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PEACOCK: a machine learning approach to assess the validity
of cell type-specific enhancer-gene regulatory relationships
Caitlin Mills1, Crystal N. Marconett2,3,4, Juan Pablo Lewinger5✉ and Huaiyu Mi 1✉

The vast majority of disease-associated variants identified in genome-wide association studies map to enhancers, powerful
regulatory elements which orchestrate the recruitment of transcriptional complexes to their target genes’ promoters to upregulate
transcription in a cell type- and timing-dependent manner. These variants have implicated thousands of enhancers in many
common genetic diseases, including nearly all cancers. However, the etiology of most of these diseases remains unknown because
the regulatory target genes of the vast majority of enhancers are unknown. Thus, identifying the target genes of as many enhancers
as possible is crucial for learning how enhancer regulatory activities function and contribute to disease. Based on experimental
results curated from scientific publications coupled with machine learning methods, we developed a cell type-specific score
predictive of an enhancer targeting a gene. We computed the score genome-wide for every possible cis enhancer-gene pair and
validated its predictive ability in four widely used cell lines. Using a pooled final model trained across multiple cell types, all possible
gene-enhancer regulatory links in cis (~17 M) were scored and added to the publicly available PEREGRINE database
(www.peregrineproj.org). These scores provide a quantitative framework for the enhancer-gene regulatory prediction that can be
incorporated into downstream statistical analyses.
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INTRODUCTION
Enhancers are short (~50–2000 bp) DNA regulatory elements that
activate the expression of target genes in a cell type- and timing-
specific manner1. Enhancers function independently of orientation
and contain transcription factor binding sites, which are used to
recruit chromatin remodeling complexes and transcription
machinery. The enhancer complex loops over and enters into
close physical proximity to the target gene promoter to
upregulate transcription2. Genes can be targeted by more than
one enhancer, and some have been seen to interact with more
than ten enhancers3–5. A single enhancer may also regulate more
than one target gene, perhaps even simultaneously6. There is
great variability in the distance from which enhancers regulate
their target genes. Often an enhancer targets the nearest gene,
but enhancers have also been shown to frequently skip the
nearest genes to regulate more distal genes, even at distances of
over a million base pairs away7,8. During cellular differentiation,
enhancers play a vital role in cell fate determination9. Most cancer
cells require the rogue upregulation of oncogenes, which is
directed by enhancers or by clusters of enhancers termed super-
enhancers, previously described as locus control regions10–12.
Thousands of disease-associated variants identified by GWAS
(genome-wide association studies) have been found to reside in
enhancers, implicating them in many deadly diseases13.
Although the genomic locations of thousands of enhancers are

known, the regulatory target genes of the vast majority of
enhancers are unknown14. Determining which genes are the
regulatory targets of specific enhancers—especially those already
associated with the disease—may be the key to learning how
enhancer regulatory activities function within and contribute to
many deadly diseases.

Since it is widely believed that enhancers come into close
physical proximity with the promoters of their target genes in
order to regulate their transcription, some of the most common
experimental methods by which enhancer-gene regulatory
associations are identified are via proximity ligation assays (e.g.,
3 C, 4 C, 5 C, Hi-C, promoter-capture HiC, ChIA-PET, Hi-ChIP, etc.)
and advanced microscopy techniques which seek to identify long-
range physical interactions between enhancers and promoters to
establish a regulatory relationship15. Genome and epigenome
editing techniques, as well as experimental engineering of
enhancer-promoter interactions (e.g., CRISPR-based techniques),
provide excellent avenues for elucidating specific enhancer-gene
regulatory relationships in specific cell types15. However, these
experimental approaches do not scale genome-wide; thus, the
vast majority of the targets remain unknown. Due to the incredibly
cell type-specific nature of enhancer-gene regulatory relation-
ships, the genome-wide characterization of enhancer-gene
regulatory networks in a large range of cell types is a significant
need in the advancement of disease research.
Many computational efforts to predict large quantities of

enhancer-gene regulatory links based on publicly available
experimental data16–21 have resulted in numerous databases with
predictions of enhancer-gene activity. However, these approaches
often lack a mechanism to validate the accuracy of their
predictions. There is not enough cell type-matched data provided
in these databases on which target genes are regulated by specific
enhancers to be able to statistically validate any score (when one
is provided) of these predicted enhancer-gene regulatory links,
which adds a great degree of uncertainty to such datasets.
Although there are instances of prediction databases capturing
known examples of enhancer-gene regulatory relationships, the
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proportion of spurious enhancer-gene links included along with
the legitimate ones in these sets of predictions is usually
unknown.
Although much is known about which characteristics are

