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High-throughput metabolomics for the design and validation
of a diauxic shift model
Daniel Brunnsåker 1✉, Gabriel K. Reder 1, Nikul K. Soni1, Otto I. Savolainen1,2, Alexander H. Gower 1, Ievgeniia A. Tiukova1,3 and
Ross D. King1,4,5

Saccharomyces cerevisiae is a very well studied organism, yet ∼20% of its proteins remain poorly characterized. Moreover, recent
studies seem to indicate that the pace of functional discovery is slow. Previous work has implied that the most probable path
forward is via not only automation but fully autonomous systems in which active learning is applied to guide high-throughput
experimentation. Development of tools and methods for these types of systems is of paramount importance. In this study we use
constrained dynamical flux balance analysis (dFBA) to select ten regulatory deletant strains that are likely to have previously
unexplored connections to the diauxic shift. We then analyzed these deletant strains using untargeted metabolomics, generating
profiles which were then subsequently investigated to better understand the consequences of the gene deletions in the metabolic
reconfiguration of the diauxic shift. We show that metabolic profiles can be utilised to not only gaining insight into cellular
transformations such as the diauxic shift, but also on regulatory roles and biological consequences of regulatory gene deletion. We
also conclude that untargeted metabolomics is a useful tool for guidance in high-throughput model improvement, and is a fast,
sensitive and informative approach appropriate for future large-scale functional analyses of genes. Moreover, it is well-suited for
automated approaches due to relative simplicity of processing and the potential to make massively high-throughput.
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BACKGROUND
Even though Saccharomyces cerevisiae is a very well-studied
organism, ∼20% of its proteins remain poorly characterized1.
Many of these proteins are conserved between eukaryotes,
including humans, providing a significant incentive to increase
the pace of discovery.
In order to accelerate this process it will be necessary to deploy

massively parallel experimental and computational methods2,3.
Previous work has implied that the most probable path forward is
via fully autonomous systems in which active learning is applied to
guide high-throughput experimentation4. The development of
tools and methods for these types of systems is therefore a
research priority, as different types of biological data will provide
information that will not only elucidate new functions but also
vastly accelerate our knowledge of functions, enabling fully
autonomous functional discovery in multiple different modalities.
Intracellular metabolomics has historically been an under-

utilized source of biological information, with previous studies
indicating the difficulty of sample processing as a bottleneck in
the way of increasing experimental throughput5. With rapid
advances in not only lab automation but also mass-spectrometry
hardware and its connected software, this is likely to change6.
Here we investigate the potential of automated cultivation
procedures and untargeted intracellular metabolomics for high-
throughput functional characterization, and as a source of
information for active learning based experimental design during
the diauxic shift, observed in the yeast S. cerevisiae. Thus, in S.
cerevisiae growing on glucose in an aerated batch culture one can
commonly observe a diauxic shift: during the first growth phase,
yeast ferments glucose into ethanol; when the glucose has been
consumed, yeast switches to an ethanol substrate using a

respiratory mitochondrial metabolism. This transition requires
substantial reconfiguration of the metabolic network and a similar
phenomenon can be observed in cancer cells: the Warburg effect7.
Despite extensive research, the regulation of the diauxic shift
remains poorly understood8,9.
Using dynamical flux balance analysis (dFBA) simulations

constrained by semi-autonomously developed gene regulatory
models produced by previous iterations of the robot scientist, a
set of ten regulatory genes were selected due to their relevance to
the shift and implications of previously unknown connections in
literature4. These were then individually and collectively investi-
gated using their untargeted metabolic profiles with the goal of
clarifying regulatory roles and biological consequences of gene
deletion. This also served as an assessment of the suitability of
untargeted metabolomics as a tool for guidance in high-
throughput model improvements by evaluating model fidelity.

