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An automated workflow for multi-omics screening of
microbial model organisms
Stefano Donati 1, Matthias Mattanovich 1,2, Pernille Hjort1, Simo Abdessamad Baallal Jacobsen1, Sarah Dina Blomquist1,
Drude Mangaard1, Nicolas Gurdo1, Felix Pacheco Pastor1, Jérôme Maury1, Rene Hanke 1, Markus J. Herrgård3, Tune Wulff1,
Tadas Jakočiūnas 1, Lars Keld Nielsen 1,4✉ and Douglas McCloskey1✉

Multi-omics datasets are becoming of key importance to drive discovery in fundamental research as much as generating
knowledge for applied biotechnology. However, the construction of such large datasets is usually time-consuming and expensive.
Automation might enable to overcome these issues by streamlining workflows from sample generation to data analysis. Here, we
describe the construction of a complex workflow for the generation of high-throughput microbial multi-omics datasets. The
workflow comprises a custom-built platform for automated cultivation and sampling of microbes, sample preparation protocols,
analytical methods for sample analysis and automated scripts for raw data processing. We demonstrate possibilities and limitations
of such workflow in generating data for three biotechnologically relevant model organisms, namely Escherichia coli, Saccharomyces
cerevisiae, and Pseudomonas putida.
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INTRODUCTION
Microorganisms have evolved to live and thrive in a diverse set of
environments 1–3. One of the factors that has contributed to this
adaptability is the evolution and plasticity of their metabolism.
Nowadays, manipulation of metabolism in microorganisms can be
exploited for industrial biotechnology4 as well as for biomedical
purposes5. However, current efforts to harness and engineer
microorganisms for biotechnology and human health applications
are limited by our understanding of biology. For example, in
Escherichia coli, widely regarded as the best-studied microbial
model organism, functional annotation of 34.6% genes is missing6.
Metabolite-protein interactions are also widely unknown7 and
only recently starting to be systematically mapped8–10. In order to
bridge these gaps in our understanding of biology at the systems
level, a new wave of technological advances in laboratory
automation, analytical chemistry, and data science is needed. In
particular, automated cultivation platforms that can reproducibly
grow a diverse range of microorganisms in different environ-
mental conditions (e.g., degrees of aerobicity and ranges of
temperatures) that support multi-omics (e.g., genomic, transcrip-
tomics, proteomic, metabolomic, among others) data generation
and the relative analysis workflows are required11.
Recent efforts have been made towards developing automated

cultivation platforms that support a diverse range of cultivation
conditions and volumes (See Ladner et al.12 for a review). Most
analytical workflows for obtaining metabolomic, lipidomic, pro-
teomic, and fluxomic data require several millions of cells per
sample. Commercial automated cultivation platforms that fall into
this range include 2Mag13–15 and BioLector16–18. The 2Mag
reaction block supports 48 8–12mL continuously stirred cultures
grown aerobically or anaerobically with online pH and optical
density (OD) sensors. The BioLector was designed to operate 48
well microtiter plates (MTPs) that can range from 800 to 2400 μL
with online pH and dissolved oxygen (dO2) sensors and online OD

measurements. Both the 2Mag reaction block and BioLector have
been integrated with liquid handling robots to enable online pH
control, substrate feeding, and sampling for other online or offline
measurements13–18. While both commercial 2Mag and BioLector
platforms provide tight control of physiological conditions such as
temperature, aeration, etc., several major limitations exist that
limit their use for high throughput omics experiments involving
thousands of different strains. Limitations include the need for
expensive disposable reaction chambers, limited throughput (i.e.,
only up to 48 cultivations at a time) and lack of support for fast
sampling techniques for metabolomics, where speed of sampling
is critical for accurate data acquisition19. Customized automated
cultivation platforms can also support a diverse range of growth
conditions and experiment types. For example, a Tecan liquid
handling robot was customized to support unicellular photo-
trophic growth in MTPs with control of CO2 and light20. In another
case, a Tecan robot was integrated with a customized 2Mag block
with re-usable cultivation tubes and an OD reader for high
throughput adaptive laboratory evolution experiments (ALE)21. In
another example, a Hamilton robot was integrated with an
incubator for growth in standard 96 well MTPs, an OD reader, and
online analytical assays for pH, acetate, and glucose concentra-
tions22. A more recent approach involved a do-it-yourself (DIY)
robotics system based on open-source components including
Raspberry Pi, Arduino, and python that was shown to scale to
several dozens of 40 mL glass cultivation chambers23. Importantly
many of these automation platforms are built for specific
experimental set-ups (e.g., ALE), and none of these platforms
support both aerobic and anaerobic growth, greater than
96 simultaneous cultivations, and fast sampling and quenching
for omics sampling on the same robot out of the box.
In this work, we describe the development and testing of a

complex workflow for high-throughput multi-omics screening of
microbial organisms, and we discuss its advantages and
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limitations (Fig. 1A). The workflow is composed of an automated
cultivation and sampling Tecan platform, Agilent Bravo sample
handling robots for sample preparation, the relative analytical
methods and data analysis pipelines. The Tecan cultivation
platform (TCP) robot exploits a custom 3D printed lid for 96well

plates to i) track growth of cultivations ii) enable high throughput
sampling of microbial cultivations for omics analysis such as endo/
exo metabolomics, proteomics and proteinogenic amino acid
analysis. We demonstrate that the platform can be used to
characterize growth of different microbial organisms of industrial
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Fig. 1 Structure of the Tecan Cultivation Platform and of the multi-omics workflow. A diagram representing the complete workflow. Cells
were grown on the TCP and growth data was acquired using a plate reader. Upon triggering a user-defined OD, the cultivation platform could
simultaneously sample for endo/exo-metabolomics or sample for protein extraction. Samples were then prepared and extracted for analysis
using different workflows on Agilent Bravo robots. Processed samples were analyzed with the appropriate analytical instrument. All
instruments were equipped with a 96-well format autosampler. Raw data was then processed through automated workflows. Created with
BioRender.com. B overview of the custom built TCP platform and its key components.
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interest, such as Escherichia coli, Saccharomyces cerevisiae and
Pseudomonas putida. Moreover, the 3D printed lid enables to
reduce edge-effects in the plates and compare -omics data from
samples obtained throughout the plate. In particular, automating
workflows at the level of sample preparation, sample analysis and
raw data processing helped us to significantly increase sample
analysis capacity. We also discuss limitations of the platform, in
example the difficulty in keeping cultivations well aerated and in
steady-state, its ability to reproduce the physiological state of cells
cultivated in more classical systems, such as shake flasks, and in
growing effectively anaerobic cultures.