important to identifying enhancer-gene regulatory links, it is not
known how to weigh these different characteristics simulta-
neously. Thus, manually programing a set of rules to identify
active gene-enhancer pairs for all possible configurations of inputs
is not feasible. Instead, supervised machine learning allows us to
train an algorithm by showing it examples of the desired input-
output behavior. Specifically, the task of predicting whether an
enhancer targets a particular gene, can be cast as a binary
classification problem. In a binary classification setting, an
algorithm is trained to classify new possible enhancer-gene links
as a member of one of the two classes (positive or negative, where
positive indicates that the enhancer-gene link is a true active
regulatory relationship and negative indicates that the enhancer-
gene pair has no active regulatory relationship) based on
characteristics of the enhancer (e.g., H3K27ac marks), character-
istics of the gene (e.g., H3K4me3 marks), and characteristics of the
pair (e.g., statistically significant eQTL for the gene mapped within
the enhancer). Probabilistic classifiers output a quantitative score
that can be thresholded to produce a predicted class membership:
above the threshold to one class and below to the other.
We developed a simple yet effective approach (PEACOCK:

Predicted Enhancer Activity in Cis Originating from Cell-specific
Knowledge) to predict gene-enhancer regulatory links using
machine learning classification algorithms. Peer-reviewed scien-
tific articles in four cancer cell lines (HepG2 (liver cancer), HCT116
(colorectal cancer), K562 (leukemia), and MCF7 (breast cancer))
were scoured to amass 159 experimentally validated enhancer-
gene links to generate cell type-specific positive enhancer-gene
regulatory examples. Publicly available DNA accessibility data in
the same cell lines were leveraged to generate a large collection of
negative examples. Machine learning models were trained

separately on the training data generated for each cell type and
evaluated on their ability to identify true (or active) enhancer-gene
regulatory links on separate test data (Fig. 1).
For each enhancer-gene pair, characteristics (called “features” in

machine learning) that are widely believed to be hallmarks of
enhancer activation of target genes were used to describe the
potential regulatory link of the pair. Well-chosen features enable
the machine learning algorithms to identify meaningful patterns
that distinguish between the positive enhancer-gene links
representing a true regulatory relationship and the negative
enhancer-gene links representing an enhancer-gene pair with no
regulatory relationship in a particular cellular environment. ChIP-
seq data from ENCODE targeting epigenetic marks associated with
active enhancers (H3K27ac, H3K4me1, and binding of histone
acetyltransferase P300) and actively regulated promoters
(H3K4me3 and H3K27ac) were included. A measure of significance
(p value) and a measure of effect (regression coefficient) for eQTL
from GTEx22 which mapped to enhancers, were also included as
potentially predictive features. Additionally, two binary features
recorded whether the gene was located nearest to the enhancer
(yes vs. no) and whether the enhancer was located in one of the
gene’s introns (yes vs. no) (Table 3).
Enhancer-gene pairs with these features were used as training

examples to allow the classification algorithms to learn from the
data. Each algorithm was evaluated on test data that was not used
in the training phase. Based on the prediction performance of
each algorithm on previously unseen test datasets from multiple
cell lines, a final model was selected for use in predicting a score
for new enhancer-gene pairs, where a higher score represents a
greater chance of the enhancer-gene pair having an active
regulatory relationship in a given cell type.
The final models perform well both within and across cell types,

even from highly unrelated tissue types. Our findings suggest that
although the behavior and state of individual enhancer-gene pairs
are highly specific to the particular cell type at hand, the

Fig. 1 Schematic of training and testing the models. The pipeline illustrated here is for the classification of enhancer-gene pairs into active
vs. inactive. The training data consists of examples of active enhancer-gene pairs (links) and inactive enhancer-gene pairs represented by stars
and circles. Panel A shows the training data as labeled (i.e., the model is able to see which enhancer-gene pair belongs to the active and
inactive class) and described features believed to be predictive of activity status. In the training phase, a machine learning algorithm learns
which patterns in the feature data best differentiates the two classes and builds a predictive model. The trained model is then able to take
new, unlabeled data as input and output a classification score based on what it learned in the training phase. Test data not used in the
training phase is used to unbiasedly measure the prediction performance of the trained model, where the class of each observation is known
to the user but unknown to the classifier. In this way, it is possible to determine how well the model classifies new data. B In this analysis, there
were three training datasets (purple) from three different cell lines. There are also two test datasets which were never used for model training
(green), which come from two cell types. If a training dataset is not used for training the model, it may also serve as a testing dataset for a
model using a different dataset to train on. For example, a model which uses HepG2 training data to train on may use any of the other
datasets for testing. The same observations are never used for both training and testing a model.
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characteristics of active enhancer regulation of target genes remain
consistent across cell types. It is, therefore, possible to pool
observations from multiple cell types to make a larger training
dataset as long as within-observation cell type specificity remains
consistent. Using a pooled final model trained across multiple cell
types, all possible gene-enhancer regulatory links in cis (~17M)
were scored (Supplementary Figs. 1–7) and added to the previously
described PEREGRINE23 database (www.peregrineproj.org).
Whether on the scale of a single enhancer-gene pair or the

entire genome, these scores provide an accurate and consistent
measure with which investigators can evaluate possible target
genes of specific enhancers in a particular cellular environment.
Applications range from prioritization of enhancer-gene pairs for
experimental validation at the bench, to incorporation into
downstream statistical analyses of disease-associated variants.

