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The nonlinearity of regulation in biological networks
Santosh Manicka1,3, Kathleen Johnson 2,3, Michael Levin1 and David Murrugarra 2✉

The extent to which the components of a biological system are (non)linearly regulated determines how amenable they are to
therapy and control. To better understand this property termed “regulatory nonlinearity”, we analyzed a suite of 137 published
Boolean network models, containing a variety of complex nonlinear regulatory interactions, using a probabilistic generalization of
Boolean logic that George Boole himself had proposed. Leveraging the continuous-nature of this formulation, we used Taylor
decomposition to approximate the models with various levels of regulatory nonlinearity. A comparison of the resulting series of
approximations of the biological models with appropriate random ensembles revealed that biological regulation tends to be less
nonlinear than expected, meaning that higher-order interactions among the regulatory inputs tend to be less pronounced. A
further categorical analysis of the biological models revealed that the regulatory nonlinearity of cancer and disease networks could
not only be sometimes higher than expected but also be relatively more variable. We show that this variation is caused by
differences in the apportioning of information among the various orders of regulatory nonlinearity. Our results suggest that there
may have been a weak but discernible selection pressure for biological systems to evolve linear regulation on average, but for
certain systems such as cancer, on the other hand, to simultaneously evolve more nonlinear rules.
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INTRODUCTION
How nonlinear is the regulation of the components of biological
networks? That is, to what extent do the biochemical components
of these networks non-independently interact (Fig. 1) in influen-
cing downstream processes and network behavior. Research on
the “nonlinearity” front has hitherto focused on its various
manifestations in the dynamics of biological systems, such as
chaos, bifurcation, multistability, synchronization, patterning,
dissipation, etc.1, but a characterization of regulatory nonlinearity
among the components of the underlying systems that give rise
to those phenomena is lacking. A more complete understanding
of biological regulatory nonlinearity would not only yield insights
into their design principles2 but also have theoretical implications
ranging from canalization to control3,4 and practical implications
for biomedical therapy, synthetic biology, etc.1,5. A good example
of this concerns the mapping between molecular or genetic
information and the resulting system-level anatomical structure
and function of an organism. Advances in regenerative medicine
and synthetic morphology require rational control of physiological
and anatomical outcomes6, but progress in genetics and
molecular biology produce methods and knowledge targeting
the lowest-level cellular hardware. There is no one-to-one
mapping from genetic information to tissue- and organ-level
structure; similarly, ion channels open and close post-translation-
ally, driving physiological dynamics that are not readily inferred
from proteomic or transcriptomic data. System-level properties in
biology are often highly emergent, with gene-regulatory or
bioelectric circuit dynamics connecting initial state information
and transition rules to large-scale structure and function. Thus, the
difficult inverse problem7 of inferring outcomes and desirable
interventions across scales of biology illustrates some of the
fundamental questions about the directness or nonlinearity of
encodings of information, as well as the importance of this
question for practical advances in biomedicine and bioengineer-
ing that exploit the plasticity and robustness of cellular collectives.

Many deep questions remain about the potential limitations and
best strategies to bridge scales for prediction and control in
developmental, evolutionary, and cell biology. To that end, we
introduce here a formal characterization of the nonlinearity of
models of biological regulatory networks, such as those often
used to describe relationships between regulatory genes.
Specifically, we consider a class of discrete models of biological
regulatory systems called “Boolean models” that are known for
their relative simplicity and tractability compared to continuous
ordinary differential equation-based (ODE) models8.
A Boolean network is a discrete network model characterized by

the following features. Each node in a Boolean network can only
be in one of two states, ON or OFF, which represents the
expression or activity of that node. The state of a node depends
on the states of other input nodes which are represented as a
Boolean rule of these input nodes. Many of the available Boolean
network models were created via literature search of the
regulatory mechanisms and subsequently validated via experi-
ments9. Some of the publicly available models were generated via
network inference methods from time course data3.
Previous studies have found that certain characteristic features

of the biological Boolean models, such as the mean in-degree,
output bias, sensitivity and canalization, tend to assume an
optimal range of values that support optimal function10,11. Here
we study a new but generic feature of complex systems termed
“regulatory nonlinearity” that we broadly define as the degree to
which the inputs to the components of a complex interact. To
characterize the regulatory nonlinearity of Boolean networks we
formalize an approach to generalizing Boolean logic by casting it
as a form of probability, which was originally proposed by George
Boole himself12. We leverage the continuous nature of the
resulting polynomials to decompose a Boolean function using
Taylor-series and reveal the distinct layers of its regulatory
nonlinearity (Fig. 5). Various other methods, both discrete and
continuous, of decomposing Boolean functions exist, such as
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Reed-Muller, Walsh spectrum, Fourier, discrete Taylor and fuzzy
logic13–16. Our continuous Taylor decomposition method is
distinct in that it offers a clear and systematic way to characterize
nonlinearity.
Is the regulatory nonlinearity of biological systems special? To