RESULTS
A custom made cultivation plate lid enables control of
headspace gas for 96 well cultivations
Microorganisms have evolved to grow under various degrees of
aerobicity. In order to cultivate such organisms, it is necessary to
precisely control the headspace gas composition of their
cultivation environment. To this end, we designed and fabricated
a custom 96-well plate lid using 3D printing technology (Fig. 2a).
We used biocompatible Acrylonitrile butadiene styrene (ABS)
which allows for chemical sealing between the layers of the lid to
prevent air leakage and sterilization using ethanol and UV
radiation. The lid was composed of three layers that are 3D-
printed and chemically sealed using acetone. When assembled,
the inner chamber of the lid formed a network of channels that
aided in dispersing the air uniformly across all wells. The
uniformity of airflow was assessed by submerging the lid under
the water while pushing air through the lid to observe the density

and distribution of bubbles that form. Automation friendly 96-well
funneled sampling ports at the top of the lid allowed for robust
and automated sampling during cultivation even when a portion
of the sampling tips were offset. The airflow through the lid was
such that air was pushed out of the sampling ports when not
blocked by pipetting tips which prevented contamination and
allowed for operation of the TCP without a HEPA filter and laminar
flow.
96-well plate cultivations are notorious for edge effects, which

can be broadly categorized as non-uniform heating and volume
loss across all 96 wells. Edge effects contribute to high variance
between replicates and non-reproducibility between experiments.
In order to understand the extent to which edge effects were
present when cultivating using custom 3D-printed lid, we
quantified volume loss by measuring Orange G and temperature,
using a thermometer (Fig. 2b). Overall, the expected lower
temperatures at the edges of the plate did not match the random
distribution of evaporation rates, suggesting that the major factor
in evaporation might be related to the air circulating in the lid.
Several measures were necessary to avoid cross contamination

while conserving tips. First, 96-well plates were sealed with
aluminum seal and pierced using a dedicated box of tips and the
TCP MCA96 pipetting head prior to starting any cultivations. The
aluminum seal was found to prevent cross talk between wells
arising from condensation accumulation during cultivation.
Second, a tip box was dedicated to each cultivation plate (i.e., 6
tip boxes for 6 cultivation plates). Third, tips were washed using
ethanol and water in an on-deck washing station to remove
culture components and disinfect tips following sampling for OD
measurements. Cross contamination was evaluated by the

X: 0 °
Y: -20 °
Z: -20 °

a b

c

Fig. 2 A 3D printed lid to control the headspace of 96 well cultivations. a custom lid was 3D printed to control the headspace gas of the
cultivations. Consisting of 3 parts, the lid was assembled by stacking and chemical sealing. Once fixed on a cultivation plate, the created
chamber allowed for controlling the headspace gas composition and evenly dispersed the air across the wells. The conical inlet holes for the
sampling ports on the top of the lid are highlighted on the right. Background added for contrast. b Temperature distribution and volume loss.
The temperature of selected wells was recorded with a thermometer and is plotted in the small squares. The volume loss was estimated via
the change of OD450 measurements of OrangeG and is plotted in the large squares. The temperature distribution indicates edge effects, the
outside wells registering a lower temperature than the ones closer to the center of the plate. The volume loss does not appear to be
correlated with the temperature distribution. c All the wells of a 96-well microtiter plate were filled with media and every other column was
inoculated with E. coli. OD measurements were recorded every 2 h. After 8 h, the growth rate for each well was calculated based on OD
measurements. The inoculated wells showed growth rates in the expected range while no growth could be observed in the wells filled with
only media.

S. Donati et al.

3

Published in partnership with the Systems Biology Institute npj Systems Biology and Applications (2023)    14 



following experiments: (1) E. coli MG1655 K-12 model organism
was cultivated in plates where every other column was filled with
only the media and assessed for growth after 8 h (Fig. 2c), and (2)
a plate inoculated with a model organism and a plate filled only
with media were sampled using the same tips for 24 h and the
plate filled with media was assessed for growth. In both
experiments, no growth was observed in the wells filled only
with medium, demonstrating that no cross-contamination was
occurring either from improperly sterilized tips or from well-to-
well in a cultivation plate.

Physiological characterization of model organisms in aerobic
and anaerobic conditions
The ability of the TCP to ascertain accurate growth profiles was
further tested using E. coli, S. cerevisiae and P. putida in aerobic
conditions with minimal media (Fig. 3a). The growth rates for E.
coli, S. cerevisiae and P. putida were found to reproduce, within
error, growth rates obtained in shake flask cultivations (Table 1).