RESULTS
Training and testing datasets
Enhancer-gene regulatory links curated from the scientific
literature with a defined set of criteria (Table 1, Supplementary
Table 1 of Supplementary Materials) made up the positive class of
the training or test dataset for each cell line (HepG2: n= 23,
HCT116: n= 43, K562_1: n= 60, K562_2: n= 6, MCF7: n= 27). The
negative class was annotated using DNA accessibility data,
comprising 15,491,123 enhancer-gene pairs in HepG2 data,
16,304,125 enhancer-gene pairs in HCT116 data, 13,205,263
enhancer-gene pairs in K562 data, and 16,215,821 enhancer-
gene pairs in MCF7 data. A subset of observations from the
negative class were selected for use in analysis based on their
genomic proximity to the positive observations (HepG2: n= 360,
HCT116: n= 420, K562_1: n= 400, K562_2: n= 1303, and MCF7:
n= 300).

Features
Characteristics that are classically associated with active enhancer
regulation of target genes (e.g., acetylation and histone methyla-
tion marks) were gathered to be used as features (variables) in
the predictive models. Features we considered for an enhancer-
gene pair included characteristics that are classic hallmarks of the
active state of the enhancer, the active state of the gene, as well as
some features that are thought to indicate regulatory activity
between the enhancer and the gene. There are nine main features
in the cell type-specific datasets of cis enhancer-gene pairs (Table 2).
To capture the enhancer-gene pair as a unit, rather than just the
enhancer or just the gene, we also defined new features consisting

of interaction terms between the enhancer-specific features and the
promoter-specific features (Table 3). This resulted in up to 17 total
features for each dataset of cell type-specific enhancer-gene pairs.
All 17,354,145 enhancer-gene pairs made up of an enhancer-gene
pair located <1Mb apart were then attributed values for all
available features.

Model generation and evaluation
For each cell type-specific training set in K562_1, HepG2, and
HCT116, a wide range of machine learning models were trained,
including random forests, flexible discriminant analysis, linear
discriminant analysis, gradient boosting machines, ridge regres-
sion, k-nearest neighbor, and support vector machine models with
Gaussian radial, polynomial, linear, hyperbolic tangent, Laplace
radial, Bessel, and ANOVA radial basis kernels24. Each cell type-
specific trained model was evaluated in terms of the Area Under
the Precision-Recall Curve (AUPRC) and the Area Under the
Receiver Operating Curve (AUC) values they achieved on MCF7
and K562_2 previously unseen test sets. Models were also
evaluated on their prediction performance using any of the
datasets from HepG2, HCT116, or K562_1 that did not serve as
training data for that model (i.e., a model trained on HepG2 data
could be tested on the HCT116 dataset, the K562_1 dataset, the
K562_2 dataset, or the MCF7 dataset.).
Remarkably, models that were trained in one cell type were

found to perform quite well on test data from a completely
unrelated cell type (Fig. 2, Supplementary Tables 3–7, and
Supplementary Materials), suggesting that although the specific
activities of individual enhancers are very cell type-specific due to
the sometimes dramatic differences in the cellular environment
from one cell type to another (Supplementary Figs. 11–16), the
overall patterns of the relevant features of enhancer regulatory
activity remain consistent across cell types. Thus, we explored
pooling enhancer-gene pair data from more than one cell type to
develop a jointly trained model that can gain from the added
robustness of a larger training dataset (Supplementary Tables
8–12 and Supplementary Materials).

Prediction performance
There are many metrics for assessing the prediction performance
of different models, and no universally best one. Because in this
application, the relative size of the positive and negative classes
(active vs. inactive gene-enhancer pairs) is imbalanced, it is
important to consider which class a misclassification error occurs
in. In our setting, it is far preferable to have a false negative

Table 1. Description of the positive set criteria.

Criterion 1 CRISPR deletion or mutation of the enhancer results in statistically significantly altered expression of the target gene.

Criterion 2 Transcription factors that help upregulate the expression of the target gene were shown to interact with the enhancer. Mutating the
transcription factor binding sites within the enhancer resulted in statistically significantly altered target gene expression.

Criterion 3 SNPs located in an enhancer alter target gene transcription statistically significantly in an allele-specific manner. The enhancer was shown
to interact physically with the target gene’s promoter. The SNPs were observed in GWAS to be associated with differential expression of
the target gene.