RESULTS
Metabolic profiles provide information about regulator
functionality
In order to identify genes with insufficient annotation in regards to
the diauxic shift and to assess the validity of the model proposed by
Coutant et al., the ten strains with the highest differences in post
shift growth rates with and without proposed semi-automated
revisions were selected for further study4. The selected strains are
shown in Table 1, in descending order of predicted absolute growth
rate differences between the models. Three of the selections are
genes without any significant functional characterization, namely:
YGR067C, RTS3 and to some extent TDA1. Two of them have
existing homologues in humans; DLD3 and FAA1.
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To identify phase-specific regulatory consequences of gene
deletions, samples were taken during fermentation on glucose as
well as during respiratory metabolism on an ethanol substrate for all
strains in the study. An overview can be seen in Fig. 1a. The analysis
makes use of pairwise comparisons with the reference strain in the
same phase, and metabolite enrichment methods to contextualize
the deviations10. The metabolic profiles of the deletion mutants
showed that Pearson correlation with the reference strain was
phase-dependent for the majority of the strains, indicating context-

specific regulation. The correlation analysis shows the relative
insignificance of the GAL11 gene in the context of the diauxic shift
and its small impact on overall metabolism in both phases.
Conversely, the relative impacts of the rest of the available gene
deletions are much more significant, especially in the post-diauxic
growth phase.
There are also some significant differences in affected pathways

between the phases, again indicating some phase-specific con-
sequences, such as the impact on vitamin B6 metabolism post shift.

Table 1. Selected deletion mutants.

Standard name Systematic name Protein type Contribution Absolute growth rate difference
(|M1smart−M1|) (h−1)

YGR067C YGR067C Unknown Unknown 0.00251

TDA1 YMR291W Protein kinase Unknown 0.000975

MEK1 YOR351C Protein kinase Meiotic kinase 0.000449

RTS3 YGR161C Unknown Unknown 0.000444

RME1 YGR044C Zinc finger Regulator of meiosis 0.000440

FAA1 YOR317W LCF acyl-CoA synthetase Fatty acid activation 0.000440

PCL1 YNL289W Cyclin Cell cycle progression 0.000433

GAL11 YOL051W Transcription factor Galactose metabolism 0.000428

OCA1 YNL099C Putative, phosphatase Cell cycle arrest 0.000427

DLD3 YEL071W Dehydrogenase D-Lactate dehydrogenase 0.000427

Details and simulated growth rate differences of deletion mutants using model paradigm and model structures proposed by Coutant et al. In descending
order of absolute growth rate difference.
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Fig. 1 Metabolic profiles of regulatory deletants. a Heatmap based on normalized peak intensities for all the strains involved in the study.
Selection of presented metabolites were done by selecting for features most responsible for phase-variation using discriminatory analaysis
(oPLS-DA) that were deemed significant by the linear model (p-value < 0.05). Hierarchical clustering of strains was done via Pearson correlation
and Euclidean distance for the metabolites. b Strain-wise pathway enrichment when compared to WT using FELLA (pre-shift, FELLA p-score <
0.01). c Strain-wise pathway enrichment when compared to WT using FELLA (post-shift, FELLA p-score < 0.01).
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YGR067C and TDA1 seem to have large effects on metabolism
as shown by their low correlations with the reference strain.
FELLA-based topological enrichment (Fig. 1b, c) shows an effect
on nucleotide and sphingolipid metabolism in both phases for
TDA1. The metabolomics data further supports the previously
mentioned hypothesis, showing significant changes in abundance
of sphingolipid affiliated molecules such as sphinganine and
phytosphingosine. Overall, the effect of its deletion seems lower
before the shift.
While less is known about YGR067C, the mode of action seems

similar in the ethanol phase, with the two strains correlating
highly, sharing enrichment on sphingolipid metabolism, nucleo-
tide metabolism and lysine related processes. Although, deletion
of YGR067C seems to indicate some additional involvement in
central carbon metabolism, showing significant perturbations in
both the citric acid cycle and C5-branched dibasic acid
metabolism. Pre shift, the extent of the agitation is much lower,
with most of the measured activity being in close proximity to
nucleotide and purine metabolism.
Another largely uncharacterized gene, RTS3, is here implicated

in perturbations in processes involved with amino acids such as
valine, leucine and isoleucine synthesis along with tryptophan
metabolism in both of the studied growth-phases. The aforemen-
tioned agitation together with the distance to the reference strain
signifies a large metabolic impact, implicating further
involvement.
The deletion of MEK1 causes an agitation of several key

processes connected with stress responses in adverse conditions
or overall cellular maintenance. Metabolite accumulations derived
from FAA1-deletion imply involvement in cell-membrane main-
tenance and the TCA cycle in the glucose phase, although overall
impact seems mild after the diauxic shift, indicated by a high
correlation with the reference strain. The deletant strains of oca1Δ