Next, we tested whether the custom-made lid could be suitable
for anaerobic cultivations. After preparing and sealing the
cultivation plate in an anaerobic chamber, we covered the plate
with the lid, flushing it with pure nitrogen instead of air. After the
first OD measurement the aluminum seal was pierced, causing the
liquid culture to be separated from the room atmosphere only by
the nitrogen flushed through the lid. For E. coli in anaerobic
conditions (Fig. 3b, Table 1), we could observe comparable growth
rates to flask cultivations but considerably lower yields than what
could be expected. We then tested the platform with two obligate
anaerobic bacteria, Lacrimispora saccharolytica (DSM2544) and
Enterocloster bolteae (DSM15670) (Fig. 3b). In both cases we could
observe growth, with circa four doublings over a few hours.
Growth of strict anaerobic organisms confirms that the lid can
assure anaerobic environment of the cultures for a limited amount
of time. However, further optimization might be needed to obtain
higher growth yields. Overall, growth rates of different organisms
could be reproduced on the TCP and the custom-made lid
enabled the growth for a few hours of strict anaerobic organisms.

Fig. 3 Growth curves of organisms grown on the TCP. a growth curves of aerobic cultivations on the TCP of 80 biological replicates of E. coli,
S. cerevisiae and P. putida. b growth curves of anaerobic cultivations of E. coli (N= 40) and obligate anaerobs DSM2544 (Lacrimispora
saccharolytica) and DSM15670 (Enterocloster bolteae).

Table 1. maximum growth rates of microorganisms cultivated in the TCP compared to shake flasks.

Organism Growth rate measured plates Growth rate measured flasks

E. coli MG1655 (aerobic) 0.594 ± 0.021 0.61 ± 0.05

E. coli MG1655 (anaerobic) 0.248 ± 0.098 0.26 ± 0.04

S. cerevisiae CEN.PK113-7D 0.403 ± 0.027 0.33 ± 0.07

P. putida KT2440 0.845 ± 0.024 0.7 ± 0.09

In the case of 96well growth rates, we calculated growth rates over time using a non-parametric model with and reported the average maximum growth rate
and its standard deviation across the whole plate (N= 80). For flask cultivations, we report the average growth rate from 3 OD measurements and the relative
standard deviation (N= 3).
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A single time point strategy for capturing metabolic rates in
plates
The ability to ascertain the uptake and secretion rates during
steady-state growth enables several downstream analyses that are
critical for quantitative modeling of organisms including
constraint-based analysis (e.g., FBA, FVA, etc.) and absolute
reaction rate determination using metabolic flux analysis (MFA).
Traditionally, uptake and secretion rates are determined by
measuring metabolites from multiple exo-metabolomic samples
(Fig. 4a) and growth over time during steady-state growth of the
same culture. However, this approach is not amenable to high-
throughput and low volume cultivation methods. Recently, it has
been shown that samples taken from dilution series of microbial
cultivations of P. putida24 could be used to quantify with
confidence uptake and secretion rates (Fig. 4b). We tested the
same single-time-point strategy on E. coli, P. putida and S.
cerevisiae, by collecting culture samples with the cultivation
platform (Fig. 4c). Samples were then measured with HPLC, to
obtain concentrations of glucose and of organic acids produced
by fermentation. We also took samples from batch shake-flask
cultivations and compared the data.
We observed that uptake and secretion rates obtained in the

TCP, either by considering dilutions measurements or a single
end-point measurement, could be quantified with a coefficient of
variation lower than 30% among replicates. Aerobically, E. coli
fermented glucose mostly to acetate, while anaerobically we
observed mixed acid fermentation and strong accumulation of
formate (Supplementary Table 2). However, formate formation in
the aerobic cultivations of E. coli points to suboptimal aeration of
the cultivations even at a measured growth rate of circa 0.6 1/h
(Table 1). For P. putida we observed accumulation of gluconate
and for S. cerevisiae strong production of ethanol. Overall, we
show that the single time-point sampling strategy employed in
our workflow produces meaningful data on the physiological state
of the cell. However, we could notice differences with data
produced in shake flasks (Supplementary Table 2), probably due
to slight differences in aeration conditions. Moreover, the
proposed methodology is limited in its precision, and might be
best suited for initial screenings in high-throughput of uptake and
secretion rates rather than for their precise measurement.

Integrated sampling and quenching for quantitative
metabolomics captures a snapshot of cell physiology
The metabolome provides an instant readout of the cell state and
requires rapid sampling and quenching protocols due to the fast
turnover time of intracellular metabolites. Due to the diversity of
metabolite chemical properties and the compositions of the cell
wall and membrane, sampling, quenching, and extraction proto-
cols are often compound-class and organism-specific25. The
metabolome is arguably the most sensitive cellular component,
as it can dramatically change in a few seconds after perturbing
cells26. The required speed and need to accommodate hetero-
geneity make the automation of sampling and quenching for
metabolomics is extremely challenging. An initial setup included
automated quenching by fast addition of hot ethanol (70oC) on
the filtered samples. However, LC-MS analysis of E. coli samples
revealed a low energy charge ratio (EC) (Fig. 5a). As samples were
obtained from exponentially growing cultures, it was expected to
observe an EC ratio close to 127, and this discrepancy pointed to
metabolite degradation during the quenching and extraction
process. Hence, we set to test an acidic acetonitrile and methanol-
based quenching solution28 and compared it to the ethanol
extraction method in various conditions, compatible with our
automated 96-well format setup (Fig. 5a). Eventually a semi-
automatic procedure was chosen, which consisted in moving the
filter plate with cells to a liquid nitrogen bath outside of the TCP,
quickly incubating in −20 oC and then subsequently adding cold

ACN and incubating again at −20 oC. The setup was chosen also
as it allows to transfer the plate to a ventilated fume-hood
ensuring safety measures when working with toxic volatile
compounds such as acetonitrile. We then tested this protocol on
a plate of E. coli cultivations. Samples were taken from
exponentially growing cultures (Supplementary Fig. 1) and
measured with LC-MS. Overall, we could observe that the EC
was evenly distributed throughout the plate (Fig. 5b). We also
measured in relative terms more than 100 metabolites involved in
primary metabolism, observing that most metabolites would
retain a CV lower than 50% in all cultivations among the plate,
with only one outlier sample (Supplementary Fig. 2). Similar results
were obtained for whole plate cultivations of P. putida and S.
cerevisiae (Fig. 5C, Supplementary Fig. 2). In summary, we could
observe reproducible metabolome profiles among the whole plate
and stable EC values, confirming previous findings that the
custom manufactured cultivation lid is suitable to minimize edge
effects and produce reproducible biological replicates. The
sampling method proved to be applicable to S. cerevisiae and P.
putida (Fig. 5c). The few outliers present in the plates could be
explained with clogging of a few wells on the filter plate during
sampling and/or sample preparation.