Criterion 4 A transcription factor known to be important to the expression of the target gene is shown to bind to the enhancer. Knockdown
experiments of the transcription factor are shown to statistically significantly decrease the target gene’s expression. SNPs located in an
enhancer alter target gene transcription statistically significantly in an allele-specific manner.

Criterion 5 The enhancer was shown to confer an inducible expression of the target gene. Binding motifs were found in the enhancer for a
transcription factor that was shown to greatly alter inducible expression in the presence of an expression vector for the transcription
factor. Deletions within the enhancer of these binding motifs altered gene expression.

These are the different criteria that enable an enhancer-gene link from the literature to be accepted into the positive class in the training dataset and used for
analysis. NOTE: Although Criterion 1 could lead to the inclusion of indirect effects (e.g., CRISPR deletion of an enhancer effecting gene A which then effects
gene B), we believe that these kinds of indirect effects may still be useful in elucidating an enhancer’s regulatory involvement in a biological process, even if it
is of a more upstream nature than can be captured by these predictions. Regardless, the user should be made aware of this limitation.
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(an active gene-enhancer pair declared inactive) than a false
positive (an inactive gene-enhancer pair declared active), as false
positives are much more likely to result in significant cost to
further characterize these predictions, and negative downstream
impact of pursuing a wrong lead. Because true enhancer-gene
regulatory links are rare compared to enhancer-gene pairs with no
regulatory relationship (In our K562_2 dataset of 1309 observa-
tions based on two genomic regions totaling ~2 Mb altogether,
the positive class made up less than 0.5% of total enhancer-gene
pairs.), it is possible to have relatively few misclassification errors
as long as the negative class has a lower error rate to
counterbalance the higher error rate in the comparatively small
positive class. Consequently, we evaluated model performance
based on AUPRC, which is suitable for imbalanced settings as it
ensures good performance on the (smaller) positive class.
Precision (sensitivity) is the proportion of predicted positive
enhancer-gene links that are actually active. Recall (positive
predictive value) is the proportion of active enhancer-gene pairs

were correctly predicted as true. As a supplementary performance
metric, we also present the AUC. The AUPRC and AUC were
measured for every available test dataset and used to select a final
model suitable for predicting new enhancer-gene links.

Model selection
Since models trained in one cell type were shown to be capable of
excellent prediction performance in test data from other cell types
(with AUPRCs as high as 0.77 and AUCs frequently over 0.90), the
final model chosen to be used for predicting new enhancer-gene
links was chosen not only based on how well it predicted (as
measured by AUPRC and AUC), but how consistently it predicted
well across all available test sets (Fig. 2). Any model that
performed poorly in at least one test set was not considered
suitable for selection as the final model. The support vector
machine models with Laplace kernels were the best-performing
models when trained in HepG2 and K562_1, and these models

Table 2. Description of the main effect features.

Feature (enhancer, gene, or both) Description Value

Feature 1: H3K27ac (Enhancer) A histone acetylation mark commonly associated with
active enhancers

0/1 (binary for high value or not the high
value of the peak of ChIP-seq peak)*

Feature 2: H3K4me1 (Enhancer) A histone methylation mark commonly associated with
active and poised enhancers

Positive continuous value (score of the ChIP-
seq peak)

Feature 3: H3K4me3 (Promoter) A histone methylation mark commonly associated with
the promoters of genes being actively enhanced

0/1 (binary for high value or not the high
value of the peak of ChIP-seq peak)*

Feature 4: P300 binding (Enhancer) Binding of P300, a histone acetyltransferase well
established as a marker of active enhancers44, to the
enhancer

Positive continuous value (score of the ChIP-
seq peak)

Feature 5: eQTL—combined Z-score eQTL p values transformed (see Methods) into a
combined Z-score for each enhancer with eQTL(s)
pointing to the same gene (a measure of statistical
significance)

Positive continuous value

Feature 6: nearest gene Is the gene in this link the enhancer’s nearest gene? 0/1 (binary, 0= no, 1= yes)

Feature 7: intronic Is the enhancer located in an intron of the target gene? 0= enhancer not located in an intron of the
target gene 1= enhancer located in the
intron of the target gene

Feature 8: average of the absolute values of
eQTL coefficients of eQTL located within the
enhancer pointing to the same gene

If multiple eQTL for the same gene are located in the
same enhancer, what is the average value of the
absolute values of the coefficients (a measure of effect)
of these eQTL? (see Methods)

Positive continuous value

Feature 9: H3K27ac (Promoter) A histone acetylation mark commonly associated with
promoters of genes being actively enhanced

Positive continuous value (score of the ChIP-
seq peak)

*The threshold for classifying a value as “high” is described in the Methods for ENCODE’s Registry of candidate cis-regulatory elements (cCREs) where this data
were collected from.
All of the features listed are from ENCODE datasets from HepG2, HCT116, K562, and MCF7 cells, with the exception of eQTL data which was only available from
GTEx at the tissue level (liver, colon, whole blood, and breast, were used respectively) and P300 data which was unavailable in HCT116. For any features
involving the overlap of a ChIP-seq peak signal (H3K27ac, H3K4me1, H3K4me3, and P300 binding), overlap between the two features (enhancer/gene and
peak) was required at a minimum threshold of 50% overlap for either region.