that end we specifically ask: (1) how well could biological Boolean
models be approximated, that is, faithfully represented with only
partial information containing lower levels of nonlinearity relative
to that of the original?; (2) is there an optimal level of regulatory
nonlinearity, characterized by maximum approximability, that
these models may have been selected for by evolution?; and (3)
do different classes of biological networks show characteristically
different optimal levels of regulatory nonlinearity? To answer
these questions, we first approximate the biological models by
systematically composing the various nonlinear layers resulting in
a sequence of model-approximations with increasing levels of
nonlinearity. We then estimate the accuracy of these approxima-
tions by comparing the outputs of their simulations with that of
the original unapproximated model. We then construct an

appropriate random ensemble for each biological model and
compare their mean accuracies for fixed levels of approximation.
The main idea is that a biological model that is more
approximable than expected for a particular level of nonlinearity
would mean that the network may have been optimized for that
level nonlinearity. Finally, we classify the biological networks into
various categories and compare their approximabilities to identify
any category-dependent effects.

RESULTS
The regulation of biological models tends to be less nonlinear
than expected by chance
The mean approximation error (MAE; see “Methods”) of biological
models tends to be less than both the constrained and the
unconstrained random ensembles across all approximation orders
(Fig. 2a). At the linear order, for example, the mean MAE of
biological models is about 0.025, whereas the mean MAE of the
constrained ensembles is twice as large at about 0.05 (p < 10−6)
and even larger for the unconstrained ensembles at about 0.07
(p < 10−23). This ordering of MAE extends to all approximation
orders (Fig. 2a). Even though the mean MAE of the unconstrained
ensembles tends to be remarkably low (0.07 at worst), the
percentage change in MAE (PMAE; see “Methods”) convey a more
accurate sense of approximability. For example, the MAE of the
biological models and the constrained ensembles are respectively
about 50 and 25% lower than the baseline expectation for the
linear order (Fig. 2b). This means that the biological models are
about 25% more linearly approximable than expected by chance,
an effect that amplifies with higher approximation orders going
up to 50% for order 4, since the PMAE of biological models shrinks
faster than the constrained ensembles (Fig. 2b).
A possible explanation for the observed trends is that the Taylor

spectrums of the biological models tend to be lopsided and more
clustered at the linear ends (see Fig. 4 for an example),
dramatically reducing the load on the higher orders and thus
resulting in a faster growth of approximability with higher orders.
This effect may be less pronounced in constrained ensembles, and
even less in unconstrained ensembles, as the apportioning in the
corresponding Taylor spectrums may be less lopsided and more
uniform in comparison. Based on these observations we
hypothesize, but do not conclude, that biological systems may
have been subjected to a slight but discernible selection pressure
for developing less nonlinear regulatory rules. This hypothesis is
further supported by the fact that the approximability

Fig. 1 An illustration of the concept of regulatory nonlinearity.
Each black circle represents a generic biochemical component such
as a gene, transcription factor, enzyme, etc., regulated by a set of
inputs (also biochemical components) and generates a generic
output such as concentration level, strength, etc. Non-zero interac-
tions among the inputs are represented by red circles connected by
red lines, with the total number of possible interactions for a node
with k inputs equal to

Pk
l¼1

k
l

� �
. The size of the red circles and the

width of the connecting lines represents the weight of the
interactions. Independent inputs are represented by unconnected
red circles. The degree of nonlinearity would thus be expected to
increase, though not necessarily linearly, from left to right, as the
numbers and the strengths of the regulatory interactions increase.
One could also visualize these local interactions in a broader
network-context as “hypergraphs”46.

Fig. 2 Biological models are more approximable than expected by chance. a The MAE of the biological models and the associated
constrained and unconstrained ensembles for approximation orders 1 to 5; MAE values for orders 6 and above are negligible and not shown.
b Percentage change in MAE for the biological models and the associated constrained ensembles computed with respect to the MAE of the
corresponding unconstrained ensembles. Every point in the distributions corresponding to the random ensembles represents the average
MAE of an ensemble of 100 random networks associated with each biological model. The p values indicate the statistical significance of the
difference in mean MAEs between sets of random ensembles and the biological models for a given order of nonlinearity. Statistical analysis by
Welch’s unequal variances t-test.
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systematically increases as more biological constraints are
imposed, as one goes from unconstrained to constrained to the
biological models (Fig. 2). This has implications not only for the
feasibility of biomedical approaches to control emergent somatic
complexity or guided self-assembly of novel forms17, but also for
models of anatomical homeostasis and evolvability: linearity
implies easier control of its own complex processes by any
biological system, and more efficient credit assignment during
evolution.