Proteome analysis of selected organisms
We verified edge effects of the plate-based cultivation and general
quality of samples also at the proteome level. We cultivated
separate plates with 80 replicates of E. coli S. cerevisiae and P.
putida, observing again low variation in growth among replicates
(Supplementary Fig. 3) and obtaining biomass samples. After
sampling at least 0.15 mg of biomass from each well. 21 randomly-
selected samples, spread across the plate, were analyzed by DIA
proteomics.
We observed a good reproducibility in coverage of the

measured proteomes, with respectively 46%, 53% and 31% for
E. coli, P. putida and S. cerevisiae of measured proteins out of
protein coding genes. Moreover, most proteins displayed a low
variability among replicates, with respectively 84% 81% and 85%
of measured proteins retaining a CV lower than 30% among all
replicates. Moreover, we did not observe strong outliers in the
dataset when comparing random triplets of biological replicates
(Supplementary Fig. 4). This confirms that the proteome of
biological replicates among the plates is reproducible and not
affected by edge effects of the cultivation setup.

Parallel labeling experiments on the TCP
While the metabolome informs on concentrations of metabolic
species, fluxomics methods allow to reconstruct the metabolic
rates in the biochemical networks of organisms. An established
method to reconstruct flux distributions is through 13C metabolic
flux analysis (MFA) by measuring proteinogenic amino acids 29,30.
This methodology involves sampling of cells grown on minimal
media with labeled carbon compounds for isotopomer analysis of
proteinogenic amino acids. This data in combination with
metabolic uptake/secretion rates and growth rates, are then used
to find the flux distribution that fits the data best in an assumed
starting metabolic model.
We first measured mass distribution vectors (MDVs) of

proteinogenic amino-acids of E. coli cultivated on 12C glucose to
assess the automated sample preparation pipeline and the
accuracy of the GC-MS method. We compared our data to
theoretical values calculated assuming natural isotope abundance
of measured fragments (Supplementary Fig. 5A). Overall, we
observed a good precision of our measurements, with only a few
fragments deviating by 1mol% from the expected value. We then
cultivated E. coli on the TCP using media containing different
isotope tracers (1-2 13C glucose, 1–6 13C glucose) and collecting
biomass samples in exponential phase. We compared MDV data
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Fig. 4 A single time-point strategy for uptake and secretion rate measurements. a scheme of traditional sampling to calculate uptake/
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metabolome. Samples collected at the end of the cultivation were used for HPLC analysis.
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obtained from these experiments to similar experiments from
literature, in which cells were cultivated with the same labeled
carbon sources in batch mode in small bioreactors31. In this case,
MIDs obtained from experiments on the TCP differed significantly,
with transitions deviating up to almost 10 mol% from the
reference dataset (Supplementary Fig. 5B). Because of these
differences, fitting the data on a reference metabolic model of E.
coli did not result in an acceptable fit for MFA. To verify a possible
variability of labeling between different wells on the TCP plates,
we sampled and analyzed 40 samples of E. coli grown in the TCP
on labeled media (80/20 ratio: 1–13 C/U-13C glucose M9 minimal
media). We observed that, among the 40 replicate samples, the
coefficient of variation for most measurements was below 20%
(Supplementary Fig. 5C). These results confirm the absence of
edge effects, which was already observed in the metabolomics
and proteomics data. Hence, it seems that in its current setup the
TCP is not suitable for MFA experiments based on measurement of
proteinogenic amino acids. This might be caused by difficulties in
(i) keeping cells in a controlled well-aerated environment (ii)
reaching isotopic steady-state.

DISCUSSION
In recent years, multi-omics studies of metabolism have been
broadening our understanding at the systems level, for example
identifying novel metabolite-transcription factor interactions at a
large scale8, showcasing how cells can overcome mutations
affecting metabolism32 or perturbations of enzyme levels33. The
accumulation of a critical mass of high quality multi-omics
datasets will eventually enable the application of machine
learning methods to truly deconvolute biological complexity
through the various biochemical layers that compose cells34. In

turn, this knowledge will allow the construction of more precise
whole-cell models and as a consequence rational engineering of
biological systems for biotechnological and medical applications.
We have described here the design and validation of a custom

platform for automated and high throughput 96 well plate-based
batch cultivation of aerobic and anaerobic microorganisms for
omics analysis. We show that a custom 3D printed lid allows to
control of headspace gas for plate-based cultivations, and that the
resulting uniform gas headspace allows to avoid plate-edge
effects. The custom 3D printed lid can be used to flush different
gasses in the headspace of plate cultivations. While flushing
nitrogen instead of compressed air through the lids, we tested
anaerobic growth of microorganisms, obtaining few duplications
for strict anaerobic organisms and E. coli. However, the platform
needs to be further refined to enable sample generation for
anaerobic organisms.
Integrating a positive pressure pump in a TECAN Evo unit

enabled us to effectively separate biomass from supernatant in an
automated fashion. Effective sampling for metabolomics is a
generally difficult task, due to instability of metabolites. We could
show that combining sampling with filter plates and fast manual
quenching in liquid nitrogen and cold organic solvents produces
biologically relevant metabolomics samples, with only few outliers
per plate. These outliers can potentially be caused by faulty
filtration during sampling or sample preparation and/or uneven
quenching of the plate in liquid nitrogen. Obtaining enough
replicate samples (>3) from analyzed strains (which is trivial using
the TCP described here) and discarding the faulty ones, based on
analyzing growth profiles or filtration of the samples, would
overcome this problem. Adapting the platform to operate safely
with toxic organic solvents as acetonitrile, could also enable
automated high-throughput quenching with possibly a lower

