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Surrogate infection model predicts optimal alveolar
macrophage number for clearance of Aspergillus fumigatus
infections
Christoph Saffer1,2, Sandra Timme1, Paul Rudolph 1,2 and Marc Thilo Figge 1,3✉

The immune system has to fight off hundreds of microbial invaders every day, such as the human-pathogenic fungus Aspergillus
fumigatus. The fungal conidia can reach the lower respiratory tract, swell and form hyphae within six hours causing life-threatening
invasive aspergillosis. Invading pathogens are continuously recognized and eliminated by alveolar macrophages (AM). Their
number plays an essential role, but remains controversial with measurements varying by a factor greater than ten for the human
lung. We here investigate the impact of the AM number on the clearance of A. fumigatus conidia in humans and mice using
analytical and numerical modeling approaches. A three-dimensional to-scale hybrid agent-based model (hABM) of the human and
murine alveolus allowed us to simulate millions of virtual infection scenarios, and to gain quantitative insights into the infection
dynamics for varying AM numbers and infection doses. Since hABM simulations are computationally expensive, we derived and
trained an analytical surrogate infection model on the large dataset of numerical simulations. This enables reducing the number of
hABM simulations while still providing (i) accurate and immediate predictions on infection progression, (ii) quantitative hypotheses
on the infection dynamics under healthy and immunocompromised conditions, and (iii) optimal AM numbers for combating
A. fumigatus infections in humans and mice.
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INTRODUCTION
The ubiquitous mold Aspergillus fumigatus is the most important
airborne human-pathogenic fungus1. While immunocompetent
individuals are usually not affected by A. fumigatus, immunocom-
promised patients can develop life-threatening infections such as
invasive aspergillosis with mortality rates up to 90%2–5. Every
individual inhales up to thousand conidia of A. fumigatus every
day6, which—due to their small size of approximately 2–3 µm7,8—
can pass through the upper respiratory tract and reach the alveoli
in the lower airways9–11.
There, the conidia are embedded in the moist and nutrient-rich

surfactant layer covering the alveolar epithelial cells (AEC),
allowing them to swell and germinate within a short period of
about six hours7,12. Furthermore, they come into immediate
contact with epithelial cells that are known to be able to
internalize conidia13–17. While this process is still poorly under-
stood, several studies suggest that lung epithelial cells tend to fail
acidifying the phagolysosome and by that allow conidia to form
hyphae enabling the fungus to disseminate in the body18,19.
Furthermore, the innate immune system plays an essential role in
fungal clearance, comprising various immune effector mechan-
isms, such as the complement system, the immune response by
alveolar macrophages (AM) as resident phagocytes as well as by
recruited phagocytes like neutrophils20–22. It has been shown that
the most efficient killing of A. fumigatus conidia is achieved by
professional phagocytes, such as AM and that their action
prevents fungal persistence and disease development2,13. Thus,
immune deficiencies associated with these immune effector
mechanisms prevent timely clearance of conidia leading to
serious infections. Moreover, superinfections caused by fungal

pathogens in combination with bacterial or viral pathogens, such
as the SARS-CoV-2 virus, worsen the prognosis23–30. To improve
diagnosis and treatment of these often fatal diseases23,24,26, a
thorough understanding of the underlying host-pathogen inter-
actions is required.
Observing host–pathogen interactions in the lung in vivo would

provide the most realistic insights into spatio-temporal dynamics.
However, intravital imaging is hard to accomplish, since it requires
advanced techniques in mouse surgery, microscopy and stabiliza-
tion techniques to overcome respiratory and cardiac contrac-
tions31,32. Furthermore, it is associated with ethical issues, high
costs and is only feasible in mice. An alternative approach is
represented by novel organ-on-chip models that allow investigat-
ing the host-pathogen interactions in complex physiological
microenvironments in vitro and the use of human cell lines12,33–35.
However, these advanced in vitro models come with limitations,
such as being labor and cost intensive as well as limited in the
ability to fully represent organ structures like alveoli in all three
spatial dimensions36.
Here, we follow a systems biology approach by complementing

existing experimental studies with computer simulations to
address aspects of the host-pathogen interactions that are difficult
to access in experiment37–39. For a comprehensive overview on
mathematical modeling of host-pathogen interactions we refer to
Ewald et al.40. Briefly, in the context of fungal infections, different
techniques have been applied for virtual infection modeling. For
example, ordinary and partial differential equations (ODEs/PDEs)
have been used to study host-pathogen interactions in well-mixed
systems of many particles, both for the fungal yeast Candida
albicans41,42 and the role of AEC during A. fumigatus infection14.
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The mathematical concept of game theory was applied to
investigate strategies of fungal pathogens interacting with the
host allowing to combine model parameters into effective
payoffs43–46. Furthermore, state-based models (SBM) and agent-
based models (ABM) were applied to systems with stochastic and
spatial effects in the context of fungal infections47–55.
Focusing on infection with A. fumigatus, we previously

developed three-dimensional to-scale models for the human
and murine alveoli in terms of a hybrid agent-based model
(hABM)56–59, i.e., combining an ABM for simulating cellular
interactions with a PDE for simulating molecule secretion,
diffusion and uptake. This enabled us to compare infection
scenarios in humans and mice for various infection doses ranging
from normal daily inhalation up to high doses used in typical
mice experiments58. Since in vivo experiments can only be done
in mice, the question whether these experimental results can be
transferred to the infection dynamics in humans can be studied
by computer simulations. In addition to the complex interplay
between the fungal infection dose and the morphometry of
human versus murine alveoli, another essential aspect concerns
the unknown number of AM in the lung. Depending on the
applied measurement technique as well as the considered patient
cohort, a significant range of AM numbers has been reported.
While Wallace et al. measured 2.1 · 109 AM in a healthy human
lung60, Crapo et al. counted more than ten times as many61. More
recent publications suggest AM numbers around (6–14) · 109 for
the healthy human lung62,63. In contrast, the measured AM
numbers in mice are in the more narrow range of (1.95–3.22) ·
106, which is presumably due to higher sample numbers and
smaller organ sizes63–65.
In this study we investigated the biological question about the