and pcl1Δ share a degree of similarity in both of the sampled
growth-phases due to a high correlation and shared biological
impact on purines and tryptophan related pathways, with OCA1
having a larger implication in more central metabolic processes.
The perturbation caused by RME1-deletion is significant, leading

to a distinct deviation in not only the TCA-cycle and its close
variations but also sections involved in valine and isoleucine
synthesis in its post diauxic phase. Pre shift, the significant
deviations from the reference are seemingly centered around
stress-responsive elements such as glutathione metabolism and
general nucleotide related metabolism.
The role of the Dld3 protein seems ambiguous, with hits in

several different parts of metabolism, while still maintaining a very
close connection with the reference strain in regards to the
complete metabolic profile.

Metabolic rewiring during the diauxic shift
In order to assess the metabolic impact of the diauxic shift, the
entirety of the metabolomic profiles from the samples present in
this study were used to recognize phase-specific changes and
intricacies in the metabolic reconfiguration. Used methodologies
include discriminatory analysis using orthogonal partial least
squares discriminatory analysis (oPLS-DA) and third generation
metabolite enrichment making use of a linear model for
significance testing10–12.
The diauxic shift comprises of a series of large cellular

transformations resulting in very distinct metabolic profiles before
and after the shift using the 431 distinct metabolite features
present after processing. Figure 2a signifies the clear metabolite
fingerprint of the phases, providing a clearly separable and
reliable classification visualized with loading plots derived from
the first and second component axis of an oPLS-DA projection. As
seen in Fig. 2b the intensities of a large fraction of the measured
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Fig. 2 Overview of metabolomic changes across the diauxic shift. a Diauxic shift phase classification and 95% confidence intervals using
orthogonal partial least squares discriminatory analysis (oPLS-DA) with identified peaks as features. b Volcano plot showing differentially
expressed metabolites across the shift (raw p-value < 0.1 and fold-change > 1.5, linear model). c Diffusion based topological enrichment using
FELLA with significantly enriched pathways in red (FELLA p-score < 0.05).
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species varied greatly across the phases, showing that the
metabolic impact is significant and the metabolome distinctly
deviated, with 215 metabolic features being significantly affected
(raw p-value ≤ 0.1, linear model).
The significant metabolites showcased in Fig. 2a were

remapped to their KEGG-identifier and subsequently used as a
base for enrichment using the FELLA-algorithm. 24 out of
215 significantly expressed non-redundant metabolites were
present in the intersection between the dataset and the KEGG-
database on S. cerevisiae, see Supplementary Table 1. The
metabolomics data showed that the change in phases from a
fermentative to full mitochondrial respiratory metabolism is a
significant one. Seemingly causing a large change in overall
pathway flux, centered around essential processes such as central
carbon metabolism and its connection to the switch to alternative
carbon precursors such as ethanol or fatty acids. It also showed an
impact on the metabolism of several different amino acids and
processes essential for cell membrane viability and stress
responses.
The metabolic transition resulted in the accumulation of, among

others, species involved in processes implicated in stress
responses. Figure 3 targets the intersection between proline
metabolism and glutathione metabolism, showed as enriched in
Fig. 2a. The interactions of which are sourced from KEGG13,14. A
significant portion of the metabolites present in the intersection
(L-glutamate, spermidine, glutathione, 5-methylthioadenosine and
5-oxoproline) were detected and significantly accumulated.
Overall enrichment in glycerophospholipid metabolism, as seen

in Fig. 2, can be explained by significant deviation of three distinct
metabolites involved in this process: choline, phosphocholine and
3-sn-glycerophosphocholine. They represent an interconnected
part of metabolism, being directly associated with each other in
the metabolic network.
The over-representation of tryptophan metabolism seems

mainly centered around two key metabolites; kynurenic acid (4-
hydroxy-2-quinolinecarboxylic acid) and indole-3-acetate, whilst
tryptophan itself remains unperturbed, despite being an inter-
mediate between the formerly mentioned metabolites.

