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Identification of Probucol as a candidate for combination
therapy with Metformin for Type 2 diabetes
Ranjitha Guttapadu1, Kalyani Korla2, Safnaz UK3, Vamseedhar Annam4, Purnima Ashok3 and Nagasuma Chandra 1,2,5✉

Type 2 Diabetes (T2D) is often managed with metformin as the drug of choice. While it is effective overall, many patients progress
to exhibit complications. Strategic drug combinations to tackle this problem would be useful. We constructed a genome-wide
protein-protein interaction network capturing a global perspective of perturbations in diabetes by integrating T2D subjects’
transcriptomic data. We computed a ‘frequently perturbed subnetwork’ in T2D that captures common perturbations across tissue
types and mapped the possible effects of Metformin onto it. We then identified a set of remaining T2D perturbations and potential
drug targets among them, related to oxidative stress and hypercholesterolemia. We then identified Probucol as the potential co-
drug for adjunct therapy with Metformin and evaluated the efficacy of the combination in a rat model of diabetes. We find
Metformin-Probucol at 5:0.5 mg/kg effective in restoring near-normal serum glucose, lipid, and cholesterol levels.
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INTRODUCTION
Type 2 Diabetes (T2D), which affects more than 420 million people
worldwide and makes up 90% of all known diabetes cases, refers
to a collection of metabolic disorders characterized by high blood
glucose levels and insulin resistance. WHO reports that the
incidence has increased more than 3.5-fold in the past three
decades, with lifestyle and genetic factors playing a significant
role. By 2030, it is estimated to be the seventh leading cause of
death1. The disease is multifactorial and cannot be attributed to a
single gene or pathway, leading to a high level of heterogeneity
among individuals. Despite this heterogeneity, T2D is primarily
managed by metformin monotherapy, a biguanide that improves
glycemia via AMP-activated protein kinase (AMPK)-dependent and
AMPK-independent mechanisms in the liver and the gut2.
Metformin (MT) is used as a first-line oral agent due to its safety
and efficacy. However, due to the progressive loss of β cells with
disease progression, a significant proportion of patients treated
with Metformin need alternate therapy. Lesser recommended
monotherapies include GLP1-RA, SGLT2i, DPP4i, TZD, AGi, and SU/
GLN. The glycemic control algorithm under the Comprehensive
Type 2 Diabetes Management algorithm suggests a dual therapy
of Metformin with the drugs mentioned above or Basal Insulin,
Colesevelam, and Bromocriptine QR when the Hemoglobin A1C
(HbA1c) concentrations are at 7.5–9%3.
The need for effective combinations is even more pronounced

when co-morbidities play a part or to alleviate the side effects of
treatment. Identifying drug combinations that can effectively
target different complications of diabetes would serve as more
promising treatments that can translate into active use. Recent
studies indicate that oxidative stress and hypercholesterolemia
generated due to metabolic alterations are two main problems
leading to complexity in T2D management. Oxidative stress and
cholesterol levels are pivotal in developing diabetic complications
such as nephropathy4, retinopathy5, cardiomyopathy6, and
ketoacidosis7. Thus, the goal of treating T2D, in addition to

maintaining blood glucose levels, must address oxidative stress
and hypercholesterolemia.
In this work, we intend to identify candidate drugs that can be

placed in combination with Metformin to target oxidative stress
and hypercholesterolemia and reduce serum glucose levels. We
first set out to identify perturbations in T2D patients and apply
that knowledge to identify co-drugs to combine with Metformin.
We leverage publicly available transcriptomes from T2D tissue
samples, construct condition-specific networks, and interrogate
them using sensitive network mining methods to identify the
highest-ranked perturbations and strategic combinations. We
identify Probucol as the co-drug of choice from the perturbations
and experimentally validate the efficacy of the combination in
vivo using diabetic rat models. Compared to individual drugs, we
find the combination to be highly efficacious in lowering serum
glucose, oxidative stress, and cholesterol levels.

RESULTS
The broad workflow included: (a) analysis of publicly available
human T2D transcriptomes from multiple tissues, (b) integrating
these into an unbiased knowledge-based protein-protein interac-
tion network, (c) network mining and identification of a frequently
perturbed subnetwork (FPS), (d) identification of putative drug
targets, (e) identification of a putative set of drugs associated with
the targets and ranking them (Fig. 1) and (f) experimental testing
of the effect of the selected drug combination.

Heterogeneity in T2D patients
Publicly available transcriptome data for T2D individuals from four
tissue types: pancreas, liver, skeletal muscle, and arterial tissue,
were chosen for the study (as mentioned in the methods). Some
known T2D genes were among the DEGs of the two pancreatic
datasets (e.g., Solute Carrier Family 2 Member 2 (SLC2A2), Calcium
Voltage-Gated Channel Subunit Alpha1 D (CACNA1D), which are
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known to play an essential role in T2D8, and 3-Hydroxy-3-
Methylglutaryl-CoA Reductase (HMGCR), which is involved in
cholesterol biosynthesis) but no common DEGs were observed
across all the five datasets. The limited overlap could result from
multiple factors, including the extent of genetic heterogeneity of
different tissue types, the severity of disease, technical differences
in data collection due to platform-based dependencies for
individual datasets, and perhaps more importantly, variations in
the initial causes of the disease itself. Heterogeneity in the
individuals could translate into heterogeneity in the benefit
experienced with metformin monotherapy underscoring the dire
need for drug combinations.
However, the DEGs obtained in each dataset were enriched in

pathways related to diabetes, such as alteration in glycolysis,
pyruvate metabolism, cholesterol metabolism, Insulin/IGF path-
way, pancreatic secretion, and MAPK signaling, all of which are

well-known to be associated with T2D9,10. A list of all DEGS
obtained is provided in Supplementary Data 1 (Sheet 1).