quantitative impact of the AM number on the clearance of A.
fumigatus conidia in humans and mice. To address this question
we utilized our previously developed hABM56–59 and simulated
millions of virtual infection scenarios for various AM numbers and
infection doses ranging from daily inhalation to experimentally
applied doses. However, numerical hABM simulations are extre-
mely time-consuming (see “Hybrid agent-based modeling of
virtual infection scenarios”) limiting efficient analyses and
hypothesis testing for the biological systems. Therefore, we
derived an analytical surrogate infection model (SIM) that was
trained on a large dataset generated by the hABM. The SIM allows
to accurately predict outcomes of infection scenarios in a fraction
of computation time and thus makes additional time-consuming
numerical hABM simulations unnecessary. Moreover, it enables
gaining a comprehensive and quantitative understanding of
infection dynamics with regard to the comparability of infection
clearance for humans and mice under healthy and immunocom-
promised conditions as well as for various fungal infection doses.
In this way, the SIM is capable of predicting minimal AM numbers
that are necessary to reach certain threshold values of infection
clearance that are measured by an infection score (see “Model
input parameter and infection score”).

RESULTS
The aim of this study is to quantify A. fumigatus infection in
human and mouse alveoli, focusing on the effects of the AM
number, which has not been clearly determined experimentally
to date. Therefore, we calculated the AM and conidia numbers
that can be expected in a single alveolus for the human and
murine system (see “Model input parameter and infection score”
and Table 1). We measure infection clearance by the infection
score (IS), which corresponds to the probability for the infection
to persist a clearance time (CT) of 6 h post-infection, i.e.,
P(CT > 6h)= IS (see “Model input parameter and infection
score” 1). A visual impression of the to-scale hybrid agent-
based model (hABM), as described in “Hybrid agent-based
modeling of virtual infection scenarios”, for the human and
murine alveolus is given in Fig. 1 and exemplary spatio-temporal
computer simulations of various infection scenarios are given by
Supplementary Videos 1 and 2. The results of the computation-
ally intensive simulations with the hABM are utilized for the
analytical derivation of a Weibull survival model (WSM) valid at a
low fungal burden which is extended to a compressed
exponential function (CEF) to cover also a high fungal burden.
These two approaches were used to derive a surrogate infection
model (SIM) for the prediction of infection scores for various
input parameters (see “Training a surrogate infection model on
hABM simulation data”). A scheme of the entire workflow can be
found in Supplementary Fig. 1.

Low fungal burden: Infection score depends exponentially on
AM number
We first investigated the impact of the AM number on the
infection clearance for the case of low fungal burden δ= 103, i.e.
for an alveolar occupation number (AON) of ncon= 1 conidium
per alveolus as the most likely case among all non-empty alveoli
(see Supplementary Fig. 2). Computer simulations were per-
formed for increasing AM numbers nAM in the human and murine
alveolus using the hABM to screen the chemokine secretion
rate SAEC and diffusion coefficient D (see Table 1). The results in
terms of the infection score IS are summarized in Fig. 2 and
Supplementary Fig. 3. Based on these numerical results we
analytically derived a Weibull survival model (WSM):

IS ¼ P CTsAEC ;D>tjnAM; nCon ¼ 1
� � ¼ 1� 1� e� Λtð ÞK nAM

� �nCon¼ e�Λ0 nAM (1)

for Λ0 :¼ Λtð ÞK and t= 6h as described in the Supplementary
Material section 1.3. The IS was computed from 5000 hABM
simulations for each parameter configuration nAM; nCon ¼ 1;ð
sAEC ;DÞ. These data points were fitted by curves that interpolate
the IS as a function of nAM. The results are depicted as solid lines in
Fig. 2 and Supplementary Fig. 3 and match the simulation results

with a mean absolute deviation MADs¼H;M
MODEL

� �
of MADH

WSM ¼ 0:0028

for the human and MADM
WSM ¼ 0:0040 for the murine system. The

MAD determines the goodness of fit of a model (here: WSM) to
simulated data and corresponds to the fraction of hABM
simulation outcomes that are falsely predicted by the model

Table 1. Summary of screened parameters for the human and murine lung.

Input parameter Human Mouse

AM number per alveolus nAM 2; 4; 6; ¼ ; 50 0:1; 0:2; 0:3; ¼ ; 2:5

Number of conidia nCon 1; 2 1; 2; 3

Secretion rate sAEC in molecues
min 1500; 5000; 15000; 50000; 150000; 500000 1500; 5000; 15000; 50000; 150000; 500000

Diffusion coefficient D in μm2

min 20; 60; 200; 600; 2000; 6000 20; 60; 200; 600; 2000; 6000

For each parameter combination, 5000 simulations were performed. An additional 250 combinations (sAEC ´D 2 1; 10f g ´ f6000g for all nAM and nCon and both
systems) were screened to obtain results for the quasi-random walk (qRW).
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(see “Training a surrogate infection model on hABM simulation
data”). This comparison reveals that for low fungal burden the IS
resembles an exponentially decaying function with increasing AM
number nAM.
By fitting the WSM to the IS as obtained from the hABM

simulations, we estimated the parameter Λ0 for all combinations
of secretion rates SAEC and chemokine diffusion coefficients D
(see Fig. 3). These estimated Λ0�values exhibit a symmetry

reflecting the dependence of IS on the ratio sAEC=D. Computing

the mean error MEsym ¼ 1
N�
PN�

i;j ISs¼H;M
i � ISs¼H;M

j

��� ��� for the IS as

predicted by hABM simulations for identical ratios
sAEC=Dð Þi¼ sAEC=Dð Þj , for values sAEC ;D taken from Table 1,
yielded for both organisms comparably small values of
MEHsym ¼ 0:0039 for the human alveolus and MEMsym ¼ 0:0059 for
the murine alveolus. This systematic analysis aligns with our
previous investigations, which already gave first indications
that IS correlates with the ratio sAEC=D57–59. Therefore, in all
subsequent investigations we will focus on comparisons for IS
depending on the ratio sAEC=D.