Autonomously improved model shows increased accuracy in
predicting metabolic activity
Constrained simulations according to the framework provided in
Coutant et al. were analyzed to validate the revisions produced by
its semi-automated model-revision approach4. The high amount
of significantly differing reactions between the two models
brought forth by the changes caused by the semi-automated
method proposed in Coutant et al. in combination with the
pairwise Spearman correlation (Fig. 4a) indicated that the
difference in reaction flux estimates are not caused by only
uniform decreases or increases of flux, but rather a reordering of
reaction allocation in M1Smart when compared to the reference
model, M1. Metabolite turnovers were calculated as to serve as a
proxy for metabolic activity, enabling a comparison of observed
species accumulation. Table 2 shows the performance of the two
models when predicting for metabolite accumulation (p-value <
0.1 for a positive prediction and/or observation for both simulated
metabolite fluxes (Wilcoxon signed-rank test) and measured
species intensity (linear model)) for available metabolites in the
dataset corresponding to central metabolites belonging to either
central carbon metabolism or signified as an amino acid,
pyrimidine, or purine.
M1Smart strictly outperformed M1 on 6 out of 10 selected

metabolites, but most importantly, it predicted the activity of all
the measured amino acids with higher accuracy. This seemingly
showcased an improvement over the original iteration M1 using
this type of evaluation. Keep in mind that neither of the models
performed very well using the aforementioned metrics.

DISCUSSION
Some evidence indicates that functional discovery is slowing
down1. And while some of this slowdown might be attributed to
research bias, a major limitation of the methods used today is
assessing functionality and generating hypotheses in a high-
throughput manner while still maintaining sufficient resolution
and precision. In this work, it is demonstrated that untargeted
metabolomics has the potential to address this issue.

Fig. 3 Reduced metabolic network showcasing the intersection between glutathione metabolism and arginine and proline metabolism.
Highlighted metabolites are significantly accumulated over the course of the phase change as seen in the violin plots (p-values from the linear
model). Non-highlighted metabolites were not identified in the data set. In the boxplots, the center lines represent the median; box limits
represent upper and lower quartiles; whiskers extend to the first or last data point that is within 1.5× the interquartile range of the box limits
in the lower and upper directions respectively. Dots are values outside of 1.5× interquartile range beyond either end of the box.
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The networks of kinases and transcription factors involved in
regulation represent an enormously complex system, which plays
a key role in almost all cellular processes. Determination of
regulator function ideally requires linking gene manipulation with

global profiling of intracellular molecules (with the help of omics-
based techniques). The use of targeted panels of metabolites in
combination with other omics-methods and technologies may
lead to subtle metabolic events being poorly investigated. By
leveraging a strength of untargeted metabolomics, namely the
relatively unbiased feature-collection, one can identify even small,
unexpected changes in metabolism.
Untargeted metabolomics enables one to identify biochemical

features of the phase-change, making it useful for classifying
specific condition-based phenotypes as seen in Fig. 2a. It also
enables investigation of possible modes of action and metabolic
consequences of the stress connected with respiratory metabo-
lism of ethanol. Predictably, metabolomics indirectly captured
changes in glyoxylate and dicarboxylate metabolism, but also
pathways heavily associated with cell survivability and fitness in
adverse conditions, such as glutathione metabolism and proline
metabolism. Proline and glutathione are heavily implied in the
literature as biomarkers of cellular distress. The former having a
role as an overall stress protectant to various forms of stressors
such as heat-shock, oxidation and changes in osmolarity, while
also having alternative functions as a membrane stabilizer and as
an ROS (reactive oxygen species) scavenger15. The latter,
glutathione, has roles as not only an important ROS scavenger,
but also as a contributor to overall cellular fitness in adverse
conditions due to, among others, its implications in cell
proliferation, DNA synthesis and protein glutathionylation16. Some
of these biological consequences and stresses are most likely
subsequently shown as perturbations in nucleotide metabolism
further referenced in Fig. 2a.
In the main intersection of proline and glutathione metabolism

is spermidine and its reaction intermediary, 5-methylthioadeno-
sine, both of which show significant accumulation during the
respiratory phase. More specifically, spermidine is a polyamine
that has previously implied relevance for membrane stabilization
and enzymatic regulation, it is essential for normal cell growth,
and has been implicated in human lifespan and inflammation17,18.
The study also further supports existing literature on the more

particular effects of the shift and its connection with glyceropho-
spholipids and local metabolic changes in activity due to changes
in membrane stability8,19,20. Previous work has shown the
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Table 2. Model evaluation.

