy and experiments performed. Steps of the modeling approach of PanNET. Initially, a model is
constructed based on literature and database search for PanNET specific regulations, which are then summarized in Boolean functions (yellow
upper box, left side). Next, attractors are simulated and interpreted based on commonly mutated genes in PanNET patients (yellow upper box,
right side). Predicted phenotypes are then validated via a foreign classification approach, comparing similarities of expression profiles in
mutated PanNET patients´cohorts to those found in the attractor patterns (green middle box, left side). Attractors were also validated node-
wise via both literature search and comparison to binarized expression profiles of the RIP-TAG2 mouse model (green mid box, right side).
Additionally, the model was applied to predict tumor drivers via a study of the basins of attraction of cancer-matched attractors in both WT
and MEN1 conditions (purple lower box, left side). Finally, the differential response of alternatively mutated PanNETs to a clinically approved
target were studied, and a mechanism of resistance could be hypothesized via investigating attractor trajectories (purple lower box,
right side).
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Fig. 2 Multi class classifier experiments on NETs human expression datasets. The Figure depicts the results of a multi class classifier
experiment performed on two PanNETs human expression profiles (GSE73338, GSE117851) (a, b). Results are depicted in form of a confusion
matrix. Each cell of the matrix reports the probability of that group to be assigned to the corresponding one in the matrix. Color intensities
reflect these probabilities, where the higher the probability the more intense the color.
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respectively. In both cases, we observed that the multiclassifica-
tion experiment generally failed to reliably classify all the different
groups, regardless of the consideration of driving mutations or
tumor histo-pathological features. However, some groups were
classified more reliably than others (e.g., insulinomas or WT
tumors) and some assignments could be excluded (e.g., metas-
tases are mostly classified as normal tissue) (Fig. 2a). Interestingly,
only normal pancreas could always be correctly classified (Fig. 2a).
Similarly, DAXX-mutant PanNETs show an almost evenly distrib-
uted probability of being classified in one of the other groups
(Fig. 2b).
Despite the exclusion of misclassification for some classes, the

multiclassification experiment could not provide a reliable
classification of all tumor entities involved (Fig. 2). These results
based on patient expression profiles support the high hetero-
geneity observed in neuroendocrine malignancies and the
difficulty in predicting tumor characteristics. In this scenario, static
modeling approaches, such as classification systems that only
consider expression profiles, may require the integration of
information from dynamic models to further understand these
tumor entities. Hence, we established a Boolean model describing
the main altered pathways in PanNETs and their crosstalk.

Establishing a model to unravel the biological behavior of
PanNETs
As shown above, the simply knowing that certain genes or
proteins are up- or down-regulated in a tumor entity may not
be sufficient to understand and characterize tumor phenotypes.
For this reason, we established a Boolean model and
investigated its dynamic behavior (Fig. 3a and Supplementary
Tables 1 and 2). The model is based on an extensive literature
search and database screening, including nearly 200 published
experimental results in its final version. We included nodes
(genes/proteins) found to be mutated in PanNETs, together
with their involved pathways and crosstalk. We considered
regulations involving the mTOR, and phosphoinositid-3-kinase
(PI3K)/protein kinase B (AKT) pathway, as well as MEN1, and
DAXX/ATRX signaling. Given that PanNETs are related to
angiogenesis and Insulin growth factor (IGF) signaling2, we
also included regulatory dependencies involving VEGF, IGF, and
mitogen-activated protein kinase (MAPK) signaling. Finally, to
understand the mechanistic nature of PanNETs progression, we
also included the regulation of cell cycle and cell adhesion
pathways in our model (Fig. 3a and Supplementary Tables 1 and
2). The final model consists of 56 nodes and 198 regulatory
interactions including the above-mentioned pathways and their
effects on proliferation and invasion (Fig. 3a and Supplemen-
tary Tables 1 and 2). Before simulating the model, we assessed
whether it reflected well-known features of biologically
motivated networks. Indeed, biologically motivated models
exhibit scale-free topology and resistance to noise. We were
able to show that both properties are fulfilled by our
constructed model, further demonstrating its potential correct-
ness (see Supplementary Figs. 1 and 2).
In the following, we will investigate the dynamic behavior of our

established model. First, we simulated the model under different
mutational conditions and related the output activities to
commonly reported PanNET behaviors in terms of proliferation,
angiogenesis, and invasiveness. Second, we performed two
validation approaches. We deepened our analysis of tumor
mutations by integrating our attractor results with a foreign
classification approach. In addition, we investigated node-wise the
predictions of our attractor patterns related to PanNET pheno-
types. Finally, we applied the model for prediction of tumor
drivers and personalized evaluation of state-of the art drug
targets. This workflow is depicted in Fig. 1.

Dynamic simulation of known mutational landscapes reveals
heterogenous phenotypic behavior of PanNETs
After establishing our model, we analyzed its dynamic behavior. It
is known from the literature that the most frequently reported
mutations for PanNETs are alterations in MEN1, DAXX, and TSC13.
Hence, we reproduced these mutational landscapes by simulating
in-silico knockouts for these genes. This was achieved by
constantly setting the activity of these nodes to 1 or 0, without
further consideration of their underlying mechanistic regulation.
In addition to the mutations, we also simulated a wild-type (WT)
tumor condition by simulating the model without any external
adaptation (Fig. 3b).
To evaluate and compare the obtained attractor patterns with

the experimental phenotypic data available for these mutations,
we selected the activity of certain nodes in the attractors to assign
a particular phenotype. To do this, we focused on phenotypes that
are also described in the experimental results, such as prolifera-
tion, quiescence, G0-alert, detachment, and angiogenesis (for
details on the attractor interpretation, see Supplementary Fig. 3).
Our simulations indicate that unperturbed (=WT) and DAXX

knockouts have the highest percentage of quiescent cells (Fig. 3b
and Supplementary Figs. 4 and 5 for complete attractor patterns).
For the DAXX knockout specific simulation, we could also detect a
small percentage (0.1%), showing more aggressive trades such as
G0-alert and detachment (Fig. 3b and Supplementary Fig. 5).
These results are in line with the known indolent behavior of
PanNETs, which are known to be slow-growing tumors8. Interest-
ingly, we are still able to retrieve a certain percentage of
proliferative and invasive phenotypes, which may account for
the malignant potential observed in these tumors.
The in-silico TSC knockout simulation resulted in 1% of cases

