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Metabolic function-based normalization improves
transcriptome data-driven reduction of genome-scale
metabolic models
Mahdi Jalili1, Martin Scharm2, Olaf Wolkenhauer 3,4,5 and Ali Salehzadeh-Yazdi6✉

Genome-scale metabolic models (GEMs) are extensively used to simulate cell metabolism and predict cell phenotypes. GEMs can
also be tailored to generate context-specific GEMs, using omics data integration approaches. To date, many integration approaches
have been developed, however, each with specific pros and cons; and none of these algorithms systematically outperforms the
others. The key to successful implementation of such integration algorithms lies in the optimal selection of parameters, and
thresholding is a crucial component in this process. To improve the predictive accuracy of context-specific models, we introduce a
new integration framework that improves the ranking of related genes and homogenizes the expression values of those gene sets
using single-sample Gene Set Enrichment Analysis (ssGSEA). In this study, we coupled ssGSEA with GIMME and validated the
advantages of the proposed framework to predict the ethanol formation of yeast grown in the glucose-limited chemostats, and to
simulate metabolic behaviors of yeast growth in four different carbon sources. This framework enhances the predictive accuracy of
GIMME which we demonstrate for predicting the yeast physiology in nutrient-limited cultures.
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INTRODUCTION
To illustrate the genotype-phenotype relationship of metabolic
phenotypes in an environment, we require a map of genome-
scale biochemical reactions and their comprehensive connections.
The GEnome-scale Metabolic models (GEM) provide a mathema-
tical framework to gain understanding into metabolic capacity of a
cell: enable system-wide analysis of genetic perturbations and
metabolic engineering, identify the constraints that the chemical
interactions operate under, explore metabolic diseases, as well as
to find essential enzymatic reactions1.
Following the introduction of GEMs, a new challenge arose: the

integration of omics data into a GEM for a better prediction of the
metabolic functionalities. The conjunction of gene expression data
and GEMs leads to a deeper understanding of the occurrence of
certain changes in different conditions and creates condition- and
context-specific models2. Since Covert et al. presented the first
conceptual framework on transcriptional regulation of metabolic
models in 20013, several approaches have been developed to
investigate how the integration of gene expression could affect
the content and predictive accuracy of a GEM4–6. These frame-
works, which either are based on a new algorithm or are
modifications of the previous frameworks, differ in their assump-
tions and mathematical formulations. All currently available
integration methods are listed in Table 1. With the increasing
interest in these integration approaches, multiple publications
have also focused on the benchmarking of the methods used to
generate context-specific models, and evaluated the advantages
and disadvantages of different approaches2,7. Currently, none of
these algorithms systematically outperforms the others, as each of
them has specific pros and cons depending on the type of data
available to tailor the GEM2.

One of the main challenges that limits overall predictive
capability of these methods is setting different parameters e.g.,
gene expression threshold to find significantly differential
expressed genes7. As enzymes have different expression levels
and activities, determination of whether the protein is expressed
or not by applying a uniform threshold for all expression data is
suboptimal8. Here, we propose tackling this problem by trans-
forming the transcription data to a higher-level space (gene sets
instead of genes) which is a more biologically relevant set of
features, which then can be integrated into a GEM. Critical for such
transformation is the selection of the annotation set used to
classify genes to respective gene groups: here we used a high-
quality, manually derived set of annotations, which comprised
mainly metabolic proteins. We therefore combined existing
methods for transcriptional data integration into a GEM with a
data normalization routine in order to more accurately predict the
metabolic phenotypes of a model organism Saccharomyces
cerevisiae. In general, our framework can be combined with all
developed integration methods, however, here we illustrate our
approach using the Gene Inactivity Moderated by Metabolism and
Expression (GIMME)9 algorithm.
We first analyzed the transcription data by ssGSEA, an extension