Fig. 1 To-scale representation of the murine (left) and human (right) alveolus. The alveolus is modeled as a 3/4 sphere composed of an
epithelial cell layer consisting of alveolar epithelial cells (AEC) type I (yellow) and type II (blue). A single Aspergillus fumigatus conidium (red) is
randomly positioned on the inner alveolar surface and the contacting AEC is secreting chemokines (white isolines) to attract AM (green)
towards the conidium. The alveolar entrance ring and the pores of Kohn (black) are the boundaries of the system.

Fig. 2 hABM simulation data and SIM predictions for low fungal burden. Simulated data from the hABM are shown as points for low fungal
burden in the human (left) and murine (right) system for D= 60 µm2/min (top row) and D= 2000 µm2/min (bottom row). Error bars represent
the 95% confidence interval as obtained from the standard error of independent Bernoulli trials. Solid lines represent the fit to the data points
as obtained by the Weibull survival model (WSM). Dashed vertical lines denote AM numbers from literature.
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High fungal burden: Infection score exhibits compressed
exponential decrease
For an increased fungal burden with δ> 103, multiple conidia can
be expected in non-empty alveoli. According to our previous
findings58, a maximal AON of nCon= 2 conidia is expected for the
human alveolus, even for high fungal burden of δ ¼ 105, whereas
for the murine alveolus the AON can be as high as nCon= 3 conidia
(see Supplementary Fig. 2). Correspondingly, we performed
simulations with the hABM for multiple conidia in the human
and murine alveolus varying again the chemokine parameters as
well as the AM number. The resulting infection scores are
illustrated as colored points in Fig. 4 and Supplementary Fig. 4
and indicate that the IS does no longer follow a purely exponential
decay in the limit of high fungal burden. Consequently, as
indicated in Supplementary Fig. 5, for MADH

WSM ¼ 0:0059 the
previously introduced WSM fits the simulated data in the human
system, however in the murine system MADM

WSM ¼ 0:0201
� �

it
exceeds the threshold of MAD= 0.01 (see “Training a surrogate
infection model on hABM simulation data”). Therefore, as
described in the “Training a surrogate infection model on hABM
simulation data” and as depicted in Supplementary Fig. 6, we
re-analyzed the individual Weibull distributed clearance times CT
assuming a generalized dependence on nAM and extended the
WSM to a compressed exponential function66 (CEF),

P CTnCon ;sAEC ;D>t
� � � e�βnAMγ

; (2)

which is capable of capturing deviations from a regular
exponential decay of the IS in the limit of high fungal burden.
The distributions of the fitted CEF parameters β and γ are shown in
Supplementary Fig. 7 illustrating a transition from the exponential
behavior of the WSM to the CEF including the limit of low fungal
burden for parameters β � Λ0 and γ � 1, for which Eq. (2) reduces
to Eq. (1). For the limit of high fungal burden, the fitted CEF for
both organisms are shown as solid lines in Fig. 4 and
Supplementary Fig. 4 matching the simulation results for various
ratios sAEC=D with an MADH

CEF ¼ 0:0021 for the human and
MADM

CEF ¼ 0:0028 for the murine alveolus.

Surrogate infection model for prediction of infection scores
A large dataset was generated by simulating more than 23 million
infection scenarios by the hABM for the parameter configurations
summarized in Table 1. Even though the hABM code is highly

optimized, it is associated with demanding computational costs in
terms of resources and time (see “Hybrid agent-based modeling of
virtual infection scenarios”). To exploit the full potential of this
dataset, we trained a surrogate infection model (SIM) that allows
making predictions on the infection score IS for any configuration
of input parameters ps¼H;M

i :¼ nAM; nCon; sAEC ;Dð Þs¼H;M
i without

having to perform further simulations by the hABM. Motivated
by our findings described above regarding the representation of
the infection score by the CEF, we made the following attempt for
the derivation of the SIM as described in the “Training a surrogate
infection model on hABM simulation data”:

SIM p;Θð Þs¼H;M:¼ e�fβ nCon ;sAEC ;D;Θβð Þ nAM
fγ nCon ;sAEC ;D;Θγð Þ

: (3)

Here, we introduced generalized functions fx¼β; γ nCon; sAEC;D;Θxð Þ
that consists of combined logistic functions reflecting the behavior
of CEF parameters β and γ for increasing ratios sAEC=D and varying
nCon (see Supplementary Fig. 7 and “Training a surrogate infection
model on hABM simulation data”). Their parameters Θβ and Θγ

constitute the SIM model parameters Θ = (Θβ, Θγ). SIM(p; Θ)s=H,M

was calibrated to the ISs¼H;M
pi as obtained from the hABM simulations

for all ps¼H;M
i :¼ nAM; nCon; sAEC ;Dð Þs¼H;M

i by minimizing the mean
squared error MSE(Θ) for Θ = (Θβ, Θγ) (see “Training a surrogate
infection model on hABM simulation data” and Supplementary Fig.
1). The predictions of the SIM were tested by fitting curves to the
data points as shown in Supplementary Figs. 8 and 9 for the human
and murine system, respectively. As we reach aMADH

SIM ¼ 0:0051 for
the human and a MADM

SIM ¼ 0:0052 for the murine system, we
conclude that the numerical quality of the prediction of ISs¼H;M

pi by
the SIM is just as accurate as obtained for the hABM simulations.
To further validate our analytically derived SIM, we compared

its outcomes with two machine learning approaches that are
described in detail in the Supplementary Material section 1.5: a
multilayer perceptron (MLP)67 belonging to the class of fully-
connected feedforward artificial neural networks, and a random
decision forest (RDF)68 for input parameters ps¼H;M

i and output
data ISs¼H;M

pi . Next, for model comparison we performed a five
times six-fold cross-validation69 (see Supplementary Fig. 1) as
obtained from the hABM on all three models: SIM, MLP and RDF.
The results are summarized in Fig. 5 showing that the MLP and
RDF yielded a slightly lower training error than the SIM. While the
test errors were comparable for all three models, the RDF
substantially overfits the data, as evidenced by the high deviation

Fig. 3 WSM parameters for low fungal burden. Estimated WSM parameters Λ0 for low fungal burden and different combinations of sAEC and
D in the human and murine alveolus.
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between test and training errors compared to the SIM, which
exhibits the least tendency to overfitting. The accuracy of the SIM
is comparable to the machine learning models, and it reveals
hidden system dynamics requiring seven times less parameters.
In what follows, we apply the SIM to quantitatively analyze the
impact of the AM number on the IS to compare infection
clearance in the human and murine system.