Random models with minimal biological constraints tend to
be naturally approximable
The MAE of the unconstrained random ensembles are remarkably
low with values averaging around 0.07 and not exceeding 0.17 at
the linear order; these values only decrease further with higher
approximation orders (Fig. 2a). These observations suggest that
even random Boolean models with minimal biological constraints
tend to be considerably approximable. In other words, approxim-
ability may be a natural property of random Boolean ensembles to
some extent and not necessarily a special property of biological
models. Furthermore, the MAE has its inflection point at order 2
(Fig. 2a), meaning that the approximability starts saturating at that
order. We hypothesize based on these observations that
regulatory information beyond the second order may be
inconsequential with regards to the statistics of network dynamics
in general.
The above hypothesis has an analog in the realm of Boolean

Ising models, where it was found that maximum entropy (MaxEnt)
models with only pairwise interactions were sufficient to fit
random multivariate Ising networks that are densely connected
and whose state spaces satisfy certain entropy constraints,
features that many biological systems share18. There are however
important differences between our results and theirs: (1) even
though the Taylor expansions resemble MaxEnt expressions, the
latter fit global state-space distributions, whereas our Taylor
polynomials are local formulations; and (2) whereas our Taylor
polynomials are built on derivatives of the states, MaxEnt models
are based on the raw values. Notwithstanding these potentially
superficial differences, the analogous results are striking and calls
for further research on whether the respective explanations are
similar if not fundamentally the same. Besides, the above
observations are reminiscent of the concept of model degeneracy
or “sloppiness”, where several models (defined by unique sets of
parameters) explain the same biological phenomenon due to
redundant parameters19. In our case, it’s not the parameters but
the higher-order relationships among them that are redundant, as
they contribute minimally to the MAE beyond a certain order of

approximation (Fig. 2a). Future research will determine whether
there’s a deep connection between the sloppiness of the
parameters and the orders of relationships among them.

The approximability of a biological model depends on its
class, with the cancer family displaying the most variability
Even though the nonlinearity of biological networks is less than
expected on average, individual and category-dependent varia-
tions were observed. In the following, we focus on the “linear
approximability” (PMAE corresponding to the linear order) of the
biological models since it’s hypothesized to be the cause of the
observed approximabilities in the higher order; values are listed in
Supplementary Table 1. First, there are a few networks in almost
every category that are more nonlinear than expected, as
evidenced by the negative linear approximability values (Fig. 3).
Second, the disease networks in C1 and the cancer networks in C2
are the ones with the most linear approximability, with values
≥75% (Fig. 3). In other words, the cancer or disease pathways tend
to be more optimized for linearity compared to the other
categories. This makes sense since a more linear pathway is more
amenable to control, which presumably works in favor of the
agents of disease. On the other hand, the disease and cancer
networks also display the highest variability in their linear
approximability compared to other categories (p < 0.05 in all
comparisons for the cancer models), with the PMAE values
ranging between −92 and 80% (Fig. 3). In other words, disease
and cancer models could be either relatively extremely more
linear or nonlinear than expected, depending on the specific
cases. Note that about 56% of the disease category comprises of
non-cancer networks (31/55), which suggests that the effect is not
significantly biased by cancer networks. These observations
suggest that regulatory nonlinearity may offer an effective “entry
point” to the agents of disease by virtue of its natural
heterogeneity that they could leverage to their advantage
perhaps as a means to evade treatment since there’s no single
level of nonlinearity to target. This heterogeneity may also have a
connection to one of the hallmarks of cancer, namely genetic
heterogeneity20 where the cancerous cells within an individual
display heterogeneous gene expression compared to the homo-
geneous expression in the healthy cells. In the case of nonlinearity,
the heterogeneity manifests at the population level, raising the
question of whether it may also be observed at the level of single
cells within an individual. In other words, could the heterogeneity
of nonlinearity be yet another hallmark of cancer?