Table 3. Interaction terms between active enhancer and promoter marks.

Promoter marks

Enhancer marks H3K27ac H3K4me3

H3K27ac H3K27acenhancer * H3K27acpromoter H3K27acenhancer * H3K4me3promoter

H3K4me1 H3K4me1enhancer * H3K27acpromoter H3K4me1enhancer * H3K4me3promoter

H3K27ac, H3K4me1 H3K27acenhancer * H3K4me1enhancer * H3K27acpromoter H3K27acenhancer * H3K4me1enhancer * H3K4me3promoter

The columns are headed by epigenetic histone marks commonly associated with active genes, while the rows are headed by epigenetic histone marks
commonly associated with active enhancers. The box at the intersection of a row and a column is filled in with the interaction term, which is a product of the
active promoter mark described at the top of that column and the active enhancer mark described at the beginning of that row.
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performed consistently well across all cell types (Supplementary
Tables 4, 7 of Supplementary Materials). Among the jointly trained
models, the models trained in the HepG2+ K562_1 joint training
dataset performed the best across all test sets in a consistent
manner (Supplementary Table 9 of Supplemental Materials). The
best performing HepG2+ K562_1 trained model (using a
k-nearest neighbors classifier) was then submitted to feature
selection by dropping each feature one by one and evaluating the
AUPRC in the smaller model. The model performed slightly better
without Feature 11 (Supplementary Table 16). Further dropping of
features was not found to increase prediction performance
(Supplementary Table 17). Consequently, this model was selected
as the final model to score enhancer-gene links (Fig. 2A).
Many commonly used cell lines contain nearly the full set of

features needed for the final model, but they are missing ChIP-seq
data targeting histone acetyltransferase P300, rendering the
HepG2+ K562_1 final model unusable. This was true for the
HCT116 dataset, so an alternate final model was developed in an
analogous manner for cell types missing P300 data to score cell
lines for which no P300 ChIP-seq data is available. K562_1 and
HepG2 training sets excluding the P300 feature, were generated
for this process. Although these models generally performed
worse than the models which were able to utilize the P300 feature,
it is still important to be able to score enhancer-gene links without
P300 data. The support vector machine model with an ANOVA
radial basis kernel trained using the K562_1 dataset performed the
best across all test sets and was selected as the alternate final
model for use in scoring enhancer-gene links in cell lines for which
no P300 data is available (Fig. 2B).
In order to make the cell type-specific scores more interpretable

across cell types, the cell type-specific Z-score (see Methods) is
provided for each cis enhancer-gene pair in addition to the raw
score (in the [0,1] interval), which should only be used to compare

enhancer-gene pairs scored in the same cell type. Although a
higher cell type-specific score represents a higher chance of the
enhancer-gene pair representing an active regulatory relationship
in that cell type, this score should not be interpreted as a
probability because the positive (active) and negative (inactive)
classes in the training data were not sampled proportionally to
their true proportion among all cis gene-enhancer pairs (which is
not known). To supplement the raw score, the percentile of each
score (F score) is also presented. Thus, an F(score)= 0.99 is higher
than 99% of all scores in the cell type). Cell type-specific scores,
Z-scores, and F(scores) for all possible cis enhancer-gene
regulatory links are available at the PEREGRINE website for bulk
download (www.peregrineproj.org) in four cell types, which is
continuously updated as more publicly available data on diverse
cell types using the indicated marks becomes available. The cell
type-specific scores, Z-scores, and F(scores) for PEREGRINE
enhancer-gene links are also available in the new Enhancer
module of the PANTHER25 website (www.pantherdb.org), where
the user may easily access the supporting evidence for each
PEREGRINE enhancer-gene link, as well as query by target gene
and enhancer location.