Fig. 5 Quality of metabolomics data from parallel cultivations of E. coli. a Comparison of EC ratios among different quenching solvents and
quenching conditions. Different colors represent the different conditions. Bars represent averages and error bars the standard deviations.
b Heatmap displaying the distribution of the EC ratios among a plate of biological replicates of E. coli. c Distribution of values of EC ratios
among 3 separate plates of cultivations of E. coli, P. putida or S. cerevisiae cultivations.
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number of outlier samples. Furthermore, we have shown that the
platform is capable of taking highly reproducible samples for
proteomics, extracellular metabolomics and amino-acid isotopo-
mer analysis. Despite good data reproducibility among the plate
cultivations and at the growth level, we observed some
discrepancies from data generated in previous research studies.
Growth rates did not differ significantly compared to growth rates
from batch flask cultures. However, we could observe differences
in uptake and secretion rates and in labeling of amino acids
compared to flask cultivations and previous studies. These
discrepancies are most likely due to differences in aeration
between 96 well plates against shake flasks and in the variability in
reaching isotopic steady state in proteinogenic amino acids in
short batch cultivations. Future work could explore performing
MFA measuring metabolic intermediates35 rather than proteino-
genic amino acids.
The optimal plate layout for steady-state single time point

omics sampling experiments consisted of 88 wells reserved for
experimental conditions and 8 wells for controls such as growth
and omics controls (e.g. E. coli MG1655 K12), contamination
controls (empty media) and volume loss controls (OrangeG). We
observed that the platform operates at best when cultivating 3
plates simultaneously, allowing growth measurements every
30min. With such setup, the platform is capable of growing and
sampling 264 batch cultivations per day. Samples generated in 96
well format could be easily processed further through custom
protocols on liquid handling robots. The capacity of this setup
allows to generate and prepare in a few days hundreds of samples
for multi-omics measurements, which would normally require
many weeks of manual work by a researcher using traditional
cultivation equipment (e.g., shake flasks). While we could increase
the speed of generating samples and of processing raw data, an
important bottleneck for the generation of multi-omics datasets
resides in the capacity of mass spectrometry based analytical
procedures. The several hundred samples generated in one day of
operating the TCP, could be analyzed only in several days.
Advances in mass-spec based data generation methodologies will
be fundamental to enable timely and high throughput generation
of multi-omics data36. While online fluorescence measurements
are already possible and routinely used on the TCP, future work
may look towards integrating other online measurements such as
pH and dissolved oxygen, optimizing aeration conditions of the
cultures, testing different headspace gasses and optimizing
further quenching conditions for intracellular metabolomics.
Despite limitations in cultivation conditions on the TCP, an
automated platform as the one described in this study might be
employed to quickly generate samples in high throughput
screening studies of engineered strains, in order to reduce the
number of strains of interest for further more accurate
characterization.

METHODS
Design of a Tecan platform for automated and high
throughput growth screening and sampling
A Tecan Freedom Evo liquid handler formed the base of the TCP
(Fig. 1B). The platform was integrated with the following main
components: a Tecan Nano Plus spectrophotometer with adapters
for online measurements at OD600 (culture biomass) and OD450
(OrangeG for volume loss control); a water reservoir for diluting
samples for OD measurements; an online positive pressure station
(Tecan Resolvex M10) for biomass separation from culture prior to
quenching; plate hotels for 384-well plates (for OD measurement)
and filter/collection plates (for biomass/culture separation);
shakers (Bioshake 3000-T elm shaker, Qinstruments) for shaking
and temperature control of the cultivation plates. Furthermore, tip
boxes were dedicated for culture sampling (1-box of tips per

cultivation plate) and diluting samples for OD measurement (1-
box of tips). Several iterations of the deck layout were explored
before settling on the current layout which was found to
maximize cultivation capacity along with on deck tips and plate
storage. With the chosen deck setup, the automated platform
could perform OD measurements of a whole 96-well plate
approximately every 8 min. The simultaneous operation of six
96well-plate cultivations with online OD sampling and OD
triggered omics sampling was orchestrated by a script written
using the Tecan EvoWare software with integrated Visual Basic
modules for more complicated calculations. The main operations
of the platform can be divided into two parts: 1) growth phase
and 2) sampling phase (Supplemental Video 1). All scripts and user
input files for running the TCP can be obtained by request.
During the fully automated growth phase, 5 μL of culture was

sampled from each cultivation plate and every well at predefined
time intervals to measure culture density. Those 5 μL of culture
were then diluted 5 fold (final volume 25 μL) with filtered water in
one of the quadrants of a 384-well plate (OD measurement plate)
before OD measurement by the on-deck spectrophotometer. OD
was measured at both 450 and 600 nm. Sampling tips were then
washed using ethanol and water in the washing station and
returned to their dedicated positions on the deck. After
exhausting all four quadrants of the 384-well OD measurement
plate, the spent plate was moved to trash and replaced by the
next available 384-plate stored in the hotels.
The TCP allows for whole-plate semi-automated sampling for

omics data generation. Upon reaching a particular cell density in
pre-defined wells, cultures were processed in different ways
depending on the desired type of sample and relative omics
analysis to be performed. If the culture was used for endo/exo-
metabolomics sample preparation, the culture was pipetted from
the cultivation plate and moved to a filter/collection plate, which
was subsequently filtered by positive pressure filtration. During
positive pressure filtration the biomass was separated and
maintained on the filter plate (for endo- metabolomics) and the
supernatant deposited in the collection plate (for exo- metabo-
lomics). After filtration, the filter plate was immediately moved
(manually) and quenched by flash freezing the biomass in liquid
nitrogen, and then both collection and filter plates stored in
−80 oC until further sample extraction. If the cultures were used
for proteomics or fluxomics sample preparation, then the
cultivation plates were moved off the deck of the TCP and
centrifuged to pellet the biomass for storage in −80 oC until
further sample extraction.