Network meta-analysis to identify co-drug with Metformin in
T2D patients
Next, we constructed condition-specific networks for each dataset
using a sensitive network mining approach well established in our
laboratory called ‘ResponseNet’ to identify perturbations in T2D
across different tissue types. The top perturbed networks were
obtained by mapping transcriptomic data onto a well-curated
human protein-protein interaction network and ranking the nodes
based on their activity via the shortest path analysis to capture
genes representing variations in the studied condition. The
mapping of transcriptomic data onto the knowledge-based
protein-protein interaction network is done by contextualizing

Fig. 1 Network approach used to identify the potential co-drug candidate for Metformin. a Drug-target bipartite network of the shortlisted
drugs and their targets in the FPS. b Drugs were ranked based on the number of known targets captured by the FPS and further filtered based
on literature and mechanism of action. c Sub-bipartite network of Probucol, Metformin, and their targets. Probucol was shortlisted as the
potential co-drug, and a sub-bipartite network of Probucol, Metformin, and their targets was generated from the parent bipartite network.
Metformin is represented in red, Probucol in yellow, blue nodes represent target genes in the FPS, and the top 5 KEGG pathways (based on
p-value (Fisher’s exact test)) in which the genes are enriched are indicated.
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the network by overlaying the absolute value of log2(Fold Change
(FC)) for each network gene from differential expression of genes
analysis of the chosen datasets and using them as node weights.
The activity of paths from the source node to the target nodes is
calculated as the sum of edge weights along the shortest path,
normalized by the path length. The approach is explained in the
methods section. The lower the normalized path cost, the higher
the activity. The networks were pooled to obtain a parent network
representing perturbations in T2D across various tissues. The
combined network consisted of 6829 nodes and 13,242 edges.
From this, we extracted nodes present in at least 4 out of the 5
datasets representing the most frequently perturbed genes across
tissues, forming a well-connected subnetwork (FPS). The FPS
consisted of 225 nodes and 471 edges and was enriched in
functional categories of AGE-RAGE signaling in diabetic complica-
tions, lipid signaling, and cholesterol metabolism, besides
essential pathways such as chemokine signaling. Antioxidants,
lipid-modifying, or anticholesterolemic agents, thus, form effective
combinations with Metformin to target functional pathways
reflected in the FPS.
To identify drug combinations with Metformin with a higher

polypharmacological potential that can also tackle oxidative stress
and hypercholesterolemia, we investigated if any of the nodes in
the FPS are known drug targets of the 11 putative drug candidates
shortlisted from DrugBank based on their antioxidant, lipid-
modifying, and anticholesterolemic properties (Fig. 1a). The drugs
were ranked based on the number of targets of each drug
captured by the FPS (Fig. 1b).
37 metformin targets were present in FPS, indicating that the

FPS functions well in representing core perturbations targeted by
Metformin. Metformin’s combination with Fenofibrate is reported
to be not beneficial11, while its combination with pentoxifylline
was found to improve liver function in patients with non-alcoholic
steatohepatitis12. The combination of Allopurinol and Metformin
has been shown to act synergistically in Non-Alcoholic Fatty Liver
Disease patients13. A combination of Metformin and Clofibrate has
also been found to improve glucose levels14. Metformin is
reported to increase fluvastatin’s hypolipidemic activities and
decrease the excretion rate of Pramipexole15. The fact that FPS
captures targets of many tested drug combinations provides proof
of the principle of the effectiveness of our networks.
To find an effective drug combination, we filtered the drug list

(Supplementary Data 1 (Sheet 2)) to obtain the top 3 drugs
(Masoprocol, Edaravone, and Probucol (PB)) whose combinations
with Metformin were unexplored. Masoprocol is used to treat
actinic keratoses and is known to reduce glucose levels16, while
Edaravone relieves neurological symptoms and delays the
progression of ALS, and is implicated as a treatment strategy for
diabetic neuropathy17. However, they do not directly tackle
hypercholesterolemia. On the other hand, Probucol is an
antioxidant that inhibits the oxidation of cholesterol. It is a drug
indicated as an antioxidant, a lipid modifying agent, and an
anticholesterolemic drug15. Since we aimed to address oxidative
stress and hypercholesterolemia with our drug combination,
Probucol was chosen as the target co-drug to explore its
combinatorial effect with Metformin. Probucol is reported to be
a potentially efficacious drug to treat T2D18 and related
complications such as diabetic nephropathy19. However, its
efficacy in combination with Metformin was unknown.
A bipartite network of drug targets for Probucol and Metformin

with their targets from the FPS yielded a network of 41 nodes and
45 edges (Fig. 1c). Functional enrichment indicated top pathways:
FoxO signaling, AGE-RAGE signaling in diabetic complications, and
insulin resistance. The two drugs were also found to have six
overlapping targets, including APOA1, RAF1, MAPK3, CCL2, ICAM1,
and MAPK1, that play a role in pathways such as lipid and
atherosclerosis and TNF signaling, a pathway known to play a part
in insulin resistance20, further supporting our hypothesis of using

the PB-MET combination to tackle oxidative stress and hyperch-
olesterolemia along with serum glucose levels and insulin
resistance in T2D.

EXPERIMENTAL TESTING OF THE EFFICACY OF THE
COMBINATION
Acute toxicity analysis for drug combination
Acute toxicity studies for MET, PB, and the PB-MET combination
were conducted per OECD guidelines 425, using female albino
Wistar rats. The test group of animals was treated with MET, PB, or
PB-MET through oral administration and compared with an
untreated control group. The animals were continuously observed
for the first 2 h and then after 24 h and 48 h. No change in the
typical behavioral pattern of the animals, mortality, or signs and
symptoms of toxicity was observed in any of the treatment
regimes. The combination was observed safe up to a dose of
2000mg/kg b.w.