PEREGRINE enhancer-gene links have higher cell type-specific
scores than other possible enhancer-gene links in cis
The enhancer-gene link database PEREGRINE, a genome-wide
prediction of enhancer-to-gene relationships supported by
experimental evidence, was recently published23. These predicted
links were based on publicly available experimental data from
ChIA-PET, eQTL, and Hi-C assays across 78 cell and tissue types.
Unfortunately, few of the experiments were available in the same
cell or tissue types as the other assays, making it difficult to amass
cell type-matched evidence for cell type-specific predicted
enhancer-gene regulatory links. Although p values were reported

Fig. 2 Precision-recall curves of the best-performing models on test datasets. The precision-recall curve (PRC) is given for each model and
all test sets available for that model. A PRCs for the best final model (k-nearest neighbors) which was trained on the HepG2+ K562_1 joint
dataset, evaluated on the MCF7 (AUPRC: 0.73) and K562_2 (AUPRC: 0.56) test datasets. B PRCs for the best alternate final model (support
vector machine with an ANOVA radial basis kernel), which was trained on the K562_1 set and tested on the MCF7 (AUPRC: 0.55), K562_2
(AUPRC: 0.17), HepG2 (AUPRC: 0.36), and HCT116 (AUPRC: 0.42) test datasets. This model was based on training data that did not include the
P300 feature and is only suitable for scoring enhancer-gene links for which P300 data were unavailable.
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for experimental evidence whenever available from their original
sources, PEREGRINE lacked a statistically validated cell type-specific
score for its predicted enhancer-gene regulatory links, a common
shortcoming among enhancer-gene regulatory prediction data-
bases. Using data for all cis enhancer-gene pairs, cell type-specific
scores generated from the final model (if all features were available)
or the alternate final model (if P300 data was unavailable) were
attributed to all 17M possible enhancer-gene link pairs. The
distribution of the scores for enhancer-gene links found in
PEREGRINE was compared to the distribution of the scores for all
other possible cis enhancer-gene links not reported in PEREGRINE
(Fig. 3). The scores among PEREGRINE links were markedly higher
than the scores among the remaining cis enhancer-gene pairs that
were not reported in PEREGRINE in all cell types. The probability
density plots for non-PEREGRINE pairs have much higher peaks
near zero than the distribution for PEREGRINE link scores
(Fig. 3A–D). Two-sample Kolmogorov–Smirnov tests show that for
all cell types, the scoring distributions of PEREGRINE cis enhancer-
gene links are statistically significantly different than the scoring
distributions of the non-PEREGRINE cis enhancer-gene pairs
(p < 2.2e-16), and in all cell types the score means are higher for
PEREGRINE enhancer-gene links. These findings suggest that
enhancer-gene links predicted by PEREGRINE have a much higher
chance of representing real enhancer-gene regulatory relationships
than enhancers and genes located less than 1Mb apart but not
predicted by PEREGRINE.

Comparison with other methods
PEACOCK predictions scored using the final model were
compared with other available approaches, including a random
classifier, distance-only model, and previously published predic-
tions from the Activity-By-Contact (ABC) model26, GeneHancer17,
and TargetFinder14 (Table 4).
The AUPRC for the random classifier model represents the

baseline AUPRC in each dataset or the proportion of positive
examples in the dataset. Any AUPRC greater than this baseline is

considered to have some predictive value. PEACOCK’s final model
generates AUPRCs much higher than the random classifier and
distance-only models on all available test datasets (Fig. 3A).
PEACOCK also outperforms GeneHancer (AUPRC= 0.04), Target-
Finder (AUPRC= 0.04), and ABC (AUPRC= 0.47) by a wide margin
on datasets made up of only predictions available in both
PEACOCK and the comparison method being evaluated (PEACOCK
AUPRC= 0.45, 0.33, and 0.68 respectively).

Fig. 3 Predicted cell type-specific scores for all possible enhancer-gene links in cis. All possible cis enhancer-gene links (enhancer and gene
pairs located <1Mb apart) are separated by those predicted in PEREGRINE (magenta), and those that were not predicted in PEREGRINE
(purple) for HepG2 (A) and HCT116 (B) cell-specific data. The histograms of each population are overlaid. The mean of each population’s cell
type-specific scores is plotted as a vertical bar along the histogram. A shows the distribution of the non-zero PEACOCK scores, which makes
up about 84% of pairs genome-wide. B shows the overall distribution, as no predictions were scored as zero. Distributions for scores in K562
and MCF7 were nearly identical to that of HepG2 and so are not shown here (Supplementary Figs. 7–12 of Supplementary materials). Two-
sample KS tests show that for all cell types, the distributions of PEREGRINE cis enhancer-gene links are statistically significantly different than
the distributions of the non-PEREGRINE cis enhancer-gene pairs (p < 2.2e-16), and in all cell lines the score means are higher for PEREGRINE
enhancer-gene links.

Table 4. Prediction performance for other approaches.