of Gene Set Enrichment Analysis (GSEA)10, to calculate enrichment
scores (ES) for each annotated gene set which associated to the
particular biological processes or pathways. Actually, ES represents
the degree and ranks the genes in a particular gene set according
to the values of expression. Thus, we reconciled the enrichment
score with the GIMME algorithm. We show that the models,
generated using normalized expression data, outperform the
accuracy of standard GIMME models in certain cases.
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In this study, the predictive accuracy of context-specific
metabolic models was evaluated using their ability to predict
metabolic fluxes under different scenarios. The prediction
accuracy was determined by comparing the predicted flux values
with experimentally measured values and was evaluated using
statistical metrics. Additionally, the accuracy of essential gene
prediction, growth rates and other phenotypic traits under
different environmental conditions could also be taken into
consideration.

RESULTS
Predicting growth in glucose-limited chemostats
We evaluated and compared context-specific GEMs of S. cerevisiae
built by different methods. First, we assessed their performance
using the experimental data from glucose-limited chemostats at
varying dilution rates. For each medium dilution rate of the
chemostat, we generated respective context-specific models
(using both GIMME and the combined method, ssGSEA-GIMME)
using the respective RNA-seq data. Then we benchmarked the
performance of these methods in predicting both intracellular and
extracellular metabolic fluxes, based on the experimentally
determined fluxes of glucose and maximal oxygen consumption
by S. cerevisiae cultures.
We first compared the flux balance analysis (FBA) predictions of

the main exchange fluxes for both the conventional Yeast8.4.2
and the context-specific models (Fig. 1a–c). All three methods
correctly predicted fluxes in the range of growth rate μ< 0:25h�1,
as the growth in this range is limited only by the substrate
availability. We also checked the flux intervals that would result in
the same value of the objective function (proxy for the specific
growth rate) using flux variability analysis (FVA). However, we
noticed only minor changes in the sums of flux variability intervals
when comparing GIMME and ssGSEA-GIMME.
Under glucose-limited conditions, S. cerevisiae exhibits fully-

respiratory energy harvesting until a certain growth rate, the so-
called critical growth rate μcrit , is reached. For growth with rates
above μcrit , ethanol formation is detected. For the wild-type S.
cerevisiae, the value of μcrit ¼ 0:28h�1 for glucose-limited chemo-
stats was determined by a number of studies11,12. As expected,
both the conventional GEM and context-specific models predicted
ethanol formation above the μcrit , with predicted values of μcrit ¼
0:273 h�1 for the conventional GEM, and μcrit ¼ 0:253 h�1 and
μcrit ¼ 0:272 h�1 for GIMME and ssGSEA-GIMME, respectively.
From the modeling perspective, it was shown that for this to
happen, a second global constraint (the first being the limitation
of the substrate, and the second being limited oxygen uptake) has
to be defined in the model (see13 for more details). Yet GIMME
predicted ethanol formation at a lower growth rate than the
experimental data suggested. Meanwhile, both the conventional
GEM and ssGSEA-GIMME captured the onset of ethanol formation
correctly, in agreement to the experimentally determined critical
growth rate.
Furthermore, we compared the predictions of intracellular

fluxes at μ ¼ 0:30h�1 for all three model implementations with
previously published literature data (Fig. 1d). Unsurprisingly, when
taking into account all the flux predictions in the metabolic
network, both context-specific models showed moderately
improved predictions compared to the conventional GEM
(Fig. 1e–g). Both GIMME and ssGSEA-GIMME models showed
rather similar flux profiles (Fig. 1f, g), in agreement with the similar
exometabolite flux predictions in Fig. 1b, c. Taking together the
results of these two tests, we suggest that ssGSEA-GIMME indeed
has potential to refine the predictions of metabolic fluxes better,
compared to GIMME. Importantly, ssGSEA-GIMME performed
better in predicting the critical growth rate of ethanol formation
for glucose-limited cultures of S. cerevisiae.