Metabolite Model Balanced accuracy

L-Glutamate M1 0.265

M1Smart 0.478

L-Proline M1 0.300

M1Smart 0.325

L-Histidine M1 0.289

M1Smart 0.316

L-Tryptophan M1 0.250

M1Smart 0.413

L-Leucinea M1 0.000

M1Smart 0.000

Adenineb M1 0.000

M1Smart 0.469

Guanine M1 0.406

M1Smart 0.544

Uracila M1 0.000

M1Smart 0.000

Adenosine M1 0.644

M1Smart 0.544

PEP M1 0.507

M1Smart 0.382

Balanced accuracy of the different models when predicting for significant
changes in metabolite flux (p-value < 0.1, Wilcoxon signed-rank test) in
comparison to observed significant changes in metabolite accumulation
(p-value < 0.1, linear model) for all the comparisons available in the study.
ano correct matches done by either of the models.
bno significant observations for all pairwise comparisons.).
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importance of lipid regulation during and after the diauxic shift,
especially showcasing the dynamics of glycerophospholipid
metabolism19, something which is reinforced in this study. The
change in activity is potentially caused due to stress on the cellular
membrane, and an increased pressure to maintain membrane
stability and relieving cell injury in an effort to keep the cells alive.
Overall, the metabolites that were found to be differentially

expressed across the phases imply significant regulation of stress-
responsive mechanisms, seemingly oriented mainly around
ethanol exposure and accumulation of toxic metabolites produced
by oxidative metabolism, such as glutathione metabolism9,16,21.
This is also somewhat mirrored for the deletion mutants
themselves, but with additional implications for several processes
heavily involved in signaling, including sphingolipid metabolism22.
Several of the genes targeted in this study, namely YGR067C

and RTS3 are currently classified as putative proteins, whilst Tda1
is a kinase of unknown function23. Untargeted metabolomics
provides some initial insight into their roles, indicating their
involvement in essential processes such as the citric acid cycle,
vitamin B6 metabolism and the metabolism of several amino
acids, hopefully facilitating further investigations into their
biological effect. Additionally, the Tda1 protein has, outside of
this work, previously been putatively implicated in phytosphingo-
sine metabolism, which this study strengthens further24.
Other genes investigated are ones with known human

homologues, such as FAA1 and DLD3. This study shows some
implications of their deletion, such as its effect on overall stress
responses, but also in pathways affecting cell-membrane stability
and other processes essential for overall cellular health.
FAA1 and DLD3, although being relatively well annotated genes,

with main functionalities
involved in fatty acid activation and 2-hydroxyglutarate

dehydrogenase, the dynamic and complex nature of regulation
likely makes them involved with several additional secondary
roles25–28. Some of which are putatively implicated here, such as
the potential connection with sphingolipid metabolism, glycer-
ophospholipid metabolism and tryptophan metabolism. There are
also pathways that are affected differently when investigating
strain specific differences during the different phases, such as
differences in vitamin B6 metabolism only appearing post shift.
This could potentially be due to its involvement in glucose and
amino acid metabolism29.
Historically, untargeted metabolomics spectra are used as

identifiable fingerprints for specific biochemical phenotypes30. By
investigating pairwise correlation between strains, and also with the
reference strain, one can infer overall similarity of the perturbation
caused by the gene deletion. If we have sufficiently global enough
coverage, the correlation coefficients could in this case serve as a
proxy for metabolic impact, as in the case of GAL11 which
correlated highly with the reference strain in both the fermentative
and respiratory phase, indicating the relative non-essentiality of the
gene in the context of the diauxic shift, as seen in Fig. 1.
The use of dFBA and previously developed models and

modeling frameworks in this study implies that they can be used
for experiment selection and future applications in active learning
and automated experimentation4. In this particular case, the
methodology supplies informative suggestions for deletant
strains, with several of the strains having previously unknown
implications for the diauxic shift, and some where metabolic
profile perturbations seem minimal. This discrepancy in predic-
tions indicates the potential need for model revisions.
Model revisions made by a semi-autonomous system, as in the

case of the work done in Coutant et al., where growth curves were
used to infer changes in a gene regulatory network, need to be
biologically validated using supplementary observations4. In order to
assess the relevance of using untargeted metabolomics for this
specific task, the metabolite accumulations were used as a proxy for
metabolic activity. Comparing the model with the observations in a