Chemicals and reagents
Uniformly labeled 13C and 1–13C glucose was purchased from
Cambridge Isotope Laboratories, Inc. 1,2–13C and 1,6–13C glucose
along with unlabeled media components were purchased from
Sigma-Aldrich-Merck. LC-MS reagents were purchased from Fisher
Scientific and Sigma-Aldrich-Merck. Cultivation and sample hand-
ling materials were purchased from Waters and Sigma-Aldrich-
Merck.

Organisms and cultivation conditions
Escherichia coli K-12 MG1655 was grown in glucose M9 minimal
media. Glucose M9 minimal media consisted of 4 g/L glucose,
0.1 mM CaCl2, 2.0 mM MgSO4, trace element solution, and
M9 salts. A 4,000× trace element solution contains 27 g/L
FeCl3·6H2O, 2 g/L ZnCl2·4H2O, 2 g/L CoCl2·6H2O, 2 g/L
NaMoO4·2H2O, 1 g/L CaCl2·H2O, 1.3 g/L CuCl2·6H2O, 0.5 g/L
H3BO3, and concentrated HCl dissolved in double-distilled H2O
(ddH2O) and sterile filtered. A 10× M9 salts solution contains 68 g/
L Na2HPO4 anhydrous, 30 g/L KH2PO4, 5 g/L NaCl, and 10 g/L
NH4Cl dissolved in ddH2O and autoclaved. Saccharomyces
cerevisiae CEN.PK113–7D was grown in Delft media supplemented

S. Donati et al.

8

npj Systems Biology and Applications (2023)    14 Published in partnership with the Systems Biology Institute



with 20 g/L glucose37. Pseudomonas putida KT2440 was grown in
de Bont medium38 containing 4 g/L of glucose as sole carbon
source, 1.55 g/L K2HPO4, 0.85/L g NaH2PO4, 2.0 g/L (NH4)2SO4,
0.1 g/L MgCl2, 10 mg/L EDTA, 2 mg/L ZnSO4, 1 mg/L CaCl2, 5 mg/L
FeSO4, 0.2 mg/L Na2MoO4, 0.2 mg/L CuSO4, 0.4 mg/L CoCl2, and
1mg/L MnCl2. Obligate anaerobic bacteria were cultivated on
modified GAM (mGAM) media.

Custom 3D printed lid
The lid was designed using SolidWorks CAD software and the
model files are provided in the Supplemental Material. The three
parts of the lid were 3D-printed using Stratasys Fortus 380mc
printer from biocompatible Acrylonitrile butadiene styrene (ABS).
The parts were assembled to a functional lid by mounting the
parts together and sealing them with acetone to avoid any gas
leakage between the parts.

Automated omics sample extraction and preparation
Automated cultivation and omics sampling was supplemented
with automated omics sample extraction and analytical sample
preparation implemented on Agilent Bravo liquid handling robots.
Sample preparation methods included polar metabolite extraction
for acquisition by liquid chromatography tandem mass spectro-
metry (LC-MS/MS), proteinogenic amino acid extraction and
derivatization for acquisition by gas chromatography mass
spectrometry (GC-MS) and proteomics sample preparation and
acquisition by LC-MS. Other automated analytical workflows
included the following procedures: dilution series of standards
for calibration curves, plate replication, sample pooling and
specific dilution of individual samples from a microtiter plate.

Endo-metabolomics extraction and preparation
Endo- metabolomics samples from E. coli and P. putida were
prepared using several automated steps: 1) the biomass was
collected by positive pressure filtration (Tecan Resolvex M10) of
300 μL of culture using Sirocco protein precipitation filter plates
(Waters) on the deck of the TCP (Supplementary Video 1); 2) the
filter plate was immediately removed from the deck of TCP and
immersed in liquid nitrogen to quench cellular metabolism, and
subsequently stored in −80 oC for further extraction. All further
liquid handling steps except filtration were done by the Agilent
Bravo: (1) metabolites from the filter plate were extracted by
adding 150 μL of cold (−20 oC) extraction solvent (ES: 40% (v/v)
acetonitrile (ACN), 40% (v/v) methanol and 0.1 M formic acid) and
internal standard (IS, 13C labeled). Internal standards for
metabolomics were produced by growing E. coli on M9 minimal
media containing labeled glucose and extracting the labeled
metabolomes. After the addition of ES and IS, the filter plate was
immediately incubated for 2 h at −20 oC; (2) the filter plate was
filtered by positive pressure and washed twice with 150 μL of cold
(−20 oC) ES by filtration after each wash; (3) collected filtrate was
evaporated dry over-night in a concentrator (Eppendorf® con-
centrator plus) under vacuum conditions; (4) dried samples were
reconstituted in 100 μL LC-MS grade water (Fisher Chemicals) and
transferred to a filter plate (AcroPre filter plate 0.2 µm (8019)—
Pall) for further clean-up; (5) The filter plate was filtered by positive
pressure and the collected flowthrough was ready to be injected
into mass spectrometer. For S. cerevisiae samples an additional
extraction step with boiling ethanol was performed39. After the
filter with biomass was stored at −80 oC: (1) metabolites from the
filter plate were extracted by adding 150 μL of boiling (75–80 oC)
extraction solvent (ES: 70% EtOH) and internal standard (IS, 13C
labeled). After addition of ES and IS the filter plate was
immediately stored for 5 min at 70 oC; (2) the filter plate was
filtered by positive pressure and washed twice with 150 μL of
boiling (75–80 oC) ES by filtration after each wash. The rest of the

steps for sample preparation were the same as described above
for the cold extraction procedure.