SIM predicts optimal chemokine parameters minimizing the
infection score
Using the SIM we were able to obtain the optimal ratio sAEC=D of
the chemokine parameters by minimizing IS for a given AM
number. As can be seen in Fig. 6, for chemokine ratios in the range

102μm�2 < sAEC=D< 5 � 104μm�2 in the human and 5 �
102μm�2 < sAEC=D< 2 � 104μm�2 in the murine system, there exist
large regions with IS < 0.1. This is the case for nAM > 2 in the human
system and nAM > 0:3 in the murine system for low fungal burden
with δ ¼ 103. For high fungal burden with δ ¼ 105 these values
increased to nAM > 4:4 in the human and nAM > 0:45 in the murine
system (see Supplementary Fig. 10). It can also be seen in Fig. 6
(Supplementary Fig. 10) that the minimal IS was reached for the
chemokine ratio sAEC=D ¼ 2103 μm�2(sAEC=D ¼ 2103 μm�2) for
the human and sAEC=D ¼ 1522 μm�2 (sAEC=D ¼ 1606 μm�2) for
the murine system at low (high) fungal burden. The gray area
denotes all chemokine ratios sAEC=D where the IS deviates less
than 5% from the optimal ratio for each AM number.

Fig. 5 Comparison of SIM performance with MLP and RDF. Mean absolute deviation (MAD) of the surrogate infection model (SIM) with a
multilayer perceptron (MLP) and a random decision forest (RDF) via 5 times 6-fold cross-validation with train (blue) and test (red) data. Data
points represent the distribution. Boxes represent the top and bottom quartiles of the distribution and whiskers are extended to 1.5 times the
interquartile range. Horizontal line represents the median and dashed horizontal line the mean of the distribution.

Fig. 4 hABM simulation data and SIM predictions for high fungal burden. Simulated data from the hABM are shown as points for high
fungal burden in the human (left) and murine (right) system for D= 60 µm2/min (top row) and D= 2000 µm2/min (bottom row). Error bars
represent the 95% confidence interval as obtained from the standard error of independent Bernoulli trials. Solid lines represent the fit to the
data points as obtained by the compressed exponential function (CEF). Dashed vertical lines denote AM numbers from literature.
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To compare the SIM with the hABM, we computed the
weighted minimum58 of the chemokine ratios sAEC=D for all hABM
simulations with IS value within the 95% confidence interval of the
optimal chemokine ratio sAEC=D (see Supplementary Material
section 1.6). These values are depicted as the orange dashed line
in Fig. 6 and Supplementary Fig. 10 and are within the 95%
confidence interval of the SIM for both systems. On average the
optimal chemokine ratios calculated from hABM simulations were
lower than the predicted optimal chemokine ratios from the SIM
for the human system for low as well as high fungal burden and
exhibited a decreasing trend for increasing AM numbers. For the
murine system, the calculated optimal chemokine ratios were very
similar to the predicted values from the SIM for low as well as high
fungal burden.

SIM predicts minimal AM number to reach targeted infection
score
The analytical representation of the infection score IS by the SIM
enabled estimating a lower bound of the AM number nAM that is

required to reach a certain IS. This is shown in Fig. 7 with the
absolute AM number nAM normalized to the organism’s alveolar
surface area, i.e. the percentage alveolar surface coverage (ASC).
For both, the optimal chemotactic migration as well the quasi-
random walk (qRW), where almost no chemokine signal is present,
a superlinear relationship was observed between the log-scaled IS
and the increasing AM number. For optimal chemokine para-
meters shown with solid lines, the slope in the range between
10�2 and 10�6 of the log-scaled IS over the AM number showed
that by adding on average 2.5 AM (ASC ¼ 0:69%) to the human or
0.31 AM (ASC ¼ 1:4%) to the murine alveolus decreases the
infection score IS 10-fold in the limit of both low and high fungal
burden. Furthermore, as can be seen in Fig. 7 and Supplementary
Table 1, a minimum of 4.7 AM per alveolus, corresponding to an
ASC ¼ 1:3%, is required to achieve an infection score IS < 0:01 in
the human system; thus, the probability for persistence of
undetected conidia after 6 hours is less than 1%. Accordingly, in
the murine system the minimum AM number is 0.52 correspond-
ing to an ASC ¼ 2:3%. For high fungal burden, at least 6.9 AM

Fig. 6 SIM predictions of optimal chemokine ratios. Predicted infection scores (orange gradient) by the surrogate infection model (SIM) for
pairs of AM numbers nAM and chemokine ratios sAEC=D for low fungal burden (see Supplementary Fig. 10 for high fungal burden) in the human
(left) and murine (right) alveolus. Dashed vertical lines denote AM numbers from literature. The gray area represents the 95% confidence
interval around optimal value sAEC=D for the lowest infection score derived from the SIM. Yellow points represent optimal values derived from
the simulation data (yellow dashed lines as a guide for the eye).

Fig. 7 SIM predictions of infection scores. Log-scaled infection score for quasi-random walk qRW (dotted curves) and optimal ratio sAEC=D
(solid curves) in the case of low (dark colors) and high (bright colors) fungal burden in the human (green) and murine (orange) alveolus.
Colored dashed vertical lines represent the corresponding AM numbers as obtained by literature data. Black dashed vertical lines denote the
5% and 10% ASC for both organisms.
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(ASC ¼ 1:9%) and 0.71 AM (ASC ¼ 3:1%), respectively, in the
human and murine system are required to reach an infection
score IS < 0:01.
As shown by the green and orange dotted curves in Fig. 7, the

chemokine ratio sAEC=D for a qRW was predicted to be extremely
low corresponding to the limit of absent chemokine signaling,
where the immune defense does not reach a limit of IS < 0:01 for
less than 65 AM (ASC ¼ 18%) in the human and 2.9 AM
(ASC ¼ 13%) in the murine system. These numbers increased up
to 70 AM (ASC ¼ 19%) and 3.4 AM (ASC ¼ 14%), respectively, for
humans and mice in the case of a qRW for high fungal burden.