strictly effect-based manner shows that the revisions not only made
the metabolic flux predictions more accurate, but also rerouted
reaction fluxes. While other more sophisticated methods of
integrating metabolomics-data into automated approaches will likely
need to be developed for this purpose, this serves as a reasonable
complement due to its holistic nature. The modeling paradigm of
choice is essential to the form of metabolomics usage and using a
FBA-centric modeling paradigm is limiting due to its steady-state
assumptions regarding intracellular metabolite accumulations31.
In this study we investigated the potential of using untargeted

metabolomics to form hypotheses regarding functionality of
regulatory genes involved with the diauxic shift in the yeast S.
cerevisiae, due to its potential use as a high-throughput form of
analysis. It was also used as an indicator of model improvement for
previous work done on active learning and scientific automation.
The results demonstrate that it can be used to form initial

hypotheses around gene function, contextual regulation, and the
phenotypical consequences of gene deletion. It was also used to
characterize the diauxic shift further, showcasing supplementary
modes of action for stress responses induced by fully mitochondrial
respiration and ethanol exposure in yeast and giving more specific
insight into the role of involved regulators. It also served as an
indication of metabolic activity for use as a model validation tool. In
both of these use-cases, more data in the form of different types of
biological measurements would be needed to fully validate these
hypotheses, but its usefulness as a high-throughput alternative to
other omics-methods in order to complement computational
methods in functional discovery should not be understated.
We conclude that untargeted intracellular metabolomics is well

suited to generating data and hypotheses about gene function, and
this could potentially be done automatically in high-throughput.

METHODS
An overview of the workflow and methodologies used in this
study can be seen in Fig. 5.

Strains used in this study
All of the haploid yeast deletant strains present in the study were
taken from the EUROSCARF deletant collection, with the strain
background being BY4741, genotype: MATa his3Δ1 leu2Δ0
met15Δ0 ura3Δ0).

FBA simulations and strain selection
Fully constrained dynamic flux balance simulations according the
method and framework described in Coutant et al. were
performed for each possible single deletion of the 682 available
regulatory genes and active-learning based model combinations
using identical experimental settings as in the performed
experiments4. The difference in growth rate during the post
diauxic shift phase was calculated and compared between the two
models for all the deletant strains. Ten strains which were fully
viable and available in the EUROSCARF collection with the largest
absolute growth rate discrepancies between the revised models
were then selected for further study. This to not only provide
informative examples for model validation, but also to prime
further investigations into their relevance to the diauxic shift.

Growth phenotype analysis
Yeast strains from the EUROSCARF deletant collection were
precultured in 250 μL YPD (yeast extract peptone dextrose)
medium at 30 °C in a round bottom 96 well plate overnight. The
plates were then centrifuged at 450 g for 2 min and subsequently
washed in 250 μL YNB (yeast nitrogen base) before being
centrifuged once more at 450 g for 2 min. Supernatant was
removed and the cells were then resuspended in 250 μL of a YNB
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mixture, consisting of 10.5 g/L YNB without amino acids, 1.25 g/L
glucose, 75 μg/L ampicillin and 0.625 g/L of L-methionine, L-
leucine, L-histidine, and Uracil respectively.
A Multidrop™Combi Reagent Dispenser was used to predis-

pense YNB in 384 well plates (Matrix, item no. 4332). A Bravo
Automated Liquid Handling Platform was then used to transfer
suspension from the precultures into the plate. The volume of the
transfer was calculated so that an initial OD (optical density) of
approximately 0.07 could be reached, using a final cultivation
volume of 80 μL. The outermost quadrants of the 384 well plate
were not inoculated so as to not only serve as a media control but
also to avoid edge effects due to evaporation.
After plate preparation, a growth profiling protocol was created

using the automated laboratory cell “Eve”4,32. The plate was
subsequently transferred from Eve’s Cytomat™ automated incuba-
tor (30 °C) to a Teleshaker Magnetic Shaking System, where it was
shaked for 20 s at 1000 rpm, divided evenly between clockwise and
counter-clockwise double-orbital shaking. After shaking the plate
was transferred to a BMG Polarstar plate reader, where it underwent
optical density measurements at 560 nM (the temperature in the
plate reader was kept at a constant 30 °C). After measuring, the
plate was returned to the incubator. The protocol was automatically
repeated every 20min for up to 48 h depending on the strain.
To adjust for non-linearity, OD measurements were then

background corrected and adjusted using a third degree
polynomial as in Jung et al.33. The polynomial was derived using
an OD-ladder of serial dilutions spanning the dynamic range of
the OD-reader (0− 2 OD560) resulting in the polynomial in
Equation 1 (x=OD).

xAdj ¼ �0:01454þ 1:231x � 0:6393x2 þ 0:4985x3 (1)

The growth curves were then subsequently analyzed using AMiGA
to assess the timing of the shift and the growth rates in the
different phases34.