Testing flux predictions of growth on different substrates
We achieved only moderate improvement on predicting growth
on glucose-limited chemostat cultures with ssGSEA-GIMME,
compared to GIMME alone. Therefore, we wanted to determine
whether the improvement (or lack thereof) of flux predictions
depends on the growth condition (nutrients supplied). To that
end, we further explored the predictive capabilities of the context-
specific models by using the previously published data14. In the
study, S. cerevisiae was grown in four different carbon source-
limited chemostats (glucose-, maltose-, ethanol-, and acetate-
limited cultures) at the dilution rate D ¼ 0:1h�1.
Evaluation of the determination coefficient for the predictions

of the computational methods (Fig. 2) suggested that, compared
to the conventional GEM, GIMME alone improved predictions for
all carbon sources but ethanol. For growth on glucose and acetate,
the context-specific models, with and without applying ssGSEA,
showed very similar predictions. We saw similar effects when
taking into consideration the fluxes in central carbon metabolism
(Fig. 2; see Figure S1 for more details).
he low accuracy of the conventional GEM for predicting

glucose-limited growth (Fig. 2a) was, among other fluxes, due to
unreasonably high fluxes through succinate dehydrogenase,
surpassing the experimentally determined value by some 6-fold
(Figure S1). Contrary to the conventional GEM, both GIMME and
ssGSEA-GIMME models showed improved predictions for the flux
through succinate dehydrogenase.
Both GIMME and ssGSEA-GIMME showed incremental improve-

ment in predicting fluxes for growth on maltose and acetate
(Fig. 2b). For growth on ethanol, only ssGSEA-GIMME showed
improvement of the flux predictions, compared to the conven-
tional GEM. To our surprise, predictions of the model, generated
with GIMME alone were worse than these of the conventional
GEM. Based on our observations, here we conclude that the
improvement of context-specific models by data normalization
indeed is dependent on the condition analyzed. While normal-
ization of the expression data, using, among other methods,
ssGSEA, remarkably improves the predictions for some growth
conditions, prediction of quantitatively-sound flux distributions
are still very cumbersome for some growth conditions.

DISCUSSION
Since 2001, different frameworks have been developed or
modified to investigate how gene expression integration into
GEM could influence model content and increase its predictive
accuracy.
Integrating gene expression into fluxes is intrinsically hindered

by the assumption that “the mRNA transcript level is correlated
with enzyme activity”, which should be a systemic property of
metabolism. In addition, thresholding is a crucial step in gene
expression analysis, as it helps to identify and filter out genes that
are not differentially expressed, thus reducing the amount of noise
in the data. There are different types of thresholding methods,
such as standard deviation thresholding (STANDEP) and local T2,
which have been used in gene expression analysis. However,
these thresholding approaches have limitations, particularly when
it comes to detecting subtle changes in gene expression,
especially in complex systems such as metabolic networks.
Therefore, here we retrieve a functional profile of the gene sets

(a systemic mode), in order to better integrate the underlying
metabolic processes. Our central hypothesis is that gene set
enrichment as a pre-processing step can increase predictive
accuracy of context-specific models. This approach differs from
traditional thresholding methods in that it focuses on the
functional enrichment of gene sets rather than individual genes,
making it more robust in detecting subtle changes in gene
expression. ssGSEA works by normalizing gene expression data