Fig. 3 The linear approximabilities of various categories of biological models. a Classification 1 (C1); b Classification 2 (C2). The categories
in either classification are displayed in increasing order of variance. Each box represents the distribution of the linear approximabilities of the
corresponding category. The p values indicate the statistical significance of the difference in the variance between pairs of categories; only the
p values of significantly different pairs are shown. Statistical analysis by F-test of equality of variances.
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The shape of the Taylor spectrum explains the extreme
opposite characters of linear approximability of a pair of
cancer models
Why are some models more linearly approximable and others
less? The answer lies in the organization of the corresponding
Taylor decompositions, as described above. To illustrate this in
detail, we compared the Taylor decompositions of a pair of
models chosen from among the most extreme outliers of linear
approximability in either direction (Fig. 3). Those models are
respectively the following: a linear model describing the role of
the protein p53 in the regulation of cell-cycle arrest in breast
cancer21, henceforth referred to as the “P53” model; and a
nonlinear model describing the role of mutations in the regulation
of metastasis in lung cancer22, henceforth referred to as the
“Metastasis” model. P53 has a linear approximability of about 72%,
and it consists of 16 nodes with a mean in-degree of 3.8 ± 2.4 and
a mean output bias of 0.38 ± 0.14; and, Metastasis has a linear
approximability of about −79%, and it consists of 32 nodes with a
mean in-degree of 4.9 ± 2.5 and a mean output bias of 0.27 ± 0.26.
Thus, while P53 is smaller and sparser than Metastasis, its nodes
exhibit more output-uncertainty compared to Metastasis. Accord-
ing to the mean field theory of random Boolean networks23, the
opposite characters of the mean in-degree and the output bias of
these models means that their dynamical behaviors could be
expected to be similar (although with the caution that the theory
was originally developed for infinite-sized and homogeneously
connected networks, which is not the case here). However, we
know that their linear approximabilities, which is another
expression of dynamical behavior, are opposites. One explanation
for this discrepancy lies in the distinct apportioning of nonlinearity
in their respective Taylor decompositions (Fig. 4). Specifically,
while the magnitude of nonlinearity, defined as the mean
absolute value of the Taylor derivatives for a given order and
normalized appropriately (see text of Fig. 4), tends to be clustered
around the linear order for P53, they are relatively more spread
out for Metastasis. Moreover, while the magnitude of the linear
order for P53 is more than twice as large the next largest
magnitude at lower orders the corresponding ratios for Metastasis
are relatively smaller, thus explaining why P53 is more linearly
approximable than Metastasis. This result is consistent with

predictions based on a model of scaling of cellular control
policies24. A more controllable (linear) network (P53) is optimal for
cooperation with other cells toward collective (normal morpho-
genetic) goals. In contrast, a cell defecting from the collective and
reverting to a more unicellular lifestyle (Metastasis) should exhibit
a less predictable, controllable network due to pressures from
parasites and competitors that independent unicellular organisms
face. Methods for calculating controllability (e.g., linearity) are an
important addition to recent efforts to solve the conundrum of
interpretability of information structures in contexts ranging from
machine learning to evolutionary developmental biology25–27.

DISCUSSION
This paper introduces the concept of regulatory nonlinearity as a
characteristic of Boolean networks. There are several other related
characterizations of Boolean networks such as canalization28,
effective connectivity11, symmetry29 and controllability30. It has
been previously reported that the levels of canalization (a measure
of the extent to which a subset of inputs actually influence the
outputs of a Boolean function) and the mean effective con-
nectivity (a measure of collective canalization) are high in
biological networks3,11. It has also been found that biological
networks need few inputs to reprogram31 and are relatively easier
to control4. Our formulation of regulatory nonlinearity is related to
these other measures in that more linearity implies more
apportioning of influence to individual inputs rather than
collective sets of inputs (Fig. 4). Hence, we hypothesize that
regulatory nonlinearity may serve the purpose of controllability
and epigenetic stability32.
Our results further moot the possibility that regulatory

nonlinearity may be a factor underlying more powerful dynamical
phenomena such as memory33 and computation, defined as the
capacity for adaptive information-processing34. Even though
there’s increasing consensus that biological systems contain
memory and perform computation, clarity is lacking as to what
features of those systems enable it and what general principles
underlie it34,35. Our framework of regulatory nonlinearity offers an
approach to answering these questions. For example, one could
consider a known dynamical model with a capacity for memory33

or universal computation such as the elementary cellular
automaton (ECA) driven by rule 11036 and ask if there are unique
properties of their Taylor spectrums that confer their respective
capabilities. Present approaches to answering this question
typically consists of characterization of the dynamical behavior
and not the rules33,37,38. A characterization of the rules especially
makes sense for ECA39 since the structure is the same (lattice) and
the only feature that distinguishes one ECA from the other is
the rule.
Looking at such questions from an even broader perspective it

becomes evident that they are only instances of the ultimate
puzzle of complex systems, namely what connects the structure
and the function of a system. Even though recent work has
attempted to answer this question from the perspective of the
rules or dynamical laws that govern the system11,39,40, more tools
are needed41. In that regard, our framework of regulatory
nonlinearity could be a novel addition to this burgeoning toolkit
in that it could also be applied to continuous differentiable models
of biological networks such as those based on differential
equations.
The main limitation of our formulation of approximability is that

the approximation accuracy will necessarily increase with higher
orders of approximation since the Taylor terms would be
accumulated with each higher order (the highest order of
approximation is exact). However, this does not affect the
falsifiability of our framework since it’s possible, for example, to
construct networks with XOR-like functions that would be clearly
less linearly approximable than the associated ensembles. The