Exo-metabolomics extraction and preparation
Exo- metabolomics samples from all three model organism were
collected using the same protocol: (1) the biomass from the
culture was separated by positive pressure filtration (Tecan
Resolvex M10) using Sirocco protein precipitation filter plates
(Waters) on the deck of the TCP; (2) the filter plate was removed,
while the filtered flowthrough was kept, and subsequently stored
in −80 oC for further analyses by high performance liquid
chromatography (HPLC).

Proteomics sample extraction and preparation
Samples for proteomics were obtained by stopping the TCP run,
removing the cultivation plate off the deck and collecting the
biomass by centrifugation at 5400 xg for 5 min (not filtration as for
endo- and exo- metabolomics), discarding the supernatant.
Samples were kept in plates at −80 °C until processing, which
was carried out in 96 well format. After samples were thawed on
ice, two 3-mm zirconium oxide beads (Glen Mills, NJ, USA) and
100 μL of 95 °C GuanidiniumHCl (6 M Guanidinium hydrochloride
(GuHCl), 5 mM tris(2-carboxyethyl)phosphine (TCEP), 10 mM chlor-
oacetamide (CAA), 100mM Tris–HCl pH 8.5) was added to all the
samples. Cells were disrupted in a Mixer Mill (MM 400 Retsch,
Haan, Germany) set at 25 Hz for 5 min at room temperature,
followed by 10min in a thermo mixer at 95 °C at 10 xg. Any
remaining cell debris was removed by centrifugation at 5000 xg
for 10 min, after which 50 μL of supernatant was collected and
diluted with 50 μL of 50 mM ammonium bicarbonate. Based on
protein concentration measurements (BSA), aliquots with 100 μg
of protein extract were used for tryptic digestion. Tryptic digestion
was carried out at constant shaking (4 xg) for 8 h, after which
10 μL of 10% trifluoroacetic acid (TFA) were added. Finally,
samples were de-salted using SOLAµ C18 plates (Thermo).

Amino acid isotopomer analysis sample extraction and
preparation
Samples for amino acid isotopomer analysis were obtained in the
same way as for proteomics analysis. After centrifugation the
supernatant was removed and cell pellets stored in −80 oC.
Samples were extracted and prepared using the following
procedure: (1) hydrolysis was performed by resuspending the cell
pellets in 200 μL of 6 M HCl and transferring to 300 μL—size FluidX
tubes (Brooks Life Sciences). The tubes were sealed with FluidX
rubber sealing mats (Brooks Life Sciences) and incubated for
12–16 h in a heating block at 110 oC; (2) after hydrolysis the lysates
were moved to a filter plate (AcroPre filter plate 0.2 µm (8019)—
Pall), filtered by positive pressure and the flowthrough was
collected in a glass coated microtiter plate (WebSeal Plate+ 96-
Well Glass-Coated, 300—Fisher Scientific); (3) flowthrough was
evaporated in the fume hood by heating samples at 60 oC with a
thermomixer; (4) dried samples were derivatized on the Agilent
Bravo robots, by adding 35 μL of MTBSTFA (with 1% TBDMSCl)
(Sigma-Aldrich) and 70 μL of Pyridine (Sigma-Aldrich) to each well
of the microtiter plate; the plate was then sealed and incubated at
65 oC for 30min; (5) the samples were then transferred to HPLC
glass vials for analysis.

Intracellular targeted metabolomics analysis
Intracellular metabolites were acquired and quantified on an AB
SCIEX Qtrap® 5500 mass spectrometer (AB SCIEX, Framingham,
MA) using an iron-pairing targeted metabolomics method40.
Internal standards were generated by rapidly sampling the
metabolome of E. coli MG1655 batch cultures grown on 2 g/L of
fully labeled D-glucose (U-13 C6 99%)(Cambridge Isotopes)41. All
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samples and calibrators were spiked with the same amount of
internal standard (50 μL) taken from the same batch of internal
standards. Calibration curves were run before all biological and
analytical replicates, and the consistency of quantification was
checked by running a Quality Control sample that was composed
of all biological replicates periodically between samples. Solvent
blanks were injected periodically between samples to check for
carryover. System suitability tests were injected daily to check
instrument performance.

Extracellular metabolomics analysis
Samples to determine substrate uptake and secretion rates were
measured using refractive index (RI) detection by HPLC (Thermo
Ultimate 3000) with a Bio-Rad Aminex HPX87-H ion exclusion
column (injection volume, 10 μL) and 5mM H2SO4 as the mobile
phase (0.6 ml/min, 45 °C).

Proteomics measurement
For proteomics analysis a CapLC system (Thermo scientific) coupled
to a Orbitrap Exploris 480 mass spectrometer (Thermo Scientific) was
used. First samples were captured at a flow of 10 μL/min on a
precolumn (µ-precolumn C18 PepMap 100, 5 µm, 100 Å) and then at
a flow of 1.2 µL/min the peptides were separated on a 15 cm C18
easy spray column (PepMap RSLC C18 2 µm, 100 Å, 150 µmx15cm).
The applied gradient went from 4% acetonitrile in water to 76% over
a total of 60min. While spraying the samples into the mass
spectrometer the instrument operated in data-independent acquisi-
tion (DIA) mode using the following settings. The DIA method
consisted of multiple MS1 scan with a DIA segment in between. The
MS1-scan covered a range from 400–1250m/z with the Orbitrap
resolution set to 120 000; AGC Target 300%; maximum injection
time Auto. The individual DIA segments consisted of 15m/z
windows at 30 000 resolution, normalized AGC target 1000% and
injection time set to auto. The method in total lists like this:
MS1 scan, DIA segment 400–670m/z, MS1 scan DIA segment
400–670m/z as previously described followed by a DIA segment
670–940m/z, MS1 scan DIA segment 940–1210m/z.