M. Jalili et al.
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Fig. 1 Characterization of the predictions of context-specific models for growth of S. cerevisiae under glucose-limited conditions. a–c Flux
predictions of metabolite exchange (glucose, oxygen, ethanol and carbon dioxide) for changing dilution rates for glucose-limited chemostats
by the conventional Yeast8.4.2 a and the context-specific models, created using GIMME b and ssGSEA-GIMME c. Experimental data, triangles
taken from ref. 12 and circles from ref. 22. d Comparison of experimentally determined metabolic fluxes of the central carbon metabolism (E)
and predictions by the conventional GEM (M), GIMME (G) and ssGSEA-GIMME (S) model at μ= 0.30 h-1. e–g Correlation between the
experimental data (X-axis) and model predictions (Y-axis) for different model implementations. Experimental data in d and on the X-axes of
e–g taken from ref. 57. Flux values were normalized to that of hexokinase reaction (vHEXrel= 1). Glc glucose, Mal maltose, G6P glucose 6-
phosphate, F6P fructose 6-phosphate, 6PGL 6-phosphogluconolactone, F16BP fructose 1,6-bisphosphate, DHAP dihydroxyacetone phosphate,
GAP glycerol aldehyde 3-phosphate, G13BP 1,3-bisphosphoglycerate, 3PG 3-phosphoglycerate, 2PG 2-phosphoglycerate, PEP phosphoe-
nolpyruvate, PYR pyruvate, ACALD acetaldehyde, EtOH ethanol, Ac acetate, AC-COA acetyl-CoA, OAA oxaloacetate, CIT citrate, ICIT, isocitrate;
AKG, alpha-ketoglutarate; SUCC-COA, succinyl-CoA; SUCC, succinate; FUM, fumarate; MAL, malate; GLX, glyoxylate.
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based on the gene’s metabolic function, which allows for a more
accurate representation of the underlying biological processes
(Fig. 3).
To evaluate this proposed framework, we combined ssGSEA

with the GIMME algorithm and applied it to two gene expression
datasets; yeast grown in glucose-limited chemostats at different
dilution rates and growth of S. cerevisiae in four different carbon
source-limited chemostats at a constant dilution rate. This is a first
attempt to integrate normalized (based on metabolic function)
gene expression data into GEM, however, the framework could be
improved by considering other enrichment analysis approaches15.
However, our attempts to apply to generate context-specific
models using INIT16 or iMAT17 resulted in models unable to
predict biomass formation. While this issue could be mitigated by
supervised generation of context-specific models (i.e. manually
defining the reactions which should not be removed during
generation), such a need severely hampers both usability and
usefulness of models generated by these methods.
Our assessment of the predictions by GIMME and ssGSEA-

GIMME shows that the combined framework performs well under
all scenarios, outperforms conventional GIMME in some scenarios,
and shows promise in its ability to improve the performance of
integration approaches.
Conclusively, our findings suggest that ssGSEA has the potential

to improve the accuracy of metabolic models, particularly when

integrated with the GIMME algorithm. While this is a novel idea
and requires further validation with more data, it highlights the
importance of considering functional enrichment in gene expres-
sion analysis, and the potential benefits of using a method like
ssGSEA.
While our approach has shown promising results, it is important

to acknowledge some of the limitations of our study.
First, the sample size in our analysis was limited; therefore,

further validation on larger sample sizes is necessary to confirm
the robustness of our findings. Additionally, we were limited in our
choice of data sources, and further research could explore how
our approach performs with a broader range of data.
Second, the importance of carefully considering the impact of

thresholding on the accuracy of context-specific metabolic
models. The integration of transcriptomic data into a genome-
scale metabolic model plays a critical role in studying cellular
metabolism and developing context-specific metabolic models.
The thresholding of gene expression data significantly impacts the
accuracy of these models. Thresholding refers to setting a
minimum threshold for gene expression levels and determining
which genes are included or excluded from the models. This
process is used to reduce the impact of noise in the data and to
increase the accuracy of the models. However, the impact of
thresholding on the accuracy of context-specific metabolic models
is a complex issue that requires a comprehensive understanding

Fig. 2 Comparison of flux predictions for carbon-limited chemostat cultures with glucose, maltose ethanol or acetate as the single
carbon source. Experimental data on X-axis taken from ref. 14.
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of the interplay between gene expression data and metabolic
pathways.
Three key papers in this field include “StanDep: Capturing

transcriptomic variability improves context-specific metabolic
models” by Joshi et al.18, “Assessing key decisions for transcrip-
tomic data integration in biochemical networks” by Richelle
et al.19, and “Guidelines for extracting biologically relevant
context-specific metabolic models using gene expression data”
by Gopalakrishnan et al.20. These papers provide valuable insights
into the best practices for integrating transcriptomic data into
metabolic models and the impact of thresholding on their
accuracy.
The ssGSEA-based method that we developed represents a new