SIM compares infection scores in humans and mice for
arbitrary chemokine ratios
The SIM allows continuous representations of infection scores for
the human and murine system for any values within the ranges of
the scanned input parameters and thus enabled the comparison
of both organisms. The corresponding IS for low and high fungal
burden is shown in Supplementary Video 3 for varying chemokine
parameters from the qRW to the optimal chemokine ratio sAEC=D.
In the case of a qRW the IS is higher in the human alveolus for an
equal ASC. As can be expected, for an increasing ratio sAEC=D the
IS decreases for both organisms. Interestingly, for a chemokine
ratio sAEC=D> 10 μm�2 (sAEC=D> 3 μm�2) for low (high) fungal
burden, we observed a switch in the IS, i.e. for equal ASC the
infection score becomes smaller in the human system compared
to the murine system.

In addition to comparing both systems for equal ASC, we
performed a cross-comparison of the infection score IS for
different AM numbers in both organisms for qRW and optimal
ratio sAEC=D as well as for low and high fungal burden. In Fig. 8,
three distinct regimes can be identified for both modes of AM
migration: (i) a regime where the IS is lower in the murine system
(blue) (ii) a regime where the IS is lower in the human system (red)
and (iii) a regime where both organisms have an equal IS (white).
In all cases, the colored upper-left and bottom-right regimes
denote that both systems have a lower IS when they have many
AM compared to very few AM in the other system. For the qRW
migration, we only found a relatively narrow region along the
diagonal where both organisms performed equally well, whereas,
for optimal chemokine ratios, this is the case for the majority of
combinations denoted by the white area.
Furthermore, we performed this cross-comparison with regard

to the upper boundaries of the literature values for the human
nHAM � 47:9
� �

and murine system nMAM � 0:98
� �

. In case of the
qRW, the human system would require nHAM � 21:7 for a low and
nHAM � 19:8 for high fungal burden to reach IS equal or lower as
the murine system, i.e. ISH � ISM. In contrast, the murine system
would require nMAM � 2:2 for a low and nMAM � 2:4 for high fungal
burden to reach IS equally or lower as the human system, i.e.
ISM � ISH . For both – low and high fungal burden – the qRW under
the condition ISH ¼ ISM is associated with nAM values being always
above the curve at which ASCH ¼ ASCM. This indicates that for
qRW the murine system can clear infections more efficiently for
equal ASC.

Fig. 8 Comparison of human and murine infection scores. Cross-comparison of infection scores between AM numbers nAM in the human
(Y-Axis) and murine (X-Axis) system including literature values for human (dashed horizontal lines) and mouse (dashed vertical lines). Red
areas denote ISH < ISM, white areas show where ISH � ISM and blue areas show where ISH > ISM. The diagonal dotted fat gray line denotes the
limit where both systems have an equal IS (ISH ¼ ISM). The diagonal dotted gray line denotes an equal ASC for both organisms.
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For optimal chemokine ratios, the human system would require
nHAM � 8:4 for a low and nHAM � 9:1 for high fungal burden to reach
ISH � ISM, while the murine system would require nMAM � 6:4 for a
low and nMAM � 6:4 for high fungal burden to reach ISM � ISH .
Interestingly, the curve ISH ¼ ISM lies below the curve at which
ASCH ¼ ACSM for optimal chemokine ratios, indicating that in this
case the human systems is more efficiently clearing infections
compared to the murine system.

DISCUSSION
In this study, we investigated the impact of the number of AM—
the resident immune cells in the lung - on the infection clearance
of the opportunistic fungus Aspergillus fumigatus. The AM number
remains controversial with measurements ranging from (2.1–23) ·
109 AM in the human lung. We here utilized previously developed
hybrid agent-based models of the human and murine alveo-
lus56–59. In addition to the AM number, we screened the fungal
burden, which is the expected number of conidia per alveolus, as
well as chemokine parameters in terms of the secretion rate and
diffusion coefficient referring to the chemotactic signals gener-
ated by alveolar epithelial cells to direct AM migration. Thus, we
simulated millions (see “Hybrid agent-based modeling of virtual
infection scenarios”) of virtual infection scenarios and based on
the time-consuming generation of this large dataset we devel-
oped a surrogate infection model (SIM) that allows fast and
accurate prediction of infection scores for various conditions in
the human and murine system.
First, we were able to show that in the limit of low fungal

burden, the infection score IS decreases exponentially for
increasing AM numbers and that the individual clearance times
CT follow a Weibull distribution for each parameter configuration
(see Fig. 2 and Supplementary Fig. 3). The well-known Weibull
survival model (WSM) is commonly used to compute the reliability
of parallel systems70,71 in terms of failure times assuming
independence of the random variables. In the present context,
where the random variables correspond to the CT of each AM, we
can conclude that multiple AM within a single alveolus do not
seem to be correlated in the limit of low fungal burden. The
estimated WSM parameters were found to be symmetric in the
chemokine parameters sAEC and D for both low and high fungal
burden (see Fig. 3). Thus, we concluded that the infection
clearance remains the same if the amount of secreting of
molecules sAEC and the diffusion coefficient D are scaled equally.
Therefore, we based our further investigations on screening the
chemokine ratio sAEC=D, which is a quantity directly related to the
chemokine gradient at the chemokine source72, i.e. the border of
the conidia-associated alveolar epithelial cell.
Next, we investigated infection dynamics for high fungal