showing a phenotype of angiogenesis, detachment, and invasion.
The remaining 99% of cases show a G0-alert associated
phenotype, connected to the activation of mTORC1 in the
attractor pattern (Fig. 3b and Supplementary Fig. 6). Activation
of the mTOR pathway is a common event after TSC loss in
patients23. Additionally, the presence of a genetic loss of TSC does
not correlate with aggressive PanNETs in most cases23, in
accordance with our in-silico results.
The MEN1 in-silico knockout simulation showed the most

severe combination of phenotypes (Fig. 3b and Supplementary
Fig. 7). 44% of the cases had attractors showing angiogenesis,
detachment, and proliferation. The remainder of the attractor
landscape showed either complete quiescence (22%) or G0-alert
alone or in combination with angiogenesis (20% and 13%,
respectively). 40% of sporadic PanNETs display abnormally low
nuclear staining of MEN124, thus showing a severe phenotype
matching our observed attractor patterns. In accordance, our in-
silico knockout for MEN1 shows a more prominent proliferation
and invasion potential compared to the other simulation
conditions. However, most of the estimated cases still suggest
an overall non or low-proliferating tumor. In addition, our results
support the suggestion that MEN1-alterations play a crucial role in
PanNETs tumorigenesis, while additional mutations are needed for
the development of aggressive, highly proliferating tumors.

Foreign classification experiments integrate the dynamic
simulation results to elucidate differences in MEN1, DAXX,
and combined mutations
As shown previously, correlating PanNETs mutations with patient
outcome and tumor aggressiveness can be a rather difficult task,
especially considering their rarity of occurrence and the chal-
lenges of building large cohorts and models. For this reason, we
have collected existing information on mouse models and patient
cohorts for our described mutations (Supplementary Table 3). In
addition, we developed a foreign classifier experiment to evaluate
assignments between alterations in PanNETs (general strategy
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depicted in Supplementary Fig. 8). We used the GSE117851
dataset, which reports mRNA expression profiles of patients
harboring MEN1, DAXX, or MEN1-DAXX combined mutations
together with WT profiles (Fig. 4a). Our aim was not only to
compare assignments retrievable from expression profiles and
dynamic landscapes, but also to potentially integrate results
inferred from both approaches.
Within our foreign classifier approach, binary classification

experiments are performed for classes present in the dataset,
always excluding one (see Supplementary Fig. 8). Afterwards, the
initially excluded group is classified as a foreign class within all

performed binary classification tasks and the percentage of
assignment to one of the two original classes is calculated. Based
on the percentage of assignment of the foreign class it is possible
to deduce potential similarities (or identity) between groups. The
results of this approach are presented in Fig. 4a, b.
When the WT group is considered as a foreign class, it is

always preferentially assigned to DAXX mutant samples. Instead,
when the decision is between doubly mutated tumor samples,
the assignment is almost equally distributed with a slight
preference on MEN1 mutated samples (Fig. 4b). For single
mutated samples, both always avoid a preferential assignment

Fig. 3 Interaction graph and dynamic behavior of the PanNETs Boolean model. a The 198 directed edges in the static interaction graph
depict the regulatory dependencies between the 56 nodes (genes/proteins). Here, arrows show activating regulations while bar-headed lines
depict inhibitory interactions. Linear cascades of interactions are represented by dashed lines between the starting and the end node. The
color of each node depicts its association to a specific pathway. b Percentage distribution of PanNET phenotypes in the wild type
(unperturbed) as well after introducing common mutations like DAXX, TSC, or MEN1 knockout (KO). The complete phenotypical landscape
with the activity of each node can be found in the Supplementary Figs. 6–9.
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to WT tumors. Thus, they are assigned either to the other single
mutation or to the double mutated samples. Finally, a similar
assignment distribution is observed for double mutant tumor
samples, with a preferential assignment to the single mutant
counterparts.
Next, we considered the results coming from our dynamic

simulations (Fig. 4c). To fully compare the two approaches, the
attractor landscape of the double mutation of DAXX and MEN1
was also computed (Supplementary Fig. 9). Consistent with the
foreign classifier experiments, WT attractor simulations share
more common properties with DAXX knockout simulations. In
the same direction, MEN1 knockouts and double mutant
simulations with MEN1 and DAXX show common attractor
landscape properties. Interestingly, the DAXX attractor land-
scape has a high potential of quiescent properties, but it still
preserves a potential of an aggressiveness through the arising of
a new phenotype compared to the WT. Thus, the DAXX attractor
landscape results in between of the WT and the MEN1/double
mutated landscapes.

The attractor pattern of proliferating, angiogenic, and
invading PanNETs matches experimental results for tumor
progression
After investigating the mutation-specific tumor phenotypes, we
further focused on deeper studies of the specific attractor pattern
associated with the angiogenesis, detachment, and proliferation-
related phenotype. While the distribution of this phenotype varied
between different in-silico mutational landscape simulations (WT,
MEN1 loss, TSC loss, DAXX loss), the attractor pattern associated
with this behavior remained highly conserved (Supplementary
Figs. 4–7). Thus, we hypothesized that this attractor pattern could
be further validated by matching its activities with those observed
experimentally in PanNETs (Fig. 5 and Supplementary Table 4). To
do so, we set up a validation procedure that compares the
activities of quiescent and aggressive phenotypes in a node-wise
manner (Fig. 5 and Supplementary Figs. 4–7). Given that these two
phenotypes are well preserved among differentially mutated
simulation conditions, we consider the comparison generally
holding for all of them. Specifically, we considered the quiescent
single state attractors and the aggressive eight states ones. These