approach to investigating the impact of thresholding on the
accuracy of context-specific models. Our method is distinct from
other approaches in the field, as it utilizes ssGSEA to extract
biologically relevant information from gene expression data. This
innovative approach brings several benefits to the field, including
improved accuracy and efficiency, as demonstrated by our results.
Additionally, the core reaction sets generated using ssGSEA may

differ from those generated using other local thresholding
approaches. This difference may arise due to the different criteria
used by ssGSEA to identify gene sets for reduction. As for handling
lowly expressed genes with a low-flux metabolic activity, our
method does not inherently exclude these genes from the final
model. Instead, the model reduction process performed by
ssGSEA focuses on the metabolic function of genes and reactions
as well as gene ontology rather than their expression level or flux
activity. In this way, the reduction process can capture the most
relevant metabolic pathways, regardless of the expression or flux
activity of individual genes. This approach helps to mitigate the
effects of gene expression variability and ensures that the core
reaction sets generated are biologically relevant. Our results
demonstrate the potential of our method to provide a deeper
understanding of the impact of thresholding on the accuracy of
context-specific models. Our findings are important for advancing
the field, as they shed light on how ssGSEA can be utilized to
extract biologically relevant information from gene
expression data.
We acknowledge that our method has limitations and that there

is room for improvement. However, we are confident that our
results provide a solid foundation for future work in this area and
represent a step forward in developing context-specific models.

MATERIALS AND METHODS
An overview of the conceptual framework for transcriptional
data integration into a GEM
To devise and validate our new framework for integrating
transcriptomics data into a GEM, we have combined two
previously developed algorithms (ssGSEA and GIMME) to increase
the accuracy of metabolic functionalities of GEMs.

ssGSEA, a gene set enrichment analysis approach
Gene Set Enrichment analysis (GSEA) is a functional genomic analysis,
which uses the pre-defined set of genes/proteins across high-
throughput data and determines statistically significant sets that are
concordantly different between two biological states. Indeed, this
method is an approach for finding over-represented genes
associated with a phenotype. GSEA identifies either significantly
enriched (top of ranked genes list) or depleted (bottom of ranked
genes list) gene sets and elicits a quantitative enrichment score of
over-represented gene sets at the top or bottom of the list of the
ranked genes. Then, this method uses the permutation test to
estimate P-values and finally normalizes the enrichment score (NES)
for each gene set and adjusted P-value to multiple hypotheses
testing and False Discovery Rate (FDR) presented. Single sample
Gene Set Enrichment analysis (ssGSEA)21 is a customized version of
GSEA, that similar to GSEA detects biologically relevant gene sets that
are over-represented (top or bottom of the ranked gene) in a single
sample. The ssGSEA calculates an ES in a single sample without
requiring control data. The genes for a sample were ranked (and
normalized) from high to low using the Empirical Cumulative
Distribution Functions (ECDF) and absolute expression values. The ES
is obtained by a sum (integration) of the differences between the
weighted ECDF among genes of a gene set relative to the genes that
are not existent in the given set.

GIMME, an algorithm for creating a consistent GEM with a
desired metabolic objective
The GIMME algorithm9 weights the reactions by gene expression
values and uses a threshold for minimizing low-expressed
reactions as inactive while keeping the objective above a certain
value. In this study, we used the adapted version of the original
GIMME by S. Opdam and A. Richelle 20177, in which differences in
threshold and expression levels were used as weights and set as

Fig. 3 Workflow of the proposed concept in contrast to the standard framework. Circle, square and hexagon symbols stand for a given
pathway. Here, we depicted that in the traditional (existing) framework a whole pathway flux might be inhibited due to a single enzyme
down-regulation.
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objective coefficients of the reactions. The threshold was 25
percent quantile subtracted from the expression data and
reactions without expression data were given a weight of −1,
which prevented those reactions from deletion during model
construction. We set the tolerance for the reduction of the value of
the objective function to 0.9.