Fig. 4 A comparison of the spectrums of the magnitudes of
nonlinearity of the models corresponding to the two extreme
cases of approximability. The bars represent the mean absolute
value of all the Taylor derivatives of the corresponding order,
averaged over all the nodes of the corresponding model containing
those terms. The maximum orders (in-degrees) of P53 and
Metastasis are respectively 10 and 8. To compare the derivatives
from different models they were normalized with respect to the
maximum possible absolute value of a Taylor derivative of order ∣α∣
(Eq. (6)) of a Boolean function with output bias p, given by
ðminðp; 0:5Þ �maxðp� 0:5; 0ÞÞ2jαj (proof provided in the “Methods”
section). The error bars represent the standard deviation and not the
confidence intervals of the means since they are not estimates. The
errors appear large whenever the corresponding distribution of the
magnitudes are bimodal with many values clustered close to 0.
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Metastasis model is another example in that regard (Fig. 4).
Furthermore, though our experiments control for regulatory
nonlinearity they don’t offer insights into how it dynamically
interacts with other network features such as connectivity in
generating the observed approximability. For example, the
network structure may be expected to determine which states
the network enters into at any given point that in turn determines
which parts of the Taylor compositions are actually utilized and
how. Moreover, it’s known that certain characteristics of the local
regulatory rules, such as “effective connectivity”, dynamically
modulate the network structure itself42. Thus, more research is
required to investigate the extent to which the structure and
output bias facilitates the high approximability of biological
networks and vice versa, for which we already have produced
preliminary results by way of the constrained models (Fig. 2).
Lastly, our conclusions about the linearity of biological regulatory
networks may be a reflection of a hidden bias built in the
inference methods that produced the models in the first place. We
leave it to future work to explore these realms.

METHODS
Probabilistic generalization of Boolean logic
Here we provide a continuous-variable formulation of a Boolean
function by casting Boolean values as probabilities, thus
transforming it into a pseudo-Boolean function43. Consider
random variables Xi : {0, 1}→ [0, 1], i= 1,…, n, with Bernoulli
distributions. That is, pi= Pr(Xi= 1)= 1− Pr(Xi= 0)= 1− qi, for
i= 1,…, n. Let X= X1 ×⋯ × Xn be the product of random variables
and f : X→ {0, 1} a Boolean function. Let Rf0 ¼ fx 2 X : f ðxÞ ¼ 0g
and Rf1 ¼ fx 2 X : f ðxÞ ¼ 1g. Note that X is a disjoint union of Rf0
and Rf1. Then:

Prðf ¼ 1Þ ¼ PrðRf1Þ ¼
X
x2Rf1

PrðxÞ ¼
X
x2Rf1

Yn
i¼1

p̂i (1)

where p̂i ¼ pi if xi= 1 and p̂i ¼ 1� pi if xi= 0. Let
f̂ ðp1; ¼ ; pnÞ ¼

P
x2Rf1

Qn
i¼1 p̂i . Thus, f̂ : ½0; 1�n ! ½0; 1� is a

continuous-variable function. The following theorem shows that
f̂ is a generalization of f in the sense that f̂ ðxÞ ¼ f ðxÞ for all
x∈ {0, 1}n.
Theorem. For discrete values of xi ∈ {0, 1}, i= 1,…, n, we have

f̂ ðx1; ¼ ; xnÞ ¼ f ðx1; ¼ ; xnÞ.
Proof. Let z= (z1,…, zn)∈ {0, 1}n. Since each zi is either 0 or 1,

we have that pi= 1 if zi= 1 or pi= 0 if zi= 0 for i= 1,…, n. We
want to show that f̂ ðp1; ¼ ; pnÞ ¼ f ðz1; ¼ ; znÞ. Since X ¼ Rf0 ∪ Rf1,
we have that either z 2 Rf0 or z 2 Rf1. If z 2 Rf1, then f(z)= 1 and
PrðzÞ ¼ Qn

i¼1 p̂i ¼ 1. Moreover, for any other x 2 Rf1 with x ≠ z we
have that Pr(x)= 0. Thus, f̂ ðzÞ ¼ P

x2Rf1PrðxÞ ¼ PrðzÞ ¼ 1. Now if
z 2 Rf0, then f̂ ðzÞ ¼ 0 because

P
; ¼ 0. Thus, f̂ ðxÞ ¼ f ðxÞ for all

x∈ {0, 1}n.□
Corollary. If pi= 1/2 for all i= 1,…, n, then f̂ ðp1; ¼ ; pnÞ is the

output bias of f.
Proof If pi= 1/2, the qi= 1/2. Then

Prðf ¼ 1Þ ¼ PrðR1Þ ¼
X
x2Rf1

PrðxÞ ¼
X
x2Rf1

Yn

i¼1
p̂i (2)