Fig. 4 Integration of model simulation results with patients’ expression data via foreign classifier experiments. The foreign classifier
experiments were performed on the GSE117851 dataset for each PanNETs patient cohort with either MEN1 or DAXX single or double
mutations, and for patients without any mutations in the two genes (WT) (a). For each mutated group the sensitivities of the binary
classifications are reported in the tables in purple on the left. On the right side, in the blue tables, instead, the assignment of the foreign class
within the binary classification experiments is reported. Color intensities follow the increasing sensitivities and assignment frequencies. The
results of the foreign classifier experiments are depicted in form of an interaction-like graph (b). Here, the direction of the arrows indicate the
class to which each starting foreign class was assigned, while their colors correspond to the underlying foreign classes in the classification
experiments (red for WT, green for MEN1, purple for DAXX, and orange for DAXX & MEN1). The complete graph is depicted above,
summarizing all assignments taken by the foreign classification experiments. Subcircuits for each foreign class experiments are also depicted
below, indicating the frequencies of assignment for each decision. In the subcircuits, if a class is never most frequently assigned, this is
depicted in a gray box. Blue and thick arrows indicate assignments with higher frequencies in foreign classification experiment. Instead, while
thin dashed light gray arrows indicate the less frequent assignments for each foreign classification experiment. Frequencies of assignment for
all foreign classification experiment are reported in proximity of each arrow. When an assignment is equal to zero, no arrow is depicted.
Attractor phenotypical landscapes are depicted based on closeness of one landscape to the other (c). These results were integrated to
compare the molecular crosstalk arising from the dynamic model to the assignment frequencies of the classification experiments. E.g., WT is
always more frequently assigned to DAXX mutated tumors and the assignment frequencies for each experiment are reported in the
corresponding arrows. Finally, frequencies of assignment for all foreign classification experiment are reported in proximity of each arrow.
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attractors represent the two most extreme different phenotypes
that we could record in our simulations and were found in all our
simulated conditions (Supplementary Figs. 4–7). For simplicity,
given the less complex attractor landscape, we will from now on
refer in the comparison to the quiescent and aggressive
phenotype of WT (Supplementary Fig. 4). Note that this setup
aims to validate activities during PanNET progression in general,
thus taking away the focus from single mutations and moving it to
preserved quiescent and aggressive phenotypes as the two most
extreme patterns observed in our simulations. We focused both
on an intensive literature search and on the analysis of a dataset
from the RIP1-TAG2 mouse model25, which reports a clear PanNET
staging in vivo (Fig. 6). Specifically, nodes mostly regulated at a
transcriptional level were selected to be validated via expression
data (Fig. 6), while nodes mostly regulated at the protein level
(e.g., phosphorylation) were validated via published literature
experimental results. First, we evaluated the changes in node
activity between quiescent and cancer-related attractors, with a
total of 48 nodes (85.8%) changing their activity by either up- or
down-regulation (Fig. 5a, b). Next, we were able to validate the
activities of key regulators in all signaling pathways and processes
modeled, with a final amount of 39 validated node activities
(69.6%) (Fig. 5a, c and Supplementary Table 4). We were able to
correlate the activity of proteins critically involved in the
progression of PanNETs, such as AKT, mTORC1, and TSC, all of
which belong to the PI3K/AKT and mTORC signaling pathways
(Fig. 5 and Supplementary Table 4). Additionally, Focal adhesion
kinase 1 (FAK1) and Extracellular signal regulated kinase (ERK)
activities as members of the MAPK signaling pathway were also
matched (Fig. 5 and Supplementary Table 4). Activation of
receptors and secretion of ligands, such as VEGF/VEGFR and IGF/
insulin growth factor receptor (IGFR), are primary causes of
aberrant activation of downstream signaling cascades2. These
activations are also observed in our attractor landscapes,
concomitant with proliferation and invasion. S-phase entry
markers such as CCND1, CCNE1, and E2F in the attractor landscape
were also shown to be consistent with experimentally observed
activities in RIP1-TAG2 mice during the progression of PanNETs

(Fig. 6). E-cadherin (CDH1) was downregulated at the tumor stage
(Fig. 6), in accordance with the observed decrease in the attractor
patterns and the subsequent loss of tight junctions (Supplemen-
tary Figs. 4–7).
Altogether, we could show that our attractor pattern describing

an aggressive behavior in PanNETs is in agreement with published
experimental data collecting tumor-related activities of the same
proteins. This result also further sustains our interpretation of
attractor landscapes in the phenotypic readouts.

Model-based simulations help unravel disease drivers capable
of exacerbating the PanNETs attractor landscape
Predicting the progression of PanNETs is often a challenging task.
While these tumors are mostly indolent, they preserve malignant
potential along with a highly heterogeneous behavior8. In
addition, while mutations such as MEN1 are known to be crucial
for tumorigenesis, they are not sufficient to lead to a fully
aggressive phenotype26, as also seen in our attractor distribution.
These results eventually lead to the hypothesis that a cumulative
set of mutations may be required for PanNETs to progress into
aggressive, highly invasive tumors. On these grounds, we
investigated whether our established model could be applied to
predict tumor drivers. To this end, we investigated the network
starting states leading to the aggressive tumor attractors in both
WT and MEN1 conditions (starting from a seed of 100 million
randomly drawn starting states) (Fig. 7 and Supplementary
Fig. 10). Here, we examined activities that would exceed one
standard deviation from the mean in both directions and
considered these initial states as potentially relevant to the final
attractor landscape. Hence, if a node has a low probability of
being active in the start states leading to the severe attractor
pattern, we will consider this as a hint that this node will be lost
during tumor progression. Following this hypothesis, genes that
met our criteria for selection as driver genes were further analyzed
by performing in silico knockins and knockouts. The resulting
attractor landscape was analyzed (Fig. 8).
In general, we observe a greater heterogeneity of node

activities in the WT simulation compared to the MEN1 loss one

Fig. 5 Model validation. Comparison of node activities between the quiescent single state attractor and the two severe eight states attractors
(Supplementary Figures 4–7) is depicted. a Nodes are grouped by their pathway association. The colored rectangles show the nodes’ activities
changes in the severe attractors with proliferative, angiogenic, and detachment properties compared to the quiescent one. Green rectangles
represent nodes that are completely upregulated from quiescent to aggressive attractors. Gray rectangles represent nodes that are down
regulated from quiescent to aggressive attractors. Rectangles with both activities represent oscillatory behaviors. Here, the arrows indicated if
the overall resulting activity is up (up pointing arrow) or down (down pointing arrow) in the compared attractor patterns. Blue rectangles
indicate unchanged activities. A detailed analysis of this validation can be found in Supplementary Table 3. b Distribution of alterations in the
activity levels between the quiescent and the two severe WT attractors is shown. c Among the 56 nodes of the network, we were able to
validate the activity of 39 nodes (69.6%).
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(Fig. 7). This result is accompanied by a larger set of selected
drivers in the WT simulation (13 in total) compared to the MEN1
loss (9 in total). Looking at the attractor landscapes, the drivers of
the MEN1 loss condition lead to a severe phenotype in most cases,
accompanied by a decrease in the number of attractors (Fig. 8). On
the contrary, WT-related drivers generally lead to more hetero-
geneous and less severe phenotypes, supporting the hypothesis
that additional mutations are required to induce tumor progres-
sion. In the following, the attractor landscape of each driver is
presented in both WT and MEN1 loss simulations.
In the WT driver setting, no driver except for AKT in-silico