Anti-hyperglycemic and anti-hypercholesterolemic effects of
drug combination
Different groups of rats (normal control- no treatment, diabetic
control, diabetic treated (MET, PB, PB-MET)) were given the
appropriate treatment as described in the methods section. At the
end of the 28th day, their biochemical parameters were assessed
to test the administered drugs’ anti-hyperglycemic, anti-hyperch-
olesterolemic, and antioxidant effects. To quantify the anti-
hyperglycemic impact, serum glucose, insulin, and HbA1c were
measured. Lipid profiles, including High-Density Lipoprotein
(HDL), Low-Density Lipoprotein (LDL), total cholesterol (TC), and
triglyceride (TG), were estimated using serum samples to evaluate
the anti-hypercholesterolemic effect. Serum nitric oxide and
serum Thiobarbituric acid reactive substances (TBARS) were
measured to test if there were any antioxidant effects. The study
was repeated twice (Set-I and Set-II), using a similar grouping of
animals with overlapping ranges of drug doses.
In both sets, the induction of diabetes was first established in

the diabetic control and test groups. Results from Set II are shown
here, while results from Set I are included as a supplementary file.
All p-values reported for the biochemical parameters were
calculated using ANOVA followed by Dunnett’s test. A significant
increase in fasting serum glucose (395.4 ± 5.37 mg/dl; adjusted p-
value < 0.0001, 95% CI [262.7, 335.2], df= 14, F= 123.3), serum
HbA1c levels (33.79 ± 7.68 ng/ml; adjusted p-value= 0.0018, 95%
CI [7.802, 33.40], df= 14, F= 4.46), and a decrease in serum insulin
(7.78 ± 1.36 uIU/ml; adjusted p-value < 0.0001, 95% CI [−12.53,
−5.564], df= 14, F= 12.02) was detected in the untreated diabetic
rats compared to normal rats (serum glucose - 96.49 ± 1.74 mg/dl,
HbA1c- 13.19 ± 0.88 ng/ml, serum insulin- 16.82 ± 0.85 uIU/ml)
(Table 1, Fig. 2; Supplementary Table 1, Supplementary Fig. 1).
MET alone, as expected, reversed these trends and reduced serum
glucose to 188.0 ± 11.41 mg/dl (adjusted p-value < 0.0001, 95% CI
[171.2, 243.7], df= 14, F= 123.3), HbA1C to 22.88 ± 1.66 ng/ml
(adjusted p-value= 0.109, 95% CI [−1.891,23.71], df= 14,
F= 4.46), while increasing insulin levels to 12.01 ± 0.70 uIU/ml;
adjusted p-value= 0.0154, 95% CI [−7.716, −0.748], df= 14,
F= 12.02) compared to the diabetic control. PB alone also showed
an anti-hyperglycemic effect, albeit less potent and less efficacious
than MET, with serum glucose reducing to 233.8 ± 7.96mg/dl
(adjusted p-value < 0.0001, 95% CI [125.4, 297.9], df= 14,
F= 123.3), HbA1C to 25.79 ± 0.92 ng/ml (adjusted p-value=
0.3203, 95% CI [−4.795, 20.80], df= 14, F= 4.46), and insulin
levels increasing to 10.41 ± 0.84 uIU/ml; adjusted p-value= 0.1763,
95% CI [−6.12, 0.85], df= 14, F= 12.02) compared to the diabetic
control. The PB-MET combination, however, showed a more
significant decrease in serum glucose (e.g., M+ P (5:0.5 mg/kg)-
123.2 ± 4.70 mg/dl; adjusted p-value < 0.0001, 95% CI [236.0,
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308.6], df= 14, F= 123.3) and HbA1c (e.g., M+ P (5:0.5 mg/kg)-
17.02 ± 1.07 ng/ml; adjusted p-value= 0.0090, 95% CI [3.97, 29.57],
df= 14, F= 4.46) and a corresponding increase in serum insulin
levels (e.g., M+ P (5:0.5 mg/kg)- 14.73 ± 0.63 uIU/ml; adjusted p-
value= 0.0003, 95% CI [−10.44,−3.473], df= 14, F= 12.02)
compared to the diabetic control group, a reduction more
substantial than either MET or PB monotherapy. At the end of
28 days of treatment, serum insulin, and HbA1c levels were
brought close to the levels of the normal control group (Table 1,
Fig. 2; Supplementary Table 1, Supplementary Fig. 1).
The serum triglyceride, cholesterol, and LDL levels of untreated

diabetic rats were significantly higher (278.9 ± 6.30 mg/dl
(adjusted p-value < 0.0001, 95% CI [138.6, 195.3], df= 14,
F= 65.44), 194.4 ± 1.21mg/dl (adjusted p-value < 0.0001, 95% CI
[59.29, 87.29], df= 14, F= 44.25), 112.5 ± 2.16 mg/dl (adjusted p-
value < 0.0001, 95% CI [49.92, 87.27], df= 14, F= 20.37) respec-
tively) than those in healthy rats, and HDL level was significantly
lower (26.14 ± 1.45 mg/dl; adjusted p-value < 0.0001, 95% CI
[−34.63, −22.77], df= 14, F= 39.36) than the normal control
(Triglycerides − 111.9 ± 3.29 mg/dl, TC- 121.1 ± 3.82 mg/dl, LDL-
43.90 ± 6.42 mg/dl). The administration of MET and PB alone and
in combination significantly decreased triglyceride (e.g., M+ P
(5:0.5 mg/kg)− 132.2 ± 9.25 mg/dl; adjusted p-value < 0.0001, 95%
CI [118.3, 175], df =14, F= 65.44), total cholesterol (e.g., M+ P
(5:0.5 mg/kg)− 147.3 ± 2.54 mg/dl; adjusted p-value < 0.0001, 95%
CI [33.12, 61.13], df= 14, F= 44.25), and LDL levels (e.g., M+ P
(5:0.5 mg/kg)- 84.00 ± 5.24 mg/dl; adjusted p-value= 0.0028, 95%
CI [9.82,47.17], df= 14, F= 20.37) and increased HDL levels (e.g.,
M+ P (5:0.5 mg/kg)- 36.84 ± 1.27 mg/dl; adjusted p-value=
0.0005, 95% CI [−16.96, −5.10], df= 14, F= 39.36) during the
experimental period when compared to the diabetic rats. (Table 1,
Fig. 2; Supplementary Table 1, Supplementary Fig. 1). All p-values
were calculated using ANOVA followed by Dunnett’s test.
The PB-MET combination at the dosage M+ P (5:0.5) seems to