Amino acid isotopomer analysis
Isotopomers of proteinogenic amino acids were acquired on an
Agilent 5977 GC-MS system. Derivatized samples were run within
48 h on the GC-MS, using an Agilent DB-5ms capillary column
(30m, inner diameter of 0.25 mm, film thickness of 0.25 µm, cat
no. 122-5532). Samples were measured in full-scan mode, using a
1:10 and 1:100 split ratio, with the following gradient: start at
160 °C, hold for 1 min, ramp to 310 °C at 20 °C/min, hold for 1 min.
We considered for further analysis fragments listed in Table 3 of
Long C.P. & Antoniewicz (2019)29.

Growth data analysis
A custom Python-based module was developed to process the
acquired OD measurements. This module combines all the
individual 96-well plate OD spectrometer readings taken over
the course of the experiment into a single spreadsheet, corrects
volume loss due to dissipation and background noise, calculates
the specific growth rates at each time point and best fit steady-
state exponential growth rates for each well, and finally generates
diagnostic figures. Volume loss over time is calculated by
measuring the increase in intensity of OD450 measurements of
a dye (OrangeG) in control wells in each cultivation plate. A linear
model was fitted over the time series. Since volume loss causes
the dye concentration to increase, the slope was expected to be
positive. Correlation values were calculated for each timepoint by
multiplying the slope with the timestamp and adding one to the
intercept in order to leave the first time point unchanged. The
experimental values were subsequently divided by the

corresponding correlation value in order to decrease their
adjusted concentration accordingly. The background correction
was calculated by subtracting the mean of the OD600 measure-
ments of the OrangeG control wells from the samples on the same
cultivation plate for each time point. In addition to specific growth
rate, the module used an in-house python package called
croissance42 to find the exponential growth phase and calculate
the exponential growth rate. The quality control figures generated
by the module included a visualization of the volume loss, the
progression and distribution of the specific growth rates and
distributions of initial values, the slopes and signal-to-noise ratios.
The options for growth profiles included presenting the wells
sorted by species and limited by a cultivation plate or vice versa,
combined by species or cultivation plate or presenting the growth
profiles of all the tested species combined in one plot. Growth
data was further processed using a non-linear fitting model to
obtain maximum growth rates of the cultivations43. Data is
included in Supplementary Table 1.

Metabolomics data analysis
Metabolomics raw data files were first converted to mzML format
using ProteoWizard44 and then processed using SmartPeak45. For
the analysis of metabolite variability, we considered measured
signals for the 12C form of the metabolites. For absolute
quantification of metabolites (AMP, ADP, ATP), we calculated the
ratio between the 12 C and 13 C metabolite signals and then fitted
this data to a calibration curve obtained by measuring metabolite
standards spiked with 13 C IS. Metabolite concentrations
expressed in uM were normalized to cell biomass expressed in
gDCW at the time of sampling by interpolating the measured
culture density during exponential growth to the expected culture
density at the time of sampling and then compensating for the
culture volume sampled and reconstitution volumes. The equa-
tions for biomass normalization were the following:
biomass sampledðgDCWÞ ¼ culture volume sampledðLÞ � OD600 � conversion factor

ðgDCW � L� 1 � OD600� 1Þ
(1)

metabolite concentrationðumol=gDCWÞ
¼ measuredmetabolite concentrationðuMÞ � 1e� 3ðmL=LÞ
� reconstitution volumeðmLÞ=biomass sampledðgDCWÞ

(2)

The energy charge ratio (EC) was calculated with the following
equation:

EC ¼ ðATPþ 0:5 � ADPÞ=ðATPþ ADPþ AMPÞ (3)

Processed data is included in Supplementary Table 3.

Fluxomics data analysis
For analysis of amino acid isotopomer data, we considered
fragments listed in Table 329. Raw data from the GCMS was first
converted to mzML format using ProteoWizard44 and then
processed using SmartPeak45. Processed data were further
corrected for the natural abundance of isotopes in the derivatiza-
tion agents used for GCMS analysis46 and analyzed with INCA47.

Phenomics data analysis
Extracellular metabolomics raw data in.txt format was processed
using SmartPeak45. Uptake and secretion rates were calculated
from a minimum of three steady-state time-points taken from
different cultivations at different dilutions. We considered only
measurements for which the linear regression between the
measurements at different dilutions and the biomass at the time
of sampling had a squared correlation coefficient exceeding 0.8.
For calculations, we used the average maximum growth rate
values reported in Table 1. We calculated the biomass
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concentration content at the time of sampling using OD/biomass
conversion factors obtained using moisture analyzer (HC103
Moisture Analyzer—Mettler Toledo). The conversion factors used
were the following: 2.06 gDW/L/OD for E. coli, 3.62 gDW/L/OD for
P. putida and 3.31 gDW/L/OD for S. cerevisiae.

Proteomics data analysis
Spectronaut 15.4 (Biognosys) was used to analyze the raw data files
as direct DIA48 with the following settings: Fixed modifications:
Carbamidomethyl (C) and Varible modifications: oxidation of
methionine residues; Trypsin as enzyme and allowing one missed
cleavage; FDR set at 0.1%. Quantification was only based on MS1
intensities and normalization was set to global. For the searches, a
protein database consisting of the reference proteomes
UP000000625 (E. coli), UP000000556 (P. putida) and UP000002311
(S. cerevisiae). Processed data is included in Supplementary Table 4.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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Processed data for growth, uptake/secretion rates, metabolomics and proteomics is
available respectively in Supplementary Tables 1–4. Raw data is available from the
authors upon request.

CODE AVAILABILITY
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