knockin (constantly active AKT) was able to induce the worse
phenotype related to proliferation, detachment, and angiogenesis.
Activation of AKT and of the mTOR pathway is a hallmark of
PanNETs13,27–29. Thus, this result corroborates the correctness of
our simulations. In the same line, also mTORC2 was selected as a
driver30,31. MEN1 and the Forkhead box O (FOXO)s proteins 1 and
3 were also included in the driver set. MEN1 loss is the most
common mutation in PanNETs and has been connected to tumor
initiation and progression23,24,32. Interestingly, FOXO1 is a direct
and master regulator of MEN133. Hence, its loss mimics the loss of
MEN1 (Fig. 8a). Cellular inhibitor of PP2A (CIP2A) was shown to be
downregulated in PanNETs in our expression data analysis (Fig. 6),
and Protein phosphatase 2 A (PP2A) is its direct target34. GLI family

zinc finger 1 (GLI1) was shown to be highly expressed in BON1
cells, consistent with its identification as a knockin tumor driver35.
Compared to the WT simulation analysis, the set of identified

drivers in addition to MEN1 was smaller, but had a stronger impact
on the attractor landscape (Figs. 7b and 8b). This means that the
percentual distribution of simulation cases showing proliferation,
detachment, and angiogenesis in the attractor increased. Although
the set of additional drivers for MEN1 was smaller, most of the nodes
in the driver set overlap with the WT set, with the exception of ETS
protooncogene 1 (ETS1) and E2F (Figs. 7b and 8b). Nodes in common
to both sets show a more severe aggressive phenotype with higher
proliferative, invasive, and angiogenic properties when coupled with
a MEN1 mutation (Fig. 8). A striking example of this is TP53, which
had virtually no influence on the landscape of the WT simulation.
However, under MEN1 loss conditions, the loss of TP53 causes a
sensible worsening of the attractor landscape, suggesting that TP53
might be a good candidate as a second hit mutation. Interestingly,
this hypothesis was confirmed in an experimental setup showing
that TP53 alteration is associated with further tumor development in
the combination with other mutations5. E2F and ETS1 were only
found as drivers in the MEN1 loss condition. While E2F is directly
connected to an increase in proliferation36, ETS1 is still poorly studied
in PanNETs.
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In summary, we have shown that our model is able to predict
driver genes whose altered activities could exacerbate both WT
and MEN1 loss under in-silico conditions. These drivers could be
further investigated and validated in future laboratory validations,
potentially uncovering markers of tumor progression.

Model-based simulations provide efficacy of mTORC1
inhibition in different mutational landscapes and show
mechanisms involved in treatment resistance
After investigating potential tumor drivers, we were also
interested in identifying molecular targets for therapeutic
applications. Given the relevance of the PI3K/AKT pathways in
the progression of PanNETs, several studies and clinical trials have
pointed out the potential relevance of the therapeutically
targeting of mTORC111,37. These results have led to the FDA
approval of the mTORC1-specific inhibitor everolimus for the
treatment of PanNETs38. However, mTORC1 inhibitors have often
failed to yield objective responses leading to AKT reactiva-
tion12,13,37. Additionally, few studies have reported responses to
mTORC1 inhibitors mutatant PanNET cohorts. For this reason, we
investigated the mTORC1 intervention in our model to predict its
efficacy in differently mutated PanNETs, resembling the poten-
tially differential response in different patient cohorts.
The knockout simulation was performed on both the WT and

the other previously investigated alterations frequently reported
in PanNETs, namely DAXX, TSC, and MEN1 loss conditions (Fig. 9a
and Supplementary Figs. 11–14). The distribution of the basins of

attraction in each condition was estimated by simulating 10,000
randomly drawn starting states. In the WT simulation, we observe
an increase from 1% to 4% of the combined phenotype associated
with proliferation and detachment. The same scenario regarding
the proliferation and detachment phenotypes was also shown in
the DAXX and TSC loss conditions (Fig. 9a). However, in the TSC
loss condition, an improvement of the phenotypic landscape was
observed by reversion of the G0-alert phenotypes to a quiescent
after mTORC1 intervention (Fig. 9a and Supplementary Fig. 13).
Regarding the MEN1 knockout, we observed a beneficial effect by
increasing the quiescent phenotype (from 22% to 69%), accom-
panied by the loss of the G0-alert related phenotype (Fig. 9a and
Supplementary Fig. 14). Still, 17% of the starting states lead to a
detachment and proliferation phenotype. Additionally, we did not
observe the angiogenic phenotype in any of the mTORC1
interventions (Fig. 9a and Supplementary Figs. 11–14). Overall,
based on our simulations, mTORC1 intervention showed a more
beneficial effect in the context of MEN1 and TSC mutations.
We interpreted the persistence of proliferative and detachment

phenotypes after mTORC1 inhibition in all simulated conditions as
emerging resistance to the treatment. Thus, we next studied the
potential mechanism leading to resistance after mTORC1 inhibi-
tion. To do so, the molecular cascade leading to the resistant
mTORC1 phenotype was investigated starting from the aggressive
PanNET tumor attractor (Fig. 9b). The cascade was simulated and
gave identical results starting from any state of the cyclic
attractors depicting an aggressive tumor with proliferative,
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Fig. 7 Distribution of node activities in basin states leading to the severe attractor phenotype. Probability of a certain node in the network
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invasive, and angiogenic traits for all investigated conditions
(cyclic attractors reported in Supplementary Figs. 6–9). In Fig. 9b,
we report as an example the cascade starting from the first state
of the aggressive cancer phenotype of the WT condition. Based on
this simulation, we could mechanistically follow the molecular
cascade connecting the two attractors (Fig. 9c). The results
indicate that after mTORC1 inhibition, there is a simultaneous
inactivation of S6K and the reactivation of IRS, which further
stabilizes AKT. The inactivation of S6K also affects mTORC2,
leading to its activation and further enforcing the positive
feedback on AKT. The latter shows downstream effects affecting
both tumor proliferation and invasiveness (Fig. 9c), further causing
the activation of CTNNB1 and MYC, and inducing the maintenance
of active cyclins (CCND1 and CCNE1) (Fig. 9b, c). The same axis
also causes the sustained activation of RAC1 and IQGAP1
associated with the complete loss of tight junctions. The loss of