Sample quenching and metabolite extraction
Strains were grown in the same conditions as in the section above.
For the pre shift samples, they were collected at 0.5 OD560 or as

close to the middle of the initial fermentative phase as possible.
For the post shift samples, they were collected at 1 OD560 or
shortly after glucose depletion when additional growth could be
verified. Samples that did not adhere to this were subsequently
removed after processing.
For metabolomic samples, cells were pooled and as quickly as

possible transferred to 2mL microcentrifuge tubes containing
absolute methanol (99% purity) prechilled on dry ice. The ratio
between sample and methanol was kept at 1:1 v/v. The tubes
were kept in dry ice during the process and were as quickly as
possible transferred to a centrifuge in which they were
centrifuged at 2040 g for 5 min. The supernatant was then
discarded, and the pellets snap frozen in −80 °C ethanol and
subsequently transferred and stored at −80 °C. Samples were
further freeze dried overnight and later kept at −80 °C pending
further analysis.
Preparation of sQCs (study-specific quality control samples) was

conducted by pooling equal amounts of each sample for the
respective batches. The sQCs were subject to the same sample
preparation procedure as the actual samples. sQCs were injected
at the beginning, at the end, and systematically between sets of
samples throughout the batch sequence.
Metabolite extraction was done by pouring 75% ethanol

(preheated to 95 °C, with a ratio of 1 mL ethanol per 1 mg of
sample) over the freeze-dried yeast biomass samples in a
microcentrifuge tube. Samples were then immediately vortexed
for 1 minute and the tube was then placed on a heater for 3 min,
and allowed to cool down for 10min at 4 °C. Further, the tubes
were centrifuged for 15 min (5000 g, +4 °C) and the supernatant
was transferred to another microcentrifuge tube and stored at
−80 °C until analysis.

Untargeted LC-qTOF metabolomics analysis and data
processing
The analysis of samples was performed on an Agilent UHPLC-
qTOF-MS system which consisted of a 1290 II Infinity series UHPLC
system with a 6550 UHD iFunnel accurate mass qTOF spectro-
meter. During the analysis, the samples were kept at 4 °C. Analytes

2. Cultivation in EVE 3. Sample preparation 4. Data acquisition

5. Data processing & normalization

3. Data acquisition1. Strain selection

6. Statistical analysis & model validation

- Drift correction (QC-RLSC)
- Metabolite identification (MS-Dial)
- Quantile normalization

- Multivariate analysis
- Univariate analysis
- Model validation (metabolic flux-sums)

- FELLA-based enrichment
- Pathway analysis

1 2
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Δ
G
ro
w
th
ra
te

- Constrained dFBA simulations
- Model comparison M1 vs. M1Smart¹
- 10 strains with highest
growth rate discrepancy (+WT)