behave synergistically, producing a significant hypoglycemic
effect in terms of reducing the serum glucose and HbA1c lower
than the response generated by the individual drugs alone while
also increasing the serum insulin to a larger extent than
metformin or probucol treatment alone. Synergy was also
observed in triglyceride reduction. The combination treatment
was found to fare better than individual monotherapies, thus
showing an anti-hyperlipidemic effect in the test group, demon-
strating its efficacy in reducing diabetes-induced hyperlipidemia
in rats.

Antioxidant effect
In Set II, TBARS was used as an oxidative stress indicator. Lower
levels of TBARS indicate a lower level of oxidative stress and, thus,
a better antioxidant effect. As seen in Table 1, the levels of TBARS
in M+ P (5: 0.5) (5.91 ± 0.25 uM) were close to normal
(5.65 ± 0.3 uM) and were highest in the diabetic control group
(8.46 ± 0.99 uM; adjusted p-value= 0.01, 95% CI [0.63, 4.99],
df= 14, F= 3.38 when compared to the normal control). The
drug combination seems to act synergistically in reducing the
antioxidant effect as well, where M+ P (5: 0.5) produced
5.91 ± 0.25 uM TBARS, a concentration less than (adjusted p-
value= 0.02, 95% CI [0.38, 4,73], df= 14, F= 3.38 when compared
to the diabetic control) that produced by metformin
(7.67 ± 0.32 uM; adjusted p-value= 0.78, 95% CI [−1.38, 2.98],
df= 14, F= 3.38 when compared to the diabetic control) or
probucol monotherapy (6.64 ± 0.39 uM; adjusted p-value= 0.12,
95% CI [0.36, 4.00], df= 14, F= 3.38 when compared to the
diabetic control) (Table 1, Fig. 2). All p-values were calculated
using ANOVA followed by Dunnett’s test.
The M+ P (5:0.5) dose provided the best results by reverting T2D

to almost similar concentrations of parameters as the healthy controls
(Table 1, Fig. 2; Supplementary Table 1, Supplementary Fig. 1).Ta
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Individual rat data for all biochemical analyses can be accessed in
Supplementary Data 2.

Histopathology
To further test if there were morphological changes associated
with drug treatment, hematoxylin-eosin staining was performed
on the rats’ pancreatic tissue sections. Results of Set I are shown in
Supplementary Fig. 2. Drug combinations at decreasing doses and
controls from Set II were analyzed in duplicates. Healthy non-
diabetic tissue sections studied showed pancreatic lobules
separated by connective tissue septa. One of the replicates’
center of islet cells consisted of 75% Beta-cells, while the periphery
consisted of 20% large Alpha-cells (Fig. 3a. 1). The second replicate
consisted of 70% Beta-cells, while the periphery consisted of 25%
large Alpha-cells (Fig. 3a. 2). The center of islet cells of the diabetic

control showed a quantitative decrease in small Beta-cells
(Replicate 1- 35%, Replicate 2 - 40% compared to normal control),
while the periphery comprised large Alpha-cells (Replicate 1 - 60%,
Replicate 2 - 55%) (Fig. 3b. 1, 2). Some of the beta cells showed
degenerative changes. Tissue treated with Metformin alone
showed lobules consisting mainly of the exocrine acini and their
intralobular ducts. Most of the lobules showed small, round, light-
staining islets of Langerhans. The center of islet cells consisted of
aggregates of small Beta-cells (Replicate 1 - 55%, Replicate 2-
60%), while the periphery consisted of large Alpha-cells (Replicate
1 - 40%, Replicate 2- 35%) (Fig. 3c. 1, 2). Similar morphology was
observed for tissues from rats treated with Probucol alone with
35% and 40% Beta-cells in Replicate 1 and Replicate 2, respectively
and 60% and 55% of Alpha-cells in Replicate 1 and Replicate 2,
respectively (Fig. 3d. 1, 2).

Fig. 2 Graphical representation of the biochemical parameters measured in Set II. Statistical significance was calculated using ANOVA
followed by Dunnett’s test (*p-value < 0.05, **p-value < 0.01, ***p-value < 0.001, ****p-value < 0.0001). Mean with S.E.M are plotted. M+ P (5:0.5)
shows concentrations closest to the normal healthy control for all parameters and hence is chosen as the ideal dosage concentration for the
drug combination. See also Supplementary Fig. 1. The significance bars in black indicate statistical significance calculated against normal/
diabetic control, while the ones in red indicate statistical significance calculated against metformin/probucol monotherapies.
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Fig. 3 Histopathological analysis of pancreatic tissue. Tissue was obtained from NAD-STZ induced diabetic model (400x; scale
bars= 25 µm). All analyses were performed in duplicates (1, 2). The sections studied showed pancreatic lobules separated by connective
tissue septa. The center of islet cells consists of Beta-cells (Long-arrow), while the periphery comprises large Alpha-cells (Short-arrow) with
intervening vascular spaces. The pancreatic lobules consist largely of the exocrine acini and their intralobular ducts. Most of the lobules show
small, round, light-staining islets of Langerhans. a, b Controls – Normal and Diabetic. Some of the beta cells show degenerative changes in the
positive control. c, d Individual drug treatment - Metformin and Probucol treated. e Drug combination M+ P (5:0.5). f M+ P (2.5:0.5). g M+ P
(2.5:0.25). Dose I [M+ P (5:0.5)] restored the condition of cells closest to that of the normal tissue conditions. See also Supplementary Fig. 2.
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Dose I treatment (M+ P [5:0.5]) led to a quantitative increase in
Beta-cells (Replicate 1 - 65%, Replicate 2- 60%) and a decrease in
Alpha-cells (Replicate 1 - 30%, Replicate 2- 35%) (Fig. 3e. 1, 2).
Tissue from Dose II (M+ P [2.5:0.5]) treated rats showed 55% Beta-
cells, 40% Alpha-cells, and 60% Beta-cells and 35% Alpha-cells in
Replicate 1 and Replicate 2, respectively (Fig. 3f. 1, 2), while Dose III
(M+ P [2.5:0.25]) treated rats showed 45% Beta-cells, 50% Alpha-
cells and 35% Beta-cells and 60% Alpha-cells in Replicate 1 and
Replicate 2 respectively (Fig. 3g. 1, 2). The Dose I, with a
combination of 5 mg/kg of Metformin and 0.5 mg/kg of Probucol,
showed a reversal of tissue morphology to a state similar to that of
healthy tissues in both Set I and Set II, similar to the results
obtained from the biochemical analyses.
These results show that the PB-MET drug combination helps