STAT3 after mTORC1 inhibition further sustained the inactivation
of tight junctions via the loss of PDX1 (Fig. 9b, c). This general
regulatory mechanism is further supported by the efficacy in
decreasing PanNET progression when double mTOR inhibitors
targeting both mTORC1 and mTORC2 are used. In accordance with
our hypothesized mechanism, in-silico double inhibition of
mTORC1 and mTORC2 also showed a substantial decrease of
the resistant phenotype (Fig. 9a and Supplementary Figs. 15–18).
Altogether, we were able to recapitulate observed general

behaviors in mTORC1 targeting for PanNETs and additionally
predict its efficacy on differently mutated PanNETs. Additionally,
we were able to formulate a model-based hypothesis on the
regulatory mechanism behind the resistance to mTORC1 resis-
tance in PanNETs. Our results are of particular relevance when
considering the targeting of specific patient cohorts harboring
different mutations.
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DISCUSSION
Most of the PanNETs are indolent and slow-growing tumors.
However, they preserve a malignant potential that is difficult to
predict8. In addition, a high heterogeneity in tumor biological

behavior is observed, ranging from indolent to extremely
aggressive1. This fact also reflects the difficulty in developing
experimental models that can capture the heterogeneous
characteristics of PanNETs. BON1 and QGP cell lines have been
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widely applied to study PanNETs in vitro. However, their relevance
as models has been questioned, mainly due to the absence of
MEN1 mutations22. Nevertheless, a downregulation of MEN1 has
been observed in BON1 cells39. In the RIP-TAG2 mouse model,
PanNETs are induced by expression of the SV40 T-antigen
oncogenes in insulin-producing islet α-cells40,41. This model has
been proven to be a valuable prototype for studying the multistep
tumorigenesis, with some similarities to the characteristics of
human PanNETs25. Nevertheless, a major limitation in the under-
standing of PanNET development and progression is the largely
unknown molecular mechanisms and drivers that lead to the
development of these heterogeneous tumors. For this reason, we
have developed a Boolean model aimed at understanding and
unraveling the molecular mechanisms and phenotypes connected
with the development and treatment of PanNETs. Our mathema-
tical modeling approach allows us to independently study
different mutational landscapes in combination with different
therapeutic interventions. Furthermore, we have integrated our
modeling framework into a larger systems biology-based setup,
where our study includes different classification strategies and
comparisons with expression data in both patients and mouse
models. Hence, our approach has the potential to complement
and integrate the already available phenotypic description of
PanNETs from experimental data to capture the extensive
crosstalk of PanNET tumorigenesis and progression. Although
Boolean network models are rather simple models that rely on
extensive simplifications of complex molecular dependencies,
several authors have shown that these models are able to capture
the same key dynamics of Ordinary Differential Equation (ODE)
models describing the same process42,43. In this sense, it should be
obvious that Boolean networks, cannot predict changes in
concentrations due to their binary state values. As with any other
manually generated model, a subjective perspective of the
modeler cannot be excluded. To account for this, the results of
the PanNET model were compared with independent data not
used in the model building process. While Boolean network
models are much more scalable in size than ODEs44, and the
presented model with 56 nodes is already large in size, they have
the disadvantage that exhaustive simulations become NP-hard45.
Nevertheless, to estimate the distribution of attractors and thus
phenotypes, we estimated basin sizes of up to 1 million starting
states. Knowing that very rare attractors may not be found, it is
still an adequate method to represent the attractor space (see also
Supplementary Figs. 19, 20), also in light of the fact that other
authors have chosen the same strategy46. On these grounds, we
focused on the analysis of rather large differences in the attractor
patterns.
The heterogeneity of PanNETs was also captured in our model

simulations. We simulated and characterized different mutational
landscapes involved in the progression of PanNETs (Fig. 3). We
compared our attractor landscapes with “foreign feature selection
experiments”, which allow to identify assignments on the gene
expression profiles of patient to a cohort selected as “foreign”, e.g.,
based on the mutation status of DAXX or MEN1. We obtained
comparable results regardless of the static (classification) or
dynamic (Boolean model) modeling approach. Although the
DAXX-mutated patient cohort was closest to the WT cohort in
the foreign classification, we could detect a small percentage,

showing more aggressive trades within the model, in line with
DAXX-mutated tumors also being more likely to be assigned to
MEN1-mutated or double-mutated tumors in the foreign feature
experiments. These results are consistent with the known indolent
behavior of PanNETs, which are known to be slow-growing
tumors8. Nevertheless, a certain percentage of proliferative and
invasive phenotypes can be obtained, which could explain the
malignant potential observed in these tumors. In line with this,
several authors have shown that staining for Ki-67 at levels higher
than 2–10% correlates with metastatic behavior and malignancy
grade47. Considering specifically the DAXX-mutant tumors, our
systems biology approach could capture the conflicting results
reported in models and patient cohorts48. Two mouse models
have been published for DAXX as a driver in PanNETs49. In both
cases, DAXX mutations were well tolerated in the pancreatic
neuroendocrine tissue49. Consistent with this, we also observed a
predominant quiescent phenotype in DAXX knockout simulations.
Additionally, Sun et al.50. were able to show that the main effects
of DAXX and MEN1 double mutations are driven by MEN1. Again,
this result is in accordance with our attractor landscape.
Wasylishen et al.49. were able to link the loss of DAXX to a
permissive transcriptional state that favors the genomic instability
and the emergence of additional mutations. Accordingly, DAXX
mutations have been associated with chromosomal instability in
patient cohorts51. The prognostic effect of DAXX in patient cohorts
is controversial, with studies showing different effects of the
alteration48 (see also Supplementary Table 3). These differences
have been hypothesized to be due to the histopathologic criteria
used to evaluate the DAXX status or related to the metastatic
status of the patients included in the cohorts48. Based on our
classification approaches, we could see that in the multiclass
classifier DAXX mutated patients are almost evenly distributed
(Fig. 2). However, in the foreign classifier approach, DAXX mutated
tumors were mainly associated with other mutated tumors (Fig.
4a, b). Given the relationship between DAXX mutations and
chromosomal instability, this may reflect the heterogeneous
assignment of DAXX mutated patients to WT and other mutated
tumors in our classification strategies. While it is difficult to model
chromosomal instability with Boolean models, we could still
capture additional adverse effects related to DAXX at the
molecular crosstalk level. In conclusion, the results obtained by
including patient expression profiles in the PanNETs model
simulations highlight the predictive power of the dynamic model,
especially in light of the limited information available on the
influence of these mutations on the biological behavior of
PanNETs. The PanNETs model thus has the potential to capture
mutational landscapes that may lead to personalized treatment
strategies for PanNET patients.
Interestingly, even in the most severe attractor landscape

corresponding to the MEN1 loss simulation, we could not reach
the most aggressive phenotype. Instead, we observed a hetero-
geneous set of phenotypes combining quiescence, proliferation,
detachment, and angiogenesis. This reflects the experimental
observations of the PanNET tumor heterogeneity25.
The cancer driver screening also highlighted general differences

in the attractor landscapes when investigating WT and MEN1 loss
conditions (Figs. 7 and 8). This in-silico screening was designed
and tailored for the present work. However, analyzing initial states