Method HepG2 K562_1 K562_2 HCT116 MCF7

Random classifier 0.06 0.13 0.005 0.09 0.08

Distance-only 0.50 0.55 0.03 0.43 0.38

ABC PEACOCK 0.47 0.68

GeneHancer PEACOCK 0.04 0.45

TargetFinder PEACOCK 0.04 0.33

Each method is listed on the left, and the AUPRC is reported for each
method. Columns denote the test datasets. Merged cells indicate
combined test datasets. ABC and TargetFinder did not report predictions
for any cell type available in PEACOCK except for K562. For previously
published methods, the AUPRC was measured on the subset of data with
predictions available in both PEACOCK and the comparator. Therefore,
PEACOCK performance in K562 varies depending on which method is
being compared. GeneHancer predictions are not cell-specific, so the
predictions were applied to all cell types used for testing and merged into
one dataset for measuring AUPRC. The merging of the three test sets was
due to only a few predictions per dataset being available in both PEACOCK
and GeneHancer. For distance-only models, the AUPRC of the best-
performing model was reported. For the models tested in HepG2 and
K562_2, the training sets for those best-performing models were HCT116.
For the models tested in HCT116, K562_1, and MCF7, the training sets for
those best-performing models were HepG2. Greater detail is reported in
the Supplementary Materials and Methods sections.
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Systems biology implications
In an effort to contextualize the regulatory landscape of the cells
scored in PEACOCK, some basic global analyses were conducted.
Although the user can select any cutoff value that they want, we
used enhancer-gene links with an F(score) of no less than 0.95
(corresponding to the top 5% highest scoring enhancer-gene links
in each cell line) to generate these statistics. The proportion of
enhancers linked to more than one gene as well as the enhancers
linked to the most genes in each cell line are reported. Similarly,
the proportion of genes predicted to be regulated by more than
one enhancer as well as the gene predicted to be regulated by the
most enhancers, are reported in Table 5.

DISCUSSION
Using the cell type-specific enhancer-gene link scores
Cell type-specific enhancer-gene link scores generated via PEA-
COCK can be accessed in various ways. On the PANTHER website,
a user may upload a VCF file with SNPs of interest and return a list
of genes that are mapped to the rsIDs provided by the user. The
gene list provides information on each gene, including any
enhancers that were linked according to PEREGRINE data. The user
may alternatively wish to map the SNPs of interest directly to any
PEREGRINE enhancers, which will also yield a list of genes that the
mapped enhancers were linked to. The cell type-specific scores for
these links are available in four cell lines available for download
from the PEREGRINE website, allowing the user to select the cell
type-specific score for the cell line most relevant to their research.
For instance, researchers interested in colorectal cancer (CRC) may
be interested in rs58920878, an SNP shown to be associated with
increased disease risk (OR: 1.49, p= 0.0035)27. This SNP maps to
just one enhancer in the PEREGRINE set, EH37E0467415, located in
the intron of SMAD7. SMAD7 is a negative feedback regulator of
the TGFβ signaling pathway, a pathway containing multiple genes
known to be involved in the progression to CRC28. Changes in
SMAD7 expression levels have also been shown to influence the
progression of CRC29. Further, the silencing of SMAD7 using
antisense RNA inhibits the proliferation of CRC cell lines both
in vitro and in vivo after transplantation into immunodeficient
mice30. The EH37E0467415 enhancer contains this SNP. The
Z-score for the EH37E0467415-SMAD7 enhancer-gene link in
colorectal carcinoma cell line HCT116 is a formidable 7.55, a Z-
score corresponding to the top 0.01% of possible enhancer-gene
pairs in this cell type. Indeed, four functional SNPs (rs6507874,
rs6507875, rs8085824, and rs58920878) contained within this
enhancer have demonstrated allele-specific enhancer activity in
HCT116, correlating with increased expression of SMAD7 in normal
colon epithelial tissues, and were located within sequences that
bound to nuclear proteins from CRC cell lines in an allele-specific

manner in electrophoretic mobility shift assays31. This enhancer-
gene link scored far lower in other cell lines (HepG2 Z-score: 1.13,
K562 Z-score: 4.12, MCF7 Z-score: −0.30), underscoring the cell-
specific nature of this method. The high Z-score in K562 cells
suggests that there could be a regulatory relationship between
EH37E0467415-SMAD7 in leukemia cells.
As another example, cyclin D1 (CCND1) is an important

oncogene that is vital for cell-cycle progression and is thought
to have an important role in breast cancer and other tumors. It is
overexpressed in over 50% of breast cancer tumors32. The
enhancer EH37E0225350 is located 126 kb upstream of CCND1
in an intergenic region. The cell type-specific Z-score for the
EH37E0225350-CCND1 enhancer-gene link is 8.29 (corresponding
to the top 0.14% of all possible enhancer-gene links) in the human
adenocarcinoma cell line MCF7 which is often used to study breast
cancer. This enhancer is located in a hotspot for ERα binding in
MCF7 cells and interacts with the promoter of CCND133. MCF7 cells
treated with CRISPR-mediated deletion of this enhancer showed
dramatically reduced eRNA expression and complete abolishment
of CCND1 mRNA activation34. CCND1 and EH37E0225350 endo-
genous expression was shown to be dependent on estrogen
signaling, indicating that the active EH37E0225350 enhancer may
be necessary for the activation of CCND1 expression by estrogen
in breast cancer cells34. Notably, the EH37E0225350-CCND1
enhancer-gene link scored much lower in other cell lines
unrelated to breast cancer, such as HepG2 (Z-score: -0.30),
HCT116 (Z-score: 3.07), and K562 (Z-score: −0.20), suggesting that
the model has good ability to discriminate between different
cellular environments for the same enhancer-gene pair.
CYP2D6 encodes a member of the cytochrome P450 super-