ssGSEA-GIMME, a combined framework for data
normalization and integration
To improve the accuracy of integration methods, we combined
the results of ssGSEA and the GIMME methods. To categorize
reactions of the yeast metabolic model with high confidence, we
mapped metabolic processes to the model gene-protein-reaction
(GPR) associations, using a manually curated annotation set of
proteins, assigned to different metabolic processes, first intro-
duced in ref. 22. The ssGSEA analysis was performed using R code
provided by Broad institute (Original code written by Pablo
Tamayo and modified by Karsten Krug) (https://github.com/
broadinstitute/ssGSEA2.0). The minimum number of genes
needed for a gene set was three. We used the area under curve
(“area.under.RES”) as a statistic, the z-score as correlation type, and
performed 1000 permutations. In our analysis, we used a z-score
cut-off value of 1.96. The scores calculated by the ssGSEA analysis
were used as weights to map genes expression values to the
corresponding reaction expression values, which we then fed into
GIMME to construct the context specific GEM.

The genome-scale metabolic model of yeast
We used the consensus genome-scale metabolic model of S.
cerevisiae. Version 8.4.2 was downloaded from the project’s GitHub
repository (https://github.com/SysBioChalmers/yeast-GEM), which
contains 4058 reactions, 2742 metabolites, and 1150 genes.
All bounds used the original flux bounds of the model, except

for the experimentally determined fluxes through ‘D-glucose
exchange’ (as measured) and ‘oxygen exchange’ (setting the lower
bound to maximal determined uptake rate) for the first study
(glucose-limited chemostats), and ‘D-glucose exchange’, ‘ethanol
exchange’, ‘acetate exchange’, and ‘maltose exchange’ for the
second study (carbon source-limited chemostats). We set the
biomass function to ‘biomass pseudoreaction’ for both studies.

Omics data collection; RNA-seq and flux data
We collected the omics data (transcriptome) and physiological
measurements from two studies. First, in an unpublished dataset
provided by Simon Hubbard (University of Manchester, UK), S.
cerevisiae strain CEN.PK113-7D was grown in a chemically-defined
minimal (Verduyn) medium with glucose as the main carbon
source. Cells were cultivated in two independent chemostats at
dilution rates spanning from D ¼ 0:20h�1 to 0:34h�1 and both
supernatant and cell samples were taken for determination of
exometabolite fluxes22, using analytical procedures described in23

and RNA-seq analysis, as described in24. In this study, the
sequencing was performed on the ABI SOLiD platform. The reads
were aligned to the S. cerevisiae genome assembly EF4, which was
downloaded from ENSEMBL, using the Bowtie version 1 software25.
To determine the expression values, the Reads Per Million (RPM)
normalization method was applied.
In a study by Daran-Lapujade et al.14, S. cerevisiae strain

CEN.PK113-7D was grown in a chemically-defined minimal
(Verduyn) medium with one of four carbon sources (glucose,
maltose, ethanol, or acetate) as the main carbon source at
D ¼ 0:10h�1. The results of transcriptomics and flux analysis were
described in14. Microarray profiling data was taken from the GEO
database, accession number GSE8895. The Microarray Analysis
consisted of taking samples from chemostats, preparing the
probes, and hybridizing them with Affymetrix GeneChip®

microarrays. The findings for each growth scenario were derived
from three separate, independently grown replicates.

Generation of context-specific GEMs
For each condition, we created two sets of context-specific GEMs:
the first one constructed by deploying the standard GIMME
method and the second one, deploying GIMME with transcrip-
tomics data, enriched by ssGSEA. All models and related codes are
available from the GitHub repository https://github.com/mahjalili/
ssGSEAGEM.

DATA AVAILABILITY
The experimental data from glucose-limited chemostat studies are partially available:
RNA-seq data was provided by Prof. Simon Hubbard and therefore not made public
in this manuscript and flux data is reported in (https://doi.org/10.1101/
2021.06.11.448029v2). Data from different carbon source-limited chemostats is
publicly available (https://doi.org/10.1074/jbc.M309578200).
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