preserve beta-cell function while also tackling the complications
of insulin deficiency and resistance, as suggested by the network
analysis.

DISCUSSION
T2D, as discussed, is caused by multiple alterations at the cellular
and molecular levels, with several genes involved globally, leading
to multifactorial pathogenesis21. It is well understood that
biological systems such as this exhibit complex connections
among individual players of the system and are often tightly
coordinated and regulated22,23. It is not surprising, therefore, that
an alteration in a single gene or protein often does not result in
disease. A disease can be depicted as a pathophysiological state
perturbing the underlying complex interdependent molecular
network. In the background of this fundamental complexity, a
systems approach becomes critical to studying variations. Network
formulations offer an elegant method to study perturbations in
complex systems and provide insight into the mechanisms of
perturbations.
In this study, we propose a systems biology approach to

rationally identify drugs that can be combined for efficient disease
management and related complications of T2D. We identified
genes that showed variation in their gene expression pattern in
five transcriptomic datasets across different tissue types. The
results indicated that none of the DEGs were common to all the
datasets, which suggests that heterogeneity in the genotype
space is widespread. However, a similar phenotype with diabetes-
related pathways was identified, implying that while each study
may not report the same DEGs, they may highlight DEGs
belonging to common functional categories. The network-based
approach, combined with literature knowledge, led to the
selection of Probucol as a co-drug for metformin therapy.
Probucol is an antioxidant that effectively combats oxidative
stress24 and reduces blood cholesterol. As mentioned, a few
studies have shown the potential of using Probucol to treat
diabetes, such as preserving pancreatic function and modulating
the development of diabetic cardiomyopathy25 and nephropa-
thy26. Despite these studies, a combination of Metformin and
Probucol has not been studied. As a preliminary study, we have
shown experimentally that this combination performs better than
the individual drugs on diabetic rats by monitoring parameters
such as serum glucose, cholesterol, and oxidative stress.
We used different dosages and found that a combination of

MET+ PB (5 mg/kg, 0.5 mg/kg) performed the best among others.
A lower dosage of Probucol wasn’t effective for obvious reasons,
whereas a higher dosage also showed a decline in efficacy, which
could be attributed to its HDL-lowering effect, thus indicating that
overdosage may be detrimental.
Further, drug synergism was also established experimentally,

where we demonstrated that Metformin, in combination with
Probucol, has significantly enhanced anti-hyperglycemic efficacy
compared to their individual monotherapies. Diabetic rats with
significant (adjusted p-value < 0.001(ANOVA+ Dunnett’s test))

elevation in serum glucose and reduced serum insulin values
were treated with individual drugs and varying doses of
metformin and probucol. Treatment with the combination therapy
improved hyperglycemia by substantially reducing glucose
compared to individual drug treatments. While metformin and
probucol monotherapy resulted in a serum glucose level of
188.0 ± 11.41 mg/dl and 233.8 ± 7.96mg/dl, respectively, when
compared to the 395.4 ± 5.37 mg/dl serum glucose level of
diabetic mice, indicating a 52.4% and 40.8% reduction respec-
tively, combinatorial treatment with the two drugs provided
further lowering of serum glucose. M+ P (5:5), M+ P (5:1), and
M+ P (5:0.5) resulted in serum glucose levels of 135.9 ± 4.18mg/
dl, 104.3 ± 1.18 mg/dl, 123.2 ± 4.70 mg/dl respectively. The glucose
concentrations, however, increased upon further lowering of the
drug dosages, leading us to identify the drug dosages at M+ P
5:0.5 mg/kg to be an ideal synergistic drug combination that
provided a more favorable response when combined than
through monotherapies. M+ P (5:0.5) resulted in a 68.8%
reduction of glucose when compared to diabetic rats (adjusted
p-value < 0.0001), while a 34.4% (adjusted p-value= 0.0007) and
47.3% reduction (adjusted p-value < 0.0001) (all p-values calcu-
lated using ANOVA followed by the Dunnett’s test) compared to
metformin and probucol monotherapies.
Synergy was also observed in lowering the triglyceride

concentration where M+ P 5:0.5 mg/kg treatment resulted in a
132.2 ± 9.25 mg/dl of triglycerides compared to a lower reduction
using monotherapies with metformin alone at 5 mg/kg and
probucol alone at 5 mg/kg leading to 204.6 ± 9.63 mg/dl and
146.6 ± 7.49 mg/dl of triglycerides respectively. This study also
highlighted that both Metformin and Probucol, in combination,
improved oxidative stress as reflected by a reduction in serum
nitric oxide level and level of TBARS. M+ P (5:0.5) resulted in a
5.91 ± 0.25 uM release of TBARS, a concentration less than that
produced by metformin (7.67 ± 0.32 uM) or probucol monothera-
pies (6.64 ± 0.39 uM).
Although the combination (MET+ PB) seems advantageous,