Fig. 9 mTORC1 inhibition in PanNETs. mTORC1 knockout and its combination with mTORC2 knockout was simulated and evaluated in both
WT and MEN1 loss conditions (a). Based on the in-silico results a resistant phenotype could be observed after single mTORC1 inhibition or
together with mTORC2. The cascade from the severe cancer phenotype to the mTORC1 resistant phenotype was studied to infer its
mechanistic behavior (b). Here, genes are listed on the side. mTORC1 is highlighted in red to indicate it was targeted via knockout in the
cascade. Node activities are depicted via colored boxes. Green indicates active while gray indicates inactive nodes. A summary of the
hypothesized mechanism of mTORC1 resistance is represented in an interaction graph (c). Here mTORC1 is highlighted in red. Activities of
nodes directly downstream of mTORC1 are depicted with red arrows pointing upwards (activated during resistance) or downwards (inhibited
during resistance). The color of the nodes reflects the activities in the attractor cascade.
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that lead to the same attractor is a common practice in systems
biology research to evaluate phenotype distribution and identify
drivers or treatments17,21,46. In general, drivers identified from the
WT condition showed more heterogeneous phenotype distribu-
tions. This was concomitant with the presence of multiple
combinations of phenotypes and high attractor numbers. In
contrast, more homogenous phenotypes and low attractor
numbers were observed for drivers in combination with a MEN1
loss. These results reflect the experimental evidence that WT
tumors are more heterogeneous in their gene expression25. Our
results also support the hypothesis of multiple-hit tumor
development, leading to more severe and stable cancer pheno-
types as mutations increase25. In addition, we were able to identify
MEN1 as a driver from the WT condition, confirming its
experimentally established role as a PanNETs driver13. In contrast,
neither DAXX nor TSC were identified as drivers in our screening
(Figs. 7 and 8). This result can be explained by the structure of our
screening. In fact, our screening searches for biased activities of
nodes that are represented in the basin of the aggressive cancer
phenotype. Therefore, the lack of identification of DAXX or TSC as
drivers could be interpreted in the context that the activities of
these nodes are not highly effective in the induction of an
aggressive phenotype. This hypothesis is also supported by the
phenotypic landscape of DAXX and TSC loss simulations, which
showed less severe biological behavior (Fig. 3). TP53 was identified
as a driver in both WT and MEN1 loss simulations. However, when
combined with MEN1, the loss of TP53 shows a more severe
phenotype, indicating that this gene could be a good candidate as
a second hit mutation in PanNETs. In accordance, Yamauchi and
colleagues5 showed that a TP53 mutation alone did not affect
endocrine and exocrine pancreatic tissues in the mouse. In
contrast, when combined with a retinoblastoma (RB) mutation,
mice developed aggressive PanNET with a Ki-67-labeling index of
nearly 30%5. Additionally, TP53 alterations were predominantly
found in more aggressive types of neuroendocrine neoplasia,
highlighting their potential role in the late tumorigenesis52.
Although RAS is included in our model and KRAS is a well-
known tumor marker also for PDAC, we did not find RAS as a first
or second hit tumor driver. Consistent with this observation, no
RAS mutation is known to be a driver in PanNET patients53. This
fact supports the hypothesis that different crosstalk affects the
development of these two tumor entities, ultimately leading to
different progression.
After studying the potential drivers of tumor progression, the

focus shifted to targeted therapy. Results from simulations
targeting mTORC1, a clinically approved molecular target in
PanNETs, confirmed the presence of resistant phenotypes that still
induced tumor proliferation and invasion in all simulated PanNETs
mutational conditions (Fig. 9). The resistant phenotypes did not
exhibit angiogenesis (Fig. 9). The absence of angiogenesis is
supported by the anti-angiogenic effect observed in experimental
settings for the mTORC1 inhibitor everolimus38,54,55. The persis-
tence of the anti-angiogenic effect may be related to the central
effect of mTORC1 in regulating angiogenesis via multiple
regulatory dependencies56. In addition to the presence of the
resistant phenotype, a beneficial effect of mTORC1 knockout was
observed in MEN1 and TSC loss conditions (Fig. 9a). Whether
MEN1 mutations may be clinically associated with a differential
response to mTOR inhibitor therapy remains still to be definitively
established57. Nevertheless, a recent study in 31 patients with
advanced PanNETs reported a higher disease control rate,
progression-free survival, and time to treatment failure in MEN1
(germline) mutated PanNETs after treatment with everolimus58.
However, the study included only 6 patients with MEN1 germline
mutations and thus the results should be considered as
preliminary evidence of a potential beneficial effect of everolimus
on MEN1-mutated PanNETs58. Our model-based simulations
support this beneficial effect of mTORC1 inhibition on PanNETs

with MEN1 loss. Loss of TSC induces the hyperactivation of
mTORC159. Thus, the beneficial effect of further suppressing
mTORC1 in PanNETs with TSC loss is not surprising. Accordingly,
mTORC1 inhibition has been suggested as a treatment option in
TSC-mutant PanNETs59. Again, the small number of cases reported
for this mutation in PanNETs does not allow an extensive and valid
evaluation of different treatment options. However, Schrader
et al.60. were able to show encouraging results with everolimus
treatment in a patient with a PanNET harboring a TSC mutation.
This case study on the mTORC1 targeting could also be extended
to individual patients in a more personalized manner by
simulating the mutation patterns of a specific patient.
In conclusion, our systems biology approach could support the

understanding of PanNET mutational landscapes and predict the
effects of therapeutic interventions in specific patient cohorts.
Given the limited experimental and patient information on
PanNETs, our model encourages the further development of more
personalized approaches to understand these tumor entities.
In its current state, our model can support the detection of

disease exacerbation by providing a focus on disease drivers and
key players in mTORC resistance. However, in its current state, the
model will not be able to support early diagnosis, as it was built
based on cancer data. However, it could be integrated into the
post-diagnosis tumor characterization process by predicting the
impact of identified mutations represented in the model. In this
direction, the in-silico modeling approach can be easily extended
to incorporate new discoveries in the field and be continuously
refined. In the future, the model could be extended to study
trajectories of disease initiation from healthy tissues as well as for
drug screening.