-80C Methanol Pellet

Extracted in ethanol

Sampling

Lyophilization

- Untargeted LC-MS

7. Interpretation

- Differential metabolomics

m/z

In
te
ns
ity

Fig. 5 Overview on the workflow and protocols used in this study. 1Simulations were performed according the framework supplied in
Coutant et al. and the comparison between the models served as the basis for strain selection4.
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were separated by using reverse phase (Waters Acquity UPLC HSS
T3 column (100 × 2.1 mm, 1.8 μM)) chromatography. The Agilent
MassHunter workstation was used to operate and monitor the
instrument and acquire data. Reversed phase mobile phase
included (A) water and (B) methanol, both containing 0.04%
formic acid. The linear gradient elution was: 0–6min, 5–100% B,
6–10.5 min, 100% B. Mobile phase flow was set at 0.4 mL/min.
Metabolites were ionized by a Jetstream electrospray ionization
(ESI) source. The mass spectrometer was operated in positive
mode. The spectrometer parameters were set as follows: drying
gas (nitrogen) temperature at 175 °C and flow at 12 mL/min,
sheath gas temperature at 350 °C and flow at 11 L/min, nebulizer
pressure at 45 psi, capillary voltage at 3500 V, nozzle voltage at
300 V, fragmentor voltage at 175 V. Data were acquired within a
50–1600m/z range in centroid mode with the acquisition rate set
at 1.67 spectra/s. The MS abundance threshold was set at 200.
Iterative MS/MS data acquisition was performed in positive mode
with 10 eV, 20 eV and 40 eV collision energies and with the same
chromatographic conditions as for the MS analysis. It was
performed on sQC samples ensuring that spectra were collected
from ions present in a significant majority of the samples. Positive
mode MS2 fragmentation spectra were collection using Agilent
Auto MS/MS acquisition mode with a precursor ion exclusion list
of commonly occurring positive mode high-intensity precursor
ions. The exclusion list is included in supplementary information
(Supplementary Table 2).
Initial peak processing was done using MS-Dial (v4.7), peak

detection made use of a weighted moving average method and
allowed for a minimum peak-width of 5 s and minimum peak
height of 2000 counts. Identification was done by manual
comparison with the Riken library on both MS and MS/MS profiles
when available (m/z only)35. Identified peaks with an average
value below included blanks were removed along with peaks that
had a fill beneath 0.1, signal to noise ratio below 10 and if they
were not detected in two thirds in any of the experimental
batches. Measured ion intensities of distinct samples taken in both
phases were corrected for potential signal drifts using quality
control sample based robust locally estimated scatterplot
smoothing (QC-RLSC) using the NormalizeMets library (v.0.24) in
R (v.4.2.1)36. Batches were then concatenated based on identifica-
tions, adduct type, m/z similarity (±0.01) and retention time
(±0.75). Feature intensities were then normalized with quantile
normalization using the preprocessCore library (v.1.52.1) using the
algorithm outlined in Bolstad et al.37.

Analysis of untargeted metabolomics data
Discriminatory analysis via oPLS-DA and LIMMA linear modeling
was done via the MetaboAnalyst-suite (v.5.0.0)11,12,38. For sig-
nificance testing of the identified peaks, a linear model was set up
treating experimental batches as covariates, with the exception of
across-shift analysis, where strain and batch was set up as
covariates. The sample size for the cross-phase analysis was 102,
with 52 and 50 samples in the post and pre shift phases
respectively. Each strain/condition combination had between 3
and 6 replicates. See Supplementary Tables 3–22 for the full set of
statistical parameters for the metabolites present in the intersec-
tion between the data set and the KEGG database derived from
the linear model for each comparison. Enrichment studies were
done with a diffusion based method using FELLA (v.1.14.0) where
input metabolites were deemed significantly changed if below an
unadjusted p-value of 0.1 derived by the linear model, similar to
the approach as in Nakic et al.10,39,40. Identified metabolites were
matched to the KEGG-database using InChIKeys supplied by MS-
dial (v4.7)13,14,35. Correlation analysis was done using hierarchical
clustering based on Pearson correlation in R (v.4.2.1), using an
average across replicates.

Model validation and identification of metabolic activity
To infer metabolic activity of specific metabolites, the basal flux-
sum, Φ, was calculated for all of the metabolites present in
iMM904 using Equation 2, similar to the work presented in Chung
et al.41.

Φi ¼ 0:5
X

j

Sijvj
�� ��

(2)

The metabolite flux-sum was calculated for all unique metabolites, i.
Significantly differing (unadjusted p-value < 0.1) simulated

reactions fluxes and metabolite flux-sums were identified using a
two-sided Wilcoxon signed rank test using thirteen simulations
from both models as observations. To ensure that the model
revisions were not only based on uniform increases or decreases
of reaction fluxes, a pairwise Spearman correlation was calculated
using simulations from both models.
Difference in metabolite flux-sums were then compared with

measured accumulations to estimate accuracy of the flux
reroutes suggested by model revisions, treating the metabolite
flux-sums as predictors of species accumulation, a modification
of the approach suggested in Mo et al.42. The metric used was
balanced accuracy, to be able to manage the imbalance of
activity present in the different deletion mutants and phase-
changes.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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