validation in a larger cohort of animals is required to determine
the best dose precisely. Currently, statins are prescribed along
with Metformin for tackling cardiovascular complications in T2D
patients but have been linked with increased risk of T2D27.
Probucol seems promising for lowering LDL and coronary artery
disease risk, especially in familial hypercholesterolemia and is a
drug in active use in Japan28,29 and also a drug under phase II
clinical trials for Alzheimer’s disease in Australia30. However, there
are reports which suggest that due to possible QT prolonga-
tion31,32, it has been recalled from markets in some other
countries28,29. In contrast, recent evidence has shown that
probucol may be more beneficial than harmful, showing positive
effects in high-risk patients with certain cardiovascular ailments29.
Nevertheless, our data serves as a proof-of-concept of the use of
probucol or a safer substitute as part of a strategic combination of
drugs to lower glucose and lipid levels, which may have value in
better management of diabetes and its complications.

METHODS
Transcriptome datasets and DEG computation
NCBI’s Gene Expression Omnibus (GEO) was used to identify five
transcriptomic datasets (GSE18732, GSE13760, GSE20966,
GSE23343, and GSE25724) of the condition and matched controls
from arterial tissue, pancreas, skeletal muscle, and liver samples.
The raw microarray data were normalized using the Robust Multi-
array Average (RMA) method, and the Limma package in R 3.4.133

was used to identify significantly differentially expressed genes
(DEGs) in T2D compared to their healthy controls (FC > 1.5 and p-
value < 0.05 (calculated by the Empirical Bayes method)).
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Construction of condition-specific networks
An in-house network mining approach called ‘ResponseNet’ was
used to identify the most perturbed gene interactions and
pathways in T2D. Two inputs: (a) a knowledge-based protein-
protein interaction network previously curated in the laboratory
and (b) transcriptome data from selected datasets were used to
construct diabetes-specific networks. The knowledge-based
human protein-protein interaction (hPPIn) network used in the
study is a directional network developed by curating protein-
protein interactions from publicly available databases such as
Kyoto Encyclopedia of Genes and Genomes (KEGG), OmniPath,
SignaLink, TRRUST, RegNetwork, Harmonizome and Human
Transcriptional Regulation Interaction Database (HTRI). Each
node of the network represents a gene, and an interaction
between two genes is represented as an edge. In order to make

this network condition-specific (T2D specific), transcriptomic
data, in particular, the absolute value of log2FC calculated
between T2D vs. control of each dataset, were used as node
weights (NW) (mapping of transcriptomic data onto the hPPIn).
FC for a given gene i in T2D (D) condition with respect to control
(C) condition was computed as:

FCi ¼ SIiD=SIiC (1)

Where FCi is the fold change of given gene i, SIi(D) and SIi(C)
represent the normalized signal intensities of gene i in diabetic
and control samples, respectively. Fold changes capture varia-
tions occurring in the condition being studied compared to a
control, and thus the use of fold changes as node weights
contextualizes the network to a condition-specific one. A T2D-
specific network was thus generated for each tissue-specific
dataset under study. Further, the edge weight (EWij) for an edge

Fig. 4 Overview of workflow to obtain the Frequently Perturbed Subnetwork (FPS). Transcriptomic datasets were obtained from the NCBI
GEO database. T2D-specific response networks (TopNet) were generated from each dataset using a master human protein-protein interaction
network (hPPIn). The topnets from all five datasets were combined, and the nodes which appeared in at least four topnets were retained to
obtain a T2D-specific frequently perturbed subnetwork across multiple tissues. Functional clusters of the FPS are marked in different colors,
and the top 5 most significantly enriched KEGG pathways are shown in boxes with the same colors. AGE-RAGE signaling in diabetic
complications, an oxidative stress-induced pathway, seemed to be the most perturbed pathway captured by the FPS.
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between gene i and j was computed as:

EWij ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

NWi � NWj
p (2)

Where NWi and NWj are the node weights of gene i and j,
respectively. EWij was used to compute all-vs-all shortest paths for
all the genes in the network based on Dijkstra’s algorithm as
described in Sambarey et al. 34 and Sambaturu et al. 35. In brief,
Dijkstra’s algorithm was iteratively run from each node of the
network to all other nodes; thus, finding all pairs shortest paths (all
vs. all). The path cost of each shortest path was calculated as the
sum of all edge weights from its source node to the target node
along its shortest path. Dijkstra’s algorithm was chosen for finding
all pair shortest paths as the time complexity would be O(VE Log
V) which can go to (V3 Log V) in the worst case when running it for
every vertex.
The shortest paths obtained are then ranked based on their

activity which is described as the path cost normalized by their
path length, which is equal to the number of edges between the
source node and the target node. The top 0.01% of the ranked
paths are considered the top perturbed paths or the top perturbed
network (TopNet). A general version of the code can be accessed
from https://github.com/NarmadaSambaturu/PathExt.

Construction of a frequently perturbed subnetwork (FPS):
Meta-network analysis
A T2D-specific network was generated for each dataset, and the
top 0.01% paths from each of these networks were merged to
obtain a combined network which was further filtered to retain
nodes present in at least four of the five T2D networks. The
resulting core perturbed network was termed the ‘Frequently
Perturbed Subnetwork’ corresponding to perturbations in T2D
across different tissue types. The Cytoscape plugin ReactomeFI-
PlugIn was used to cluster and analyze the corresponding
functional pathways36. An overview of the workflow used to
obtain the FPS is shown in Fig. 4.