□
Example. Consider the AND, OR, XOR, and NOT Boolean functions

given in Table 1. The continuous-variable generalization of f1, f2, f3,
and f4 are: f̂ 1 ¼ x1x2, f̂ 2 ¼ ð1� x1Þx2 þ x1ð1� x2Þ þ x1x2 ¼ x1þ
x2 � x1x2, f̂ 3 ¼ ð1� x1Þx2 þ x1ð1� x2Þ ¼ x1 þ x2 � 2x1x2, and
f̂ 4 ¼ 1� x.
Note that the above expressions have previously been derived

via other (not probability-based) means15,16.

Taylor decomposition of Boolean functions
Since f̂ is a continuous-variable function, we can calculate its
Taylor expansion. And since f̂ is a square-free polynomial, its
Taylor expansion is finite and simplified (any term containing
multiple derivatives of the same variable is zeroed out), as
described in Proposition using the standard multi-index notation.
Let α= (α1,…, αn) where αi ∈ {0, 1}. We define:

jαj ¼ α1 þ � � � þ αn; (3)

xα ¼ xα11 xα22 � � � xαnn ; (4)

and

∂αf ¼ ∂α11 ∂α22 � � � ∂αnn f ¼ ∂jαjf
∂α11 ∂α22 � � � ∂αnn

: (5)

Proposition. For p∈ [0, 1]n, we have:

f̂ ðxÞ ¼
X
jαj�n

∂α f̂ ðpÞ
α!

ðx � pÞα: (6)

Note that f̂ ðpÞ in Eq. (6) is the output bias of f as was seen in
Corollary. A natural choice for p is p= (1/2,…, 1/2) as it represents
an unbiased selection for each variable and it also gives the
output bias of the function. Such unbiased choices are not
available for the discrete case. Our continuous formulation thus
offers such unique advantages over the discrete Taylor decom-
position, as it’s a natural generalization of the latter. The Taylor
decomposition can be used to approximate a Boolean function by
considering a subset of the terms. For example, a linear
approximation consists of terms only up to ∣α∣ ≤ 1, a bilinear
approximation up to ∣α∣ ≤ 2, etc., up until ∣α∣ ≤ n where it ceases to
be an approximation and provides an exact decomposition of f̂ . A
visual illustration is provided in Fig. 5. The approximation order of
a Boolean network could therefore vary between its minimum and
maximum in-degrees (number of inputs per node).
Example. Consider the continuous generalizations of the AND,

OR, XOR and NOT functions given in Example The
corresponding Taylor expansions using Eq. (6) and using the
derivatives shown in Table 2 with p= (1/2, 1/2) are: f̂ 1 ¼ 0:25þ
0:5ðx1 � 0:5Þ þ 0:5ðx2 � 0:5Þ þ ðx1 � 0:5Þðx2 � 0:5Þ, f̂ 2 ¼ 0:75þ
0:5ðx1 � 0:5Þ þ 0:5ðx2 � 0:5Þ � ðx1 � 0:5Þðx2 � 0:5Þ, f̂ 3 ¼ 0:5� 2
ðx1 � 0:5Þðx2 � 0:5Þ, and f̂ 4 ¼ 0:5� ðx � 0:5Þ ¼ 1� x.
Note that f̂ 1ð1=2; 1=2Þ ¼ 0:25; f̂ 2ð1=2; 1=2Þ ¼ 0:75; f̂ 3

ð1=2; 1=2Þ ¼ 0:5, and f̂ 4ð1=2Þ ¼ 0:5 in the above equations are
the output biases of the AND, OR, XOR, and NOT functions
respectively. Also note that both the AND and OR functions
contain the linear and the second order terms in their Taylor
decomposition while the XOR function only contains the second
order term. This difference is because both the AND and OR
functions are monotone while XOR is not since it requires both
inputs to be known.