METHODS
Datasets
In our work, we utilized three publicly available datasets, which are
briefly described below.
The GSE11785161 dataset contains 47 PanNETs tumor speci-

mens (8 MEN1 mutant, 9 DAXX mutant, 7 double mutant, and 17
wild-type (WT) for the two mutations). The dataset includes
human PanNETs specimens, from which RNA was extracted and
hybridized to HGU133A2 (Affymetrix) for gene expression
profiling.
Second, the GSE7333825,62, another human PanNETs dataset

grouped by histo-pathological features was used. The dataset
contains 95 human PanNETs specimens (63 non-functional, 17
insulinoma, 7 metastasis, 9 normal pancreas) from which RNA was
extracted and hybridized to a custom 18.5 K human oligo
microarray.
Finally, the GSE7351425 contains gene expression data from

different tumor stages of the RIP1-TAG2 mice, a genetically
engineered PanNET mouse model. Here, we utilized normal
(3 samples) and tumor stages (5 samples) that were dissected or
isolated from the animal. RNA was extracted and hybridized on
Affymetrix GeneChip Mouse Gene 1.0 ST arrays.
For what concerns data processing, the first datasets were

already provided as normalized by the original authors. Here
GSE117851 was gcRMA normalized and GSE73338 was normalized
according to Huber et al.63. Instead, GSE73514 was RMA
normalized.

Classification experiments
We conducted two types of experiments based on binary
classification models (further on referred as base classifiers). In
both cases linear, support vector machines (SVM) were chosen as
base classifiers. The training process of these binary SVMs were
coupled to an internal feature selection64. The 200 top features
according to the Threshold Number of Misclassification (TNoM)
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scoring65 were chosen. All classification experiments were
conducted with R-packages ORION and TunePareto66.

Multi-class classifier. A multiclass classifier experiment was
performed to investigate the potential of different PanNETs with
neuroendocrine properties datasets to be classified. Multiclass
classifier applied was a one-against-one SVM. To construct the
decision over all classes to be separated, a base classifier (SVM) is
computed for each pair of classes. Each classifier predicts one of
two classes, and then a majority vote is performed for the
ensemble decision. In case a consensus on the majority is not
found, multiple solutions are computed based on the equally
voted classes. This was the case for the GSE117851 dataset for
which we provide the complete set of confusion matrices as
Supplementary Fig. 21. The output of the multiclass classifier was
presented in the form of a confusion matrix, where each entry
represents the probability of being assigned in the corresponding
class. The experiments were conducted as leave one out cross-
validation (CV) analyses. Two datasets were analyzed using this
approach: GSE11785161, and GSE7333825,62.

Foreign classification experiments. A foreign classifier approach
(see also Supplementary Fig. 8) was designed to compare and
integrate the dynamic model-based predictions67. Here, an
external, or foreign class, to the one on which a binary
classification experiment is performed is reclassified using the
decision boundaries of that binary classification. The assignment
of foreign classes to binary classification tasks for differently
mutated patient cohorts was interpreted as a measure of similarity
or purity between the different cohorts. Hence, a foreign class
assigned with higher frequency to one of the original classes is
assumed to have certain similarities in the molecular expression
profile to one of the two classes. By performing this combination
of binary classification experiments and reclassification of the
foreign class for all possible combinations of classes in the dataset,
it is possible to infer a general interpretation of the similarities of
the expression profiles present in the examined dataset. The
distribution of assignments is then compared to the similarity of
attractor landscapes.
We applied this strategy to investigate different driving

mutations in PanNETs, creating a parallel between phenotypic
landscapes hypothesized by model simulations and common
features shared by cohorts of differentially mutated patients. In
the specific scenario, the GSE11785161 dataset was utilized. For
the binary classification tasks, the analysis was performed via
SVMs, focusing on 200 top features based on the Threshold
Number of Misclassification (TNoM) scoring65 determining the
informativeness of a feature. Based on the TNoM, the top 200
features with the smallest error rates were used for training the
binary SVM. The experiments were conducted as leave one out CV.

Boolean network models
Boolean network models are among the simplest dynamic
models. Their simplicity arises through the assumption that nodes
representing genes or proteins can have two activity states15,16.
They are either active (ON/1) or inactive (OFF/0). Thus, the state of
a network at a given point in time is defined by the activity of all
nodes at that point in time15,16. Qualitative information derived
from the literature is sufficient to construct the regulatory
interactions of this type of model16. Therefore, this information
is transferred into mathematical formulas using logical connec-
tives such as AND, OR, and NOT16. Together, this set of
mathematical formulas, called Boolean functions, is used to
simulate the model. To do so, all Boolean functions are updated
simultaneously to create a state transition. This process is repeated
until the system enters a sequence of recurrent state(s), called
attractor(s). Attractors describe the long-term behavior of a system

and can be associated with biological phenotypes15,16. Attractors
can be either single states (fixed points) or cyclic sequences of
states. All initial states leading to the same attractor are part of its
basin of attraction, which depicts the relevance of that attractor to
the whole system16.
The exhaustive simulation of the dynamics of a Boolean network

is an NP-hard problem45. Using the R package BoolNet68, such an
exact determination of basin sizes is limited to networks with a
maximum of 29 genes. For larger networks, such as the model
presented here, a random sampling of states is used instead. The
convergence of the basin sizes obtained with increasing sample
size is highlighted in Supplementary Figs. 19, 20.

PanNET model construction
The model presented is based on an extensive literature search.
The general modeling strategy followed that presented in Ikonomi
et al.69. First, we collected review papers on PanNETs to get an
overview of the pathways involved and common germline
mutations. Based on this, we collected information on regulatory
interactions for the mTOR, MAPK, and PI3K/AKT pathway, as well
as the genes and proteins that are involved in MEN1 or DAXX/
ATRX signaling and their crosstalk. Moreover, we considered
regulations of the cell cycle, for cell adhesion and angiogenic traits
to include well-known phenotypes of PanNET tumors. Whenever
possible, we considered regulations that are described for
pancreatic tissue. To ensure that our model includes reciprocal
crosstalk between the individual nodes, we also extend our
literature data collection by taking the curated database
MetaCoreTM (Clarivate) into account. The Boolean functions of
the established model can be found in Supplementary Table 1 and
are available as an SBML-file in our git repository (https://
github.com/sysbio-bioinf/PanNET). In addition, we provide a
detailed description of the underlying mechanistic regulations in
Supplementary Table 1, and a list of the cellular localization and
function of our nodes in Supplementary Table 2.