Identification of co-targets to complement the action of
Metformin
To identify potential co-drugs for Metformin capable of addressing
T2D complications of oxidative stress and hypercholesterolemia,
drugs that are antioxidants (DBCAT000368), lipid-modifying
(DBCAT002168), or anti-hypercholesterolemic (DBCAT000390) in
their action were identified from the DrugBank database15 and
analyzed for their impact on the FPS. A list of 11 such approved
drugs, viz. Allopurinol, Cholestyramine, Clofibrate, Edaravone,
Ezetimibe, Fenofibrate, Fluvastatin, Masoprocol, Pentoxifylline,
Pramipexole, and Probucol were shortlisted based on their
description. The targets for these drugs were compiled from the
STITCH database37.

Bipartite networks and choosing the co-drug
The perturbed pathways in a bipartite subnetwork with Metformin,
the co-drug, and their targets captured in the FPS were analyzed
using functional enrichment. All networks were visualized using
Cytoscape 3.8.2. A directed drug-target interaction network was
constructed using the 11 shortlisted drugs, Metformin, and their
known targets present in the FPS. The drugs were ranked based on
the number of known targets in the FPS. The list was further
filtered based on literature mining, retaining only drugs previously
not studied in combination with Metformin. Finally, one drug,
probucol, was chosen as a potential co-drug for Metformin, as it is
associated with oxidative stress and hypercholesterolemia. This
approach helps identify drug combinations that target the most
frequently perturbed genes across various tissue types in T2D.
Functional enrichment for various gene sets and subnetworks was

performed using the EnrichR server38 and the ReactomeFIPlugIn in
Cytoscape. Pathways with a p-value < 0.05 (Fisher’s exact test) were
considered significantly perturbed.

In vivo studies
Drugs. Streptozotocin (S0130) was procured from Sigma Aldrich
(St. Louis, MO, USA), Probucol (QA-2660), and Metformin (ST-9194)
was purchased from Combi-Blocks, Inc. (San Diego, CA, USA).

Animals. Healthy Wistar albino rats weighing 150–180 g and
180–230 g were selected for acute oral toxicity study and anti-
diabetic activity, respectively. The animals were procured from the
Drug control department, Bengaluru, India, and housed in
polypropylene cages maintained under standard hygienic labora-
tory conditions at a temperature of 23 ± 2 °C, relative humidity of
55 ± 5%, and 12 h light and dark cycles with free access ad libitum
to a standard pellet diet and water. The experimental protocol was
approved by KLE University’s College of Pharmacy, Bengaluru’s
Institutional Animal Ethics Committee (Ref. no: 01/PA/2016).

Acute toxicity studies. Acute oral toxicity study for the drug
combination was conducted per OECD guidelines 425 (“Test No.
425: Acute Oral Toxicity: Up-and-Down Procedure” 2008) using
female Wistar albino rats weighing 150–180 g. Each animal was
administered the drug combination orally at various doses up to
2000mg/kg b.w. The animals were constantly observed for the
first 2 h and up to 48 h for mortality or behavioral changes.

Evaluation of anti-diabetic activity
Induction of T2D. Streptozotocin (STZ) was dissolved in 0.1 M
cold citrate buffer (pH 4.5), and NAD was dissolved in normal
physiological saline (0.9%). T2D was induced in rats under
overnight fasting by administering NAD (110mg/kg, i.p) 15 min
before STZ (65 mg/kg, i.p). Induction of T2D was verified after 72 h,
and the animals with blood glucose levels higher than 200mg/dL
were chosen for the study.

Experimental design. Wistar albino rats of either sex were
randomly assigned to 6 and 7 groups in the first (I) and the
second sets (II), respectively. All groups, except group I, was
administered a single intraperitoneal (i.p) injection of STZ (65 mg/
kg b.w.). Group I received saline and served as healthy control. The
two phases consisted of studies using various decreasing dosages
to find the ideal dosage of the proposed drug combination (Fig. 5).
Set I was carried out as a preliminary dosage screening study with
2–6 rats, while Set II was a validation (n= 3) of the best dosage
obtained from Set I while testing other decreasing dosages. All
analyses were performed on distinct samples.

Biochemical assays
Hypoglycemic effect. Blood collected by retro-orbital puncture
was centrifuged to separate the serum. Serum glucose, insulin,
and HbA1c levels were measured to determine the hypoglycemic
effect of the drug combination. Serum glucose level was
measured using a glucose enzymatic kit from Agappe Diagnostics,
Kerala, India, per the manufacturer’s instructions. In brief, the
GOD-PAP method, an enzymatic colorimetric assay, was used
where 10 µl of sample/glucose standard (100 mg/dl) is mixed with
1000 µl of a glucose reagent containing Tris buffer (pH 7.4),
phenol, glucose oxidase and 4-aminophenazone for 10min at
37 °C and the absorbance was measured against a reagent blank
at 540 nm. Serum insulin was measured using Mercodia Rat Insulin
ELISA Kit and Sweden/RayBio rat insulin ELISA kit (Item: ELR-
Insulin) as per the manufacturer’s instructions. Both assay kits are
direct sandwich ELISA-based assays where insulin in the sample
interacts with peroxidase-conjugated monoclonal antibodies
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directed against its antigenic determinants and anti-insulin
antibodies that the wells of the assay plate are coated with. A
washing step removes any excess unbound antibodies, followed
by which the insulin concentration is spectrophotometrically
measured by incubating it with 3,3’,5,5’-tetramethylbenzidine
(TMB) at 450 nm. In brief, 100 µl of each standard and sample
are incubated for 2.5 h at room temperature with gentle shaking.
The solution is discarded and washed with 1X wash solution
(300 µl) four times. 100 µl of 1X biotinylated antibody is then
added to each well and incubated at room temperature with
gentle shaking. The solution is discarded and washed as
previously described, followed by adding 100 µl of streptavidin
solution and incubating for 45 min at the same conditions. The
solution is then discarded, and the wash step is repeated. 100 µl of
TMB one-step substrate reagent is added to each well and
incubated for 30 min at room temperature with gentle shaking in
the dark. 50 µl of stop solution is then added to each well and read
at 540 nm.
Serum HbA1c was also measured using an ELISA-based kit from