burden, i.e., with an AON of nCon ¼ 2 in the human alveolus and
nCon ¼ 2 or nCon ¼ 3 in the murine alveolus. Here, the previously
used WSM did not fit the hABM data for all conditions as it can be
seen in Supplementary Fig. 5. In particular, the murine system was
affected, which indicates a violation of the independence criteria
of the WSM in the presence of multiple chemokine sources (see
technical derivation in the Supplementary Material section 1.3).
This implies that AM migration was substantially influenced by
multiple secreting alveolar epithelial cells in the limit ncon > 1.
Surprisingly, in the murine alveolus, the computed IS based on the
hABM simulations yielded values that were lower compared to
those predicted by the WSM. In other words, clearing times of AM
were positively affected in the presence of more than one
targeted conidium. As this effect was not observed for the human
alveolus in the case of high fungal burden, we conclude that this
observation is due to its substantially larger surface area
compared to the murine alveolus, which implies that the search
by AM in the human alveolus can be viewed as independent
events even for high fungal burden. Thus, in contrast to the

human alveolus, AM in the murine alveolus receive chemokine
signals continuously, such that their motion remains uninterrupt-
edly in the mode of optimal chemotactic migration from one
conidium to the next. Detailed simulations accompanied with a
correlation analysis of AM tracks may be performed in the future
to investigate this effect in full detail.
In order to accurately fit the simulation results of the hABM, we

extended the WSM to a compressed exponential function66 (CEF),
which has one additional parameter. The resulting fits are shown
in Fig. 4 and Supplementary Fig. 4 for low and high fungal burden,
where the estimated CEF parameters β and γ followed a logistic
growth curved with a logistic decline along the ratio sAEC=D and
were shifted for different AON of nCon 2 f1; 2; 3g (see Supple-
mentary Figs. 6, 7). Based on these dependencies we derived the
surrogate infection model (SIM) that approximates the CEF
parameters by the functions fβ; fγ . Fitting the SIM to the hABM
data accurately reproduced the IS data as previously obtained by
the hABM (see Supplementary Figs. 8, 9). The performance of our
SIM was comparable to state-of-the-art machine learning models
(see the result of k-fold cross-validation in Fig. 5) with the
advantage of requiring 7-times fewer model parameters. In
contrast to these black-box models, the construction and
analytical derivation of the SIM not only reduces time-
consuming numerical simulations by the hABM, but this white-
box modeling approach also provides interpretable results on the
host-pathogen interactions, which are discussed below.
We used the SIM to predict optimal chemokine ratios sAEC=D for

low and high fungal burden in both systems (see Fig. 6 and
Supplementary Fig. 10) and found that the human system
showed a 38% (31%) increased optimal ratio sAEC=D in the case of
low (high) fungal burden compared to the murine system. We
conclude that this increase in the murine system is the
consequence of an almost 20-times larger alveolar surface area
in the human alveolus, which may also give rise to a wider
confidence interval reflecting greater variability. Interestingly, the
optimal ratio sAEC=D increased slightly for high fungal burden in
the murine system, whereas it remained the same in the human
system. In comparison, the optimal values for sAEC=D found by
Blickensdorf et al.58 sAEC=DH ¼ 423 μm�2; sAEC=DM ¼ 1081 μm�2ð Þ
based on nHAM ¼ 4:38 and nMAM ¼ 0:72 are within the SIM provided
95% confidence interval. For these particular AM numbers, our
simulations confirm the earlier findings by Blickensdorf et al.58.
Interestingly, averaging over the AM numbers for each organism
(Table 1), the SIM predicted that the optimal chemokine
ratio for humans is higher than for mice. In particular, the
optimal chemokine ratio can be expected in the range 4 �
102μm�2 < sAEC=D< 104μm�2 for low AM numbers (ASCS¼H;M < 3%)
and in the extended range 102μm�2 < sAEC=D< 5 � 104μm�2 for
high AM numbers ASCH > 5%;ASCM > 10%ð Þ. For chemokine ratios
sAEC=D< 102μm�2 (see Fig. 6) either too few molecules are
secreted by the AEC or the secreted molecules diffuse quickly,
which both will be associated with a too weak chemokine signal
for efficient guidance of AM to the sites of infection and a
relatively high infection score IS. In contrast, for chemokine ratios
sAEC=D> 5 � 104μm�2 (see Fig. 6) either too many molecules are
secreted by the AEC or the molecules diffuse too slowly, such that
chemokines accumulate around the source of infection without
any long-range effect on AM recruitment, which is associated
with a relatively high value of the infection score IS.
To estimate realistic AM numbers in the human system, we

consider the narrow range of AM numbers nMAM 2 0:59; 0:98½ � for
the murine system as this is based on high sample numbers given
in the literature63–65. Assuming a comparable percentage of
alveolar surface coverage (ASC) in both systems would translate
the AM number in the human system to the range
nHAM 2 9:4; 15:6½ �. Additionally, based on the identified optimal
chemokine ratios we could also utilize the SIM to predict the
minimal AM number required for achieving specific infection scores
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IS (see Fig. 7, Supplementary Table 1). The experimentally obtained
lower limit of the AM number of nMAM ¼ 0:59 in the murine alveolus
yielded an infection score IS ¼ 5 � 10�3 for low fungal burden. If we
require this infection score to set the limit in the human system, we
obtain the AM number nHAM ¼ 5:3. In the limit of high fungal
burden, translating IS ¼ 0:024 for the minimum AM number in the
murine to the human system, yields a minimum AM number of
nHAM ¼ 5:8 in the human system as predicted by the SIM. These
numbers indicate that the experimentally determined AM number
of nHAM ¼ 4:38, as provided in the study by Wallace et al.60, is
quantitatively just a bit lower than the AM number that would be
expected by a direct translation from the murine to the human
system. On the other hand, the experimentally determined higher
AM numbers nHAM ¼ 47:9 nHAM ¼ 29:2

� �
, as reported by Crapo

et al.61 (Hume et al.62), would correspond to an ASC > 13%
(ASC > 8%) and would be associated with an extremely low
infection score IS < 10�21 (IS < 10�12) as predicted by the SIM.
Assuming the immune defense to operate optimally, including
efficient resource management by the organism, such AM numbers
may be considered unexpectedly high for a healthy human lung. In
fact, we suggest that elevated AM numbers at such high levels may
rather be an indicator for dysfunctional chemokine signaling in
patients, comorbidity or the side effect of some treatment. Based
on our analysis, we arrive at the conclusion that an AM number in
the range nHAM ¼ 12:5 as measured by Stone et al.63 and associated
with infection score IS < 10�6 may represent a realistic value for the
healthy human lung.
In conclusion, the newly developed SIM captures hABM

simulation results and enables us to predict infection scores for
various infection scenarios. Our models may be extended
to also include predictions on the efficacy of drug treatment
and the infection dynamics of other pathogens as well as
immunodeficiencies. Further in vitro and in vivo experiments are
necessary to (i) validate our quantitative model predictions and (ii)
narrow down scanned parameter ranges in order to reduce
computational complexity. In particular, animal models as well as
innovative methods based on the organ-on-chip technology may
provide necessary experimental data for enhancing and refining
the hybrid agent-based modeling approach. These would allow to
include more detailed, multifactorial effects such as phagocytic
behavior of alveolar epithelial cells15–19 or the role of neutro-
phils20–22,44. Also, more complex environmental structures could
be considered, i.e., a model extension to simulate recruitment of
immune cells from alveolus-surrounding capillaries or from the
alveolar duct, to make the model as realistic as possible and to
fully exploit the potential of computational biology.

METHODS
In this study we compared the infection dynamics of A. fumigatus
for varying numbers of AM that have been reported for the
human60–63 and murine63–65 lung. Computer simulations were
performed for various infection doses as well as different
chemokine diffusion conditions. The following subsections pro-
vide a detailed overview of the model input parameters and the
quantification of the model output as well as a description of the
hybrid agent-based model (hABM) for simulating the virtual
infection scenarios. Moreover, we introduce a newly developed
surrogate infection model (SIM) based on a large database of
millions of numerical simulations by the hABM.

Model input parameter and infection score
In the literature various measures for the AM number in the
human lung are reported ranging from ð2:1� 23Þ � 109 60–63.
Assuming that AM are uniformly distributed over all alveoli, we
calculated a range of nHAM 2 4:38; 47:9½ � AM per alveolus for a total
number of about nHalv � 4:8 � 108 alveoli in the human lung73.

Similarly, we identified the range of nMAM 2 0:59; 0:98½ � AM given
the much lower number of alveoli nMalv � 3:3 ± 1:3 � 106 in mice.
Note that ns¼H;M

AM (with s ¼ H for the human and s ¼ M for the
murine system) represents the time-averaged number of AM
leaving and entering an alveolus.
Similarly, we calculated the expected number of conidia nCon

per alveolus, which depends on the infection dose that is inhaled
by the organism. In our simulations we considered infection doses
ranging from normal daily inhalation by humans of about 103

conidia up to relatively high doses administered in typical mice
experiments of about 106�108 conidia. The amount of these
conidia that actually reaches the lower respiratory tract is referred
to as the fungal burden δ and is found to be in the range of
103�105 conidia in the murine lung74,75. The alveolar occupation
number (AON) can be derived from the binomial distribution58:
For low fungal burden corresponding to the dose of daily
inhalation, δ ¼ 103 conidia, a non-empty alveolus with one
conidium, ns¼H;M

Con ¼ 1, is the most probable case for both
organisms. For a high fungal burden of up to 105 conidia the
AON rises to nMCon ¼ 3 conidia in the murine system, while this
number will not exceed nHCon ¼ 2 conidia in the human system
(see Supplementary Fig. 2)58. Hence, we simulated infection
scenarios for AON with nHCon 2 f1; 2g for the human system and
nMCon 2 f1; 2; 3g for the murine system.
In the hABM, we model the secretion of chemokines by AEC

that harbor a conidium to attract AM, e.g. by the macrophage
inflammatory protein-2 (MIP-2)76, the monocyte chemoattractant
protein (MCP-1)77 or the granulocyte macrophage colony
stimulating factor (GM-CSF)78. For both systems and each
combination of nAM; nConð Þ, we screened the chemokine secretion
rate sAEC and the diffusion coefficient D in experimentally relevant
ranges57–59. This results in parameter configurations ps¼H;M

i :¼
nAM; nCon; sAEC ;Dð Þs¼H;M

i with i 2 1; ¼ ; ns¼H;MÞ� �
, where ns¼H;M

denotes the total number of parameter configurations. As can
be seen in Table 1, the total number of parameter configurations
for the human and murine system, respectively, is nH ¼ 1900 and
nM ¼ 2850. Each parameter configuration was repeatedly simu-
lated 5000 times yielding in total more than 23 million simulations
for both systems. Each simulation was performed until the
maximal simulation time tmax ¼ 740 min was reached with a time
step Δt � 0:1 min, where higher diffusion coefficients D require
lower time steps Δt to guarantee computational stability57.
In order to quantify infection clearance we apply the previously

defined infection score (IS) for any input configuration and for
both organisms in the same way as56–59:

IS ¼ P CT > 6hð Þ; (4)

where P is a probability function and CT denotes the clearance
time. The CT corresponds to the accumulated first-passage times
for all conidia in the alveolus, i.e. the duration until the last
conidium was encountered by an AM. Since A. fumigatus conidia
in the alveolus are likely to grow hyphae around six hours post
infection7,12, we consider this time point to be critical for infection
clearance. The IS is computed as the fraction of simulations in
which not all conidia are detected by AM within the first six hours
post infection. Moreover, the high number of simulations of
5000 per parameter configuration guarantees a small 95%
confidence interval of CI ¼ 1:96 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

IS 1� ISð Þ=5000p
< 0.015 per

estimated IS 2 ½0; 1�.

Hybrid agent-based modeling of virtual infection scenarios
We utilized our previously developed spatio-temporal hybrid
agent-based model (hABM)56–59. This computational framework
(see Code availability) allows to simulate virtual infection scenarios
for A. fumigatus conidia in a single alveolus and to compare the
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infection clearance for various conditions by the infection score
(see Fig. 1 and Supplementary Videos 1 and 2).
The hABM comprises a realistic to-scale representation for both

the human and murine alveolus consisting of a 3⁄4 sphere with
AEC of type 1 and 2 as well as pores of Kohn (PoK), which connect
neighboring alveoli. A conidium is located on an AEC, which in
response releases chemokines with secretion rate sAEC that diffuse
on the inner surface of the alveolus with diffusion coefficient D.
AM follow the chemokine gradient directing their migration
towards the AEC with the conidium, which is modeled by a biased
persistent random walk (chemotactic migration) with speed v ¼
4 μm=min and persistence time tp ¼ 1 min56,57. Chemokine
secretion and diffusion is modeled by a partial differential
equation, while the uptake of chemokines by AM is modeled
using a receptor-ligand model based on ordinary differential
equations57,79,80. Furthermore, PoK as well as the alveolar entrance
ring constitute the boundaries of the system and serve as sinks for
the diffusing chemokines as well as entry and exit sites for AM.
The human and murine alveolus are based on the same model,
with model parameters obtaining different values based on
literature data that can be found in Supplementary Table 2. For a
more detailed description of the model implementation we refer
to the Supplementary Material section 1.1 and our previous
publications56–59.
We give an overview on the computational effort of our

vectorized and highly parallelized hABM by the following
numbers: On an AMD EPYC 7742 64 core processor, it can take
up to one hour to generate a single IS data point (5000 simula-
tions), which depends on the values for the diffusion coefficient D
that is related to the time step Δt. Using several machines with
multiple processors, the total computation time for all simulations
was around one and a half months.

Training a surrogate infection model on hABM simulation
data
In addition to the computational analysis of the infection score IS,
we modeled the infection dynamics also analytically by probabil-
istic modeling. We found that the individual clearance times CT for
every parameter configuration follow a Weibull distribution. This
distribution follows the characteristics of a reversed Kaplan-Meier
curve81 that is associated with survival processes or failure times71

(see Supplementary Figs. 11 and 12). In the present context, this
distribution corresponds to the time-dependent probability that
all conidia in an alveolus have been encountered. Thus, the
clearance time is a Weibull distributed random variable
CT 	 weib λ; kð Þand the IS is obtained from integrating the
probability density function of the Weibull distribution for CT > t:

IS ¼ P CT > tð Þ ¼
Z 1

t
λk λxð Þk�1e� λxð Þk dx ¼ �e� λxð Þk

h i1
t
¼ e� λtð Þk :

(5)

Since we set the critical time t to the constant value t ¼ 6h, it is
convenient to define λ0 :¼ λtð Þk . Using Eq. (5), we determine λ0 ¼
� ln ISð Þ from the infection score, which is obtained as the
numerical result of our simulations by the hABM. Note, that λ0 is
individually determined for each parameter configuration. It
follows, there exists a λ0 such that λ0 ¼ Λ0nAM for each nAM for
the WSM parameter Λ0 derived in the Supplementary Material
section 1.3.
As can be seen in Supplementary Fig. 6, a superlinear relation of

λ0 as a function of nAM exists suggesting to approximate λ0 �
β nAMγ for parameters β and γ that depend on the parameter
values nCon; sAEC ;Dð Þ. This leads to the compressed exponential
function (CEF)

e�β nγAM � e�λ0 ¼ IS (6)

and relates the infection score IS with the AM number nAM. The
distributions of the CEF parameters β and γ are shown in
Supplementary Fig. 7 along the ratio SAEC/D and can be approxi-
mated by a combination of logistic functions fx¼β; γ : R

3 ! R,

fx¼β; γ nCon; sAEC ; D;Θxð Þ ¼ x1
1þ x2

sAEC
D

� �x4 � x1
1þ x3

sAEC
D

� �x4
 !

nx6Con þ x5n
x7
Con

(7)

for parameters Θ ¼ Θβ;Θγ

� �
;Θx¼β; γ ¼ x1; ¼ ; x7ð Þ. Equation (7)

describes a logistic increase and decrease along sAEC=D(para-
meters x1; :::; x4) and is shifted depending on nCon (parameters
x5; ¼ ; x7Þ to fit the distributions of the CEF parameters β and γ
(see Supplementary Fig. 7). Based on our fitting results, we set
β � fβ and γ � fγ in Eq. (6) to derive our surrogate infection model
SIM : R4 ! ½0; 1�,
SIM p;Θð Þs¼H;M:¼ e�fβ nCon ; sAEC ;D;Θβð Þ nAM

fγ nCon ; sAEC ;D;Θγð Þ � IS (8)

for the infection score IS depending on the input parameter
configurations ps¼H;M

i :¼ nAM; nCon; sAEC ;Dð Þs¼H;M
i . The identifiability

of the SIM is examined in the Supplementary Material section 1.4.
The SIM parameters Θs=H,M = (Θβ, Θγ)s=H,M are calibrated by
minimizing the mean squared error (MSE) between the infection
score ISs¼H;M

pi as obtained from the simulations with the hABM and
the value IS as predicted by the SIM for each parameter
configuration ps¼H;M

i :

min
Θ

MSESIM Θð Þ; MSESIM Θð Þ ¼ 1
N

XN
i

ISs¼H;M
pi � SIM pi; Θð Þs¼H;M

� �2
; N ¼ nH; nM

(9)

A schematic overview of the fitting process can be found in the
bottom left corner of the Supplementary Fig. 1. After calibration of
the SIM parameters Θs=H,M for both systems, we are in the position
to interpolate the infection score IS for any continuous input
parameter configuration p.
The mean absolute deviation MADSIM Θð Þ ¼ 1

N

PN
i ISs¼H;M

pi �
���

SIM pi;Θð Þj between the ISs¼H;M
pi as obtained from all simulation

outcomes (infected / not infected) with the hABM and the predicted
IS is used to evaluate the SIM. An MAD< 0.01 suggests a correct SIM
prediction of more than 99% of the simulation outcomes and is
therefore indicative for a very good agreement between numerical
simulations and analytical prediction.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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