Model simulation
Model simulations were performed using the R-package Bool-
Net68. We used synchronous updating of all Boolean functions16.
We simulated different mutational landscapes of PanNETs by
constantly setting the node involved in the change to 1 or 016.
This relates to an experimental knockin or knockout. For this
reason, such perturbation experiments are of interest for
predicting intervention targets and further guiding future
laboratory experiments.
To evaluate and compare the obtained attractor patterns with

publicly available experimental data for these mutations, we
selected the activity of certain nodes in the attractors to assign a
particular phenotype. To do so, we focused on describing
phenotypes that are also described in experimental results:
proliferation, quiescence, Gap zero (G0)-alert, detachment, and
angiogenesis. To evaluate the proliferation status, we considered
the activity of cyclin E1 (CCNE1) and E2F transcription factor (E2F),
which mark the entry into the synthesis (S)-phase. Thus, the
absence of their activity in the attractor pattern was assigned to
quiescence. Attractors with any activity in CCNE1 and E2F but with
mTORC1 activity were assigned to a G0-alert phenotype. This state
was first described in stem cells and related the activity of
mTORC1 to an “alert” state that primes cells to enter the cell
cycle70,71. We interpret the presence of this combination of
attractor states as priming for proliferation, and therefore we
distinguish this state from complete quiescence. Detachment was
evaluated based on the inactivity of the node tight junctions.
Instead, angiogenesis was considered to be present when both
Vascular endothelial growth factor (VEGF) and Vascular endothe-
lial growth factor receptor (VEGFR) were active in the attractor
landscape (Supplementary Fig. 3).
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Finally, we could quantify the presence of these phenotypes,
taken singly (or in combination) in our attractor landscape, based
on the corresponding basin of attraction of the attractors in which
they appeared. The basin of attraction represents the number of
initial states that end up in a certain attractor after simulation16.
Hence, the larger the basin, the more the attractor is preponderant
in the landscape, and the more the phenotype is relevant72. For a
given input condition, we obtained the attractor landscape of the
PanNETs model by randomly sampling 10,000 initial states. Note
that our result was not significantly altered by the sampling size of
the initial states (Supplementary Figs. 19 and 20). In accordance,
Cho and colleagues46 also showed similar basin behavior by
sampling the same number of tates in a large model of colorectal
cancer.

Stability assessment and scale freeness
We applied noise to our PanNETs Boolean network model to
evaluate the robustness—and thus the significance—of our model
and the applied simulations. We analyzed the impact of noise in the
model and compared it to randomly generated Boolean networks.
A total of 1000 random networks were generated using a

“TestNetworkProperties” function that calls the generateRandomN-
KNetwork() function in the R package BoolNet68. The parameters n
and k of this function refer to the total number of nodes in the
network (n) and the number of inputs of a given node (k),
respectively. These paramters are selected according to their values
in the PanNET network to ensure a comparable topology.
To apply noise, we utilized the widely applied random bit flips

(the assignments of selected nodes were toggled from 1 to 0 and
vice versa)73. Once a bitflip is applied to a network state, the
corresponding successor state of both the original and the
perturbed state is computed. The distance between the two
successor states is then measured using the normalized Hamming
distance, which measures the number of different bits in two state
vectors. The distance is an indicator of the ability of the Boolean
network to maintain its functionality under noisy conditions. Thus,
a Hamming distance of zero indicates that the applied mutation
has no effect on the evaluated network behavior. The procedure
was repeated for 1000 randomly drawn states. The number of bit
flips for the perturbation was set to one. Finally, the results were
compared with those of 1000 randomly generated Boolean
networks. For this computationally intensive test, we computed
a p-value to evaluate whether our null hypothesis“ the Hamming
distance for the constructed network is greater than or equal to
the distance for the random networks” could be rejected. We
considered p < 0.05 to be significant. This test procedure is
included in the R-package BoolNet68.
Scale freeness is another relevant property of biologically

motivated networks. If a Boolean network has a scale-free network
architecture, it can be described by the power-law distribution
PðkÞ / k�α; where α is the power-law scaling parameter and k is the
number of edges in the network. To identify scale-freeness, we tested
whether the power- law distribution can plausibly describe the
degree distribution of the network (p > 0.1) by using the R-package
poweRlaw74. For the model presented here, a p-value of 0.68 was
obtained for the network without time delays. The corresponding
degree distribution is shown in Supplementary Fig. 1.

Model validation
Validation of the attractor activities associated with the most
aggressive phenotype showing proliferation, detachment, and
angiogenesis was performed both by literature search and
comparison with expression data (Fig. 5 and Supplementary Table
4). The gene expression levels of normal and tumor tissues derived
from RIP-TAG2 mice in the GSE73514 dataset25 were binarized by
a threshold defined by a ROC curve using the R-package pROC75.
According to this threshold, expression levels above the threshold

were considered as active and expression levels below the
threshold were considered inactive.

Tumor driver screening
The tumor driver screening was based on the analysis of the basin
of attraction of the aggressive attractor pattern. Here, we designed
a strategy based on the hypothesis that nodes with a biased
activity in the basin of attraction of a phenotype/attractor of
interest could ultimately influence the systems towards that
attractor when perturbed. An example of the approach in a small
‘toy model’ is depicted in Supplementary Figure 10. We evaluated
the activity of nodes in our network in the 100 million randomly
drawn initial states of the basin of attraction that lead to the
aggressive attractor pattern in both the WT and MEN1 simulation
setups. Here, we examined activities that would exceed one
standard deviation from the mean in both directions and
considered these initial states as potentially relevant to the final
attractor landscape. Hence if a node has a low probability of being
active in the start states leading to the severe attractor pattern, we
will consider this as a hint for that this node will be lost during
tumor progression. For each node identified as a driver, the
corresponding attractor landscape was computed via the knockin/
knockout of the driver node. Again, simulations were performed
starting from 10,000 randomly sampled start states under
synchronous update schemes. Drivers whose activity was unal-
tered between quiescent and aggressive attractor patterns were
not further evaluated for the attractor landscape (namely AMP-
activated protein kinase (AMPK) and Tumor protein 53 (TP53) in
the WT condition). In other words, a node selected as a low active
driver, but always inactive in quiescent and aggressive attractor
patterns, is not considered to influence the overall behavior. An
exception was made for the TP53 knockout in the WT condition,
where the attractor landscape simulation was performed as a
comparison to the TP53 knockout in the MEN1 loss condition.

Statistics
For statistical analysis, the Wilcoxon rank-sum test was performed
using the open-source statistical software R (https://www.r-
project.org). Here, p-values of 0.05 were considered statistically
significant. The data were also visualized in R.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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