family of enzymes and is believed to be involved in the
metabolism of 25% of commonly prescribed drugs35. This gene
is highly polymorphic within the human population and mostly
expressed in the liver36. Allelic differences and copy number
variations result in phenotypic changes to the ability to
metabolize CYP2D6’s substrates, which characterize an individual’s
metabolizer status anywhere from poor to ultrarapid37. Regulatory
polymorphisms have also been shown to alter CYP2D6 expression
at least twofold38. A distant downstream enhancer located in the
intron of WBP2NL, EH37E0634729, was recorded in PEREGRINE as
linked to CYP2D6 in the previous analysis. This analysis attributed
this enhancer-gene link a Z-score of 4.36 in the human hepatocyte
carcinoma cell line, HepG2, putting the EH37E0634729-CYP2D6
enhancer-gene link in the top 1.2% of scores for possible
enhancer-gene pairs in that cell type. The enhancer
EH37E0634729 contains rs5758550, an SNP shown to physically
interact with the CYP2D6 promoter and correlate with an increase
in CYP2D6 in a pediatric cohort of individuals. Allelic mRNA
expression analysis identified two SNPs in perfect linkage
equilibrium, rs5758550/rs133333, which fully accounted for

Table 5. Genome-wide enhancer-gene regulatory summary.

HepG2 HCT116 K562 MCF7

Enhancers linked to >1 gene 28.5% 7.93% 27.3% 30.1%

Number of genes linked to >1
enhancer

98.7% 98.2% 98.9% 98.6%

Gene linked to the most
enhancers

GSDMC (608 enhancers) LPP (731 enhancers) KCNMB2 (568
enhancers)

PTPRC (535 enhancers)

Enhancer linked to the
most genes

EH37E0433320
(93 genes)

53166, 53167,
EH37E0835389,
EH37E0835393 (77 genes)

EH37E0433708, 24552
(99 genes)

EH37E0433775
(102 genes)

Enhancer-gene pairs with F(score) ≥0.95 (corresponding to the top 5% of all predictions) were used to calculate these statistics. In the event of a tie, all winners
are listed.

C. Mills et al.

7

Published in partnership with the Systems Biology Institute npj Systems Biology and Applications (2023)     9 



increased CYP2D6 mRNA expression observed in livers38. Further-
more, CRISPR-mediated genome editing in HepG2 cells targeting
putative enhancer regions in the ±2 kb area surrounding
rs5758550 demonstrated a 70% decrease in CYP2D6 mRNA
expression, but “only upon deletion of the rs5758550 region”39.
Interestingly, the EH37E0634729-CYP2D6 enhancer-gene link does
not score highly in other cell lines unrelated to the liver, such
as HCT116 (Z-score: 0.25), K562 (Z-score: 0.64), and MCF7
(Z-score: 0.62).

Comparison with other methods
PEACOCK predictions scored using the final model were
compared with other available approaches, including a random
classifier, distance-only model, and previously published predic-
tions from the Activity-By-Contact (ABC) model, GeneHancer, and
TargetFinder (Table 4). PEACOCK’s final model generates AUPRCs
much higher than the random classifier and distance-only models
on all available test datasets. PEACOCK also outperforms
GeneHancer (AUPRC= 0.04), TargetFinder (AUPRC= 0.04), and
ABC (AUPRC= 0.47). While PEACOCK usually outperforms other
approaches, it lends value in more ways than just its predictive
performance.
PEACOCK offers scores across the genome between all possible

combinations of enhancers and genes within 1 Mb apart. It also
offers these scores in the context of their cell-specific distribution
in terms of both the number of standard distributions from the
mean (Z-scores) and percentiles (F(scores)). Additionally, PEACOCK
has been integrated into the PANTHER database, a resource
already well-known to investigators who may lack the computa-
tional or statistical skillsets to utilize other predictive resources.
Not only does PANTHER make the PEACOCK data more accessible
to bench users, it also provides an extensive framework of
biological context for enhancers and their linked genes by
facilitating pathway analyses and other valuable annotations
through its online suite of tools.

Score interpretation
Each potential enhancer