Approximability of a model
We considered a suite of Boolean network models of biochemical
regulation from two sources, namely the cell collective9 and

Table 1. Truth tables of basic Boolean functions.
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reference3. This suite consists of 137 networks with the number
of nodes ranging from 5 to 321. The mean in-degree of these
models ranges from 1.1818 to 4.9375 with the variances ranging
between 0.1636 and 9.2941, while the mean output bias is
limited to the range [0.1625, 0.65625] with the variances
between 0.0070 and 0.0933. For each biological model an
ensemble of 100 randomized models was generated each of
whose connectivity and output biases were set to be the same as
the former, with only the logic rules randomized. This set,
referred to as the “constrained ensemble”, facilitates bench-
marking the role of regulatory nonlinearity in the biological rules.
To accurately assess the differences between the biological
models and the constrained ensembles, we considered a
baseline set known as the “unconstrained ensemble” relative to
which those differences were computed. This ensemble pre-
served neither the connectivity nor the output bias but had them
bootstrap-sampled from the corresponding distributions char-
acterizing the associated biological models. Taylor decomposi-
tion was then applied to both the biological models and the
random ensembles and all possible nonlinear approximations
were computed by considering terms starting from the linear
order accumulating up to the maximum possible nonlinear
order. Both the biological models and the random ensembles
were then simulated using a set of 1000 randomly chosen initial
states iterated through 500 update steps for all orders of
approximation; the same initial conditions were used for a given

biological model and the random ensemble. The states of the
variables were restricted to the interval [0,1] at every step during
the simulations by simply resetting them to the nearest
boundary of the interval whenever they crossed it. The mean
approximation error (MAE) of each model is defined as the mean
squared error between the exact Boolean states and the
approximated probabilistic states at the end of the simulations;
for the random ensembles a single average MAE was computed.
It varies between 0.0 and 1.0. The “percentage change in MAE”
(PMAE) of the biological models and the constrained ensembles
is defined as the percentage difference between the respective
MAE and the corresponding unconstrained MAE; it can vary
between −100.0 and positive infinity. The “approximability” of a
biological model is represented by the difference between the
PMAE of the corresponding constrained ensemble and that of
itself; it can vary between negative infinity and positive infinity.
Hence, the more negative the PMAE is for biological models
compared to that of constrained ensembles the more approxim-
able they are deemed to be and the more unique their
regulatory nonlinearity is. An illustration of how approximability
is computed is provided in Fig. 6.

Classification of biological models
To identify any differences among the approximabilities of
different types of biological networks we sought to classify them.
Since there are multiple ways to classify biological networks, we
chose two classifications so that: (1) they are as orthogonal as
possible to each other; and (2) each classification has an
appropriate number of (neither too few nor too many) categories.
Classification 1 (C1) follows the “pathway ontology” (PW)44 where
the networks are grouped into five categories (Fig. 3a), namely
biochemical (n= 13), signaling (n= 22), disease (n= 55), meta-
bolic (n= 14) and regulatory (n= 33). According the definitions
used in the PW ontology, a “signaling” network comprises mainly
of extracellular signal transduction components such as growth
factors, kinases, etc. A “regulatory” network, on the other hand,
comprises intracellular transcriptional components such as genes,

Fig. 5 The various approximations of a Boolean function in increasing order of nonlinearity. The logical OR function is represented as a 2D
hypercube (top left) with the coordinate values representing input combinations and the color of the circles representing the corresponding
outputs (white= 0, black= 1) and is approximated using Taylor decomposition as the 0th order approximation (top right) showing only the
first term, the mean output bias; the 1st order approximation (bottom left) including the linear terms; and finally the 2nd order exact form
(bottom right) including all the terms.

Table 2. Values of partial the derivatives in the Taylor decompositions
of the generalizations of basic Boolean functions.
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transcription factors, etc. The term “biochemical” here refers to

networks that comprises a mix of signaling and regulatory
components. “Metabolic” networks consist of components
involved in the synthesis and conversion of biomolecules such
as enzymes and lipids. Finally, “disease” networks consist of
components involved in diseases such as cancer, anemia,
pathogenic ailments and disorders such as cell cycle malfunction.
Classification 2 was suggested by in-house expertise, where the
networks are grouped into four categories (Fig. 3b), namely
metazoan (n= 85), cancer (n= 24), primitive (n= 19) and plants
(n= 9). The “metazonan” category refers to multicellular organ-
isms and “primitive” refers to unicellular organisms. A given model
could naturally belong in multiple categories within a classification
but is assigned a unique category for the purpose of simplicity; we
chose the categories according to the emphasis laid in the
abstracts of the corresponding publications. More details are
provided in the Supplementary Material (Supplementary Table 1).

Maximum absolute value of a Taylor derivative
Here we show that maxðj∂α f̂ jÞ ¼ ðminðp; 0:5Þ �maxðp� 0:5; 0ÞÞ2jαj.
We begin with the definition of the derivative given by:

∂f̂ ðx1; ¼ ; xi; ¼ ; xkÞ
∂xi

¼ lim
h!0

f̂ ð0:5; ¼ ; h; ¼ ; 0:5Þ � f̂ ð0:5; ¼ ; 0; ¼ ; 0:5Þ
h

(7)

Since f̂ is a pseudo-Boolean function and hence a multilinear
polynomial45, we can compute this as a finite difference; the idea
being that the derivative taken over any point on a line is the line
itself:

∂f̂ ðx1; ¼ ; xi; ¼ ; xkÞ
∂xi

¼ f̂ ð0:5; ¼ ; 1; ¼ ; 0:5Þ � f̂ ð0:5; ¼ ; 0; ¼ ; 0:5Þ
(8)

Since multilinear interpolation can be formulated as weighted
averaging43, we can further rewrite it as follows (the weights

are equal here since the non-binary values are all set to 0.5):

As can be seen, there are a total of 2k terms, with half of them
positively signed and half negative. This form of expression
generalizes to derivatives taken over two or more variables. For
example, the derivative taken over two variables, xi and xj, looks
as follows:

∂2 f̂ ð¼ ;xi ;¼ ;xj ;¼ Þ
∂xi∂xj

¼ P
x1;¼ ;xi�1;xiþ1;¼ ;xk2f0;1g

P
x1;¼ ;xj�1;xjþ1;¼ ;xk2f0;1g

f̂ ð¼ ;xi�1;1;xiþ1;¼ ;xj�1;1;xjþ1 ;¼ Þ�f̂ ð¼ ;xi�1;1;xiþ1;¼ ;xj�1 ;0;xjþ1;¼ Þ
2k�2

h i

� f̂ ð¼ ;xi�1;0;xiþ1;¼ ;xj�1;1;xjþ1 ;¼ Þ�f̂ ð¼ ;xi�1;0;xiþ1;¼ ;xj�1 ;0;xjþ1;¼ Þ
2k�2

h i

(10)

Following rearrangement of terms it becomes evident that this
expression also contains 2k−1 positive terms and 2k−1 negative
terms, with the only difference in the power of the denominator
term. It can thus be concluded that any derivative ∂α f̂ (in multi-
index notation) has 2k−1 positive terms and 2k−1 negative terms.
A straightforward way to maximize the value of a derivative

expressed in this form is by assigning as many instances of 1 as
possible to the positive terms and as few instances of 1 as possible
to the negative terms. For a Boolean function with k inputs and
output bias p, this can be accomplished by assigning
minð2k�1; p2kÞ ones and maxðp2k � 2k�1; 0Þ ones respectively.
Therefore:

maxðj∂α f̂ jÞ ¼ minð2k�1;p2kÞ�maxðp2k�2k�1;0Þ
2k�jαj

¼ ðminðp; 0:5Þ �maxðp� 0:5; 0ÞÞ2jαj; 1 � jαj � k:

(11)

Note that this formula only applies to a specific order of
nonlinearity ∣α∣ independent of the other orders within the same
Boolean function. In actuality, there are dependencies between
the various orders within a Boolean function. That is, if a Boolean
function were to be constructed such that the derivative of a

∂f̂ ðx1; ¼ ; xi ; ¼ ; xkÞ
∂xi

¼
X

x1;¼ ;xi�1 ;xiþ1;¼ ;xk2f0;1g

f̂ ðx1; ¼ ; xi�1; 1; xiþ1; ¼ ; xkÞ � f̂ ðx1; ¼ ; xi�1; 0; xiþ1; ¼ ; xkÞ
2k�1 (9)

Fig. 6 An illustration of the relationship between nonlinearity and approximability using a simple 3-node Boolean network. The higher
the order of nonlinearity of the network the more approximable it is with respect to the exact dynamics. Left: An example 3-node network
utilizing all three 2-input Boolean functions. Right: The network is simulated from a single initial state of (1,1,1). Here the dynamics of the 0th
order network (blue) least matches the exact Boolean trajectory (gray), while 1st order network (red) is a slightly better match. The 2nd order
network (gray) is exact since it includes all the Taylor terms up to the maximum possible order of 2 (the maximum in-degree of any node). The
closer the approximated average dynamics to the exact dynamics, the lower the MAE and the higher the approximability of the former. Notice
also that while for node “a” the 0th order network is almost as good as the 1st order network, it is the opposite for node “c” in that its 1st order
approximation is as poor as the 0th order; this is because “c” implements the XOR function whose 1st order derivatives are zero.
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particular order ∣α1∣ is maximized then there’s no guarantee that
the derivative of another order ∣α2∣ ≠ ∣α1∣ could be simultaneously
maximized. This is one of the limitations of the normalization for
which the above formula is used.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
We used 137 Boolean network models of gene regulation from two sources,
namely the cell collective9 and reference3. Subsequently, we categorized these
models using two types of classifications C1 and C2 as described in Section. We
provide the details of the classification of each model along with their Pubmed ID
and their linear approximation score in the Supplementary Information file (SI),
Supplementary Table 1.

CODE AVAILABILITY
The code that we used for the approximations and the simulations are available
through this link: https://gitlab.com/smanicka/boolion.
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