MyBioSource Inc. (Item no. MBS2880660) as per the manufac-
turer’s instructions. In brief, 100 µl of standard, blank, and sample
were added per well and incubated for 2 h at 37 °C. The liquid was
then removed, and 100 µl of anti-HbA1c antibody working
solution was added and incubated for 1 h at 37 °C. Each well
was aspirated and washed thrice with wash buffer (400 µl). 100 µl
of avidin-conjugated Horseradish Peroxidase was then added and
incubated for 1 h at 37 °C followed by a washing step. 90 µl of the
TMB substrate solution was added and incubated for 15–30min at
37 °C away from light. Finally, 50 µl of the stop solution was added,
and absorbance was read at 450 nm.

Lipid Profile. Parameters for the lipid profile - total cholesterol
(TC), triglycerides (TG), and high-density lipoprotein (HDL) were
determined using enzymatic assay kits obtained from Agappe
diagnostic, Kerala, India, as per the manufacturer’s instructions. In
brief, the CHOD-PAP method was used to measure TC against a
cholesterol standard where 10 µl sample/standard was allowed to
react with 1000 µl of a cholesterol reagent containing Pipes buffer,
Phenol, Sodium Cholate, 4 -Aminoantipyrine, Cholesterol Esterase,
Cholesterol Oxidase, and Peroxidase for 5 min at 37 °C and the
concentration was colorimetrically measured at an absorbance of
primary wavelength 510 nm and secondary wavelength of
630 nm. Similarly, TG was measured using the GPO-TOPS method
against a TG standard by allowing the 10 µl samples/standard to
react with 1000 µl TG reagent containing the Pipes–buffer, TOPS,

Potassium ferrocynate, Magnesium Salt, 4-Aminoantipyrine, ATP,
Lipoprotein Lipase, Glycerol Kinase, Glycerol–3-phosphate oxidase
and Peroxidase for 5 min at 37 °C. The absorbance was then
measured at a primary wavelength of 546 nm and a secondary
wavelength of 630 nm. Further, HDL was measured using a
selective inhibition method where the reaction of HLD products
with 270 µl of a reagent containing N-Ethyl-N-(3-methylphenyl)-
N’succinylethyenediame for 5 min at 37 °C, followed by 90 µl of a
reagent containing Cholesterol Oxidase and 4-Aminoantipyrin (4-
AA) for 5 min at 37 °C and spectrophotometrically measured at an
absorbance of 600 nm and 700 nm for the calibrator and samples.
The LDL was calculated using Friedewald’s formula: LDL= TC –
(HDL+ TG/5).

Antioxidant effect. The serum nitrite level (indication of NO
release) was determined using the Griess reagent spectrophoto-
metrically. 100 µl of Griess Reagent was added to 300 µl of the
nitrite-containing samples and 2.6 ml of deionized water and
incubated for 30 min at room temperature. A reference sample
was prepared by mixing 100 µl of Griess Reagent and 2.9 ml of
deionized water. The absorbance of the sample was measured at
548 nm relative to the reference sample. A standard curve of
nitrite concentrations was used to obtain sample nitrite concen-
trations. Thiobarbituric acid reactive substances (TBARS) assay kit
from Cayman chemical company (item no. 10009055) was used for
serum measurement of TBARS. TBARS are released as a by-product
of lipid peroxidation and serves as an indicator of oxidative stress
in the system. Briefly, vials with 100 µl of sample/standard were
mixed with 100 µl SDS followed by the addition of 4 ml of color
reagent containing Thiobarbituric acid (TBA), TBA acetic acid, and
TBA Sodium Hydroxide at 90–100 °C and placed in boiling water
for one hour. The vials were then immediately placed in an ice
bath for 10 min to stop the reaction. The vials were centrifuged for
10min at 16,000 x g at 4 °C, and absorbance was measured
colorimetrically at 530–540 nm.
Detailed protocols of all assays can be accessed from the

vendors’ websites using the kit names and catalog numbers
mentioned.

Histopathology of pancreas
After 28 days, small sections of pancreatic tissue from sacrificed
rats were fixed in 10% neutral buffered formalin overnight, and
the embedded tissue was processed by dehydrating using
ascending grades of 50%, 70%, and absolute alcohol, clearing

Fig. 5 Experimental design. The experiments were split into two sets with overlapping ranges of drug doses. Animals in Group I and Group II
served as the normal and diabetic control, respectively, in both studies. Group III of Set I, II served as metformin monotherapy control, while
Group IV of Set II served as the probucol monotherapy control.
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using two changes of xylene followed by wax impregnation and
paraffin embedding. Sections were then made using a microtome
and stained with hematoxylin-eosin. In brief, the sections were
dewaxed using xylene twice for 5 min each, followed by
hydration using two changes of 100% alcohol (3 min each),
95% alcohol (3 min), 80% alcohol (3 min), 70% alcohol (3 min),
50% alcohol (3 min) and rinsing under running tap water for
3 min. The sections were then stained with Hematoxylin for
10 min, followed by rinsing under tap water for 3 min and Eosin
staining for 5 min. The tissues were then further passed through
successive changes in 95% alcohol twice (3 min), 100% alcohol
twice (3 min each), and xylene twice (5 min each) to prevent
drying and mounted using DPX and a cover slip and examined
under a microscope. The percentage of alpha and beta-pancreatic
cells were calculated using the point-counting method based on
morphology.

Statistical analysis
Statistical significance was calculated using ANOVA and Dunnett’s
test. All results were expressed as Mean±S.E.M along with their
respective p-values. Statistical analyses were carried out using
GraphPad Prism 9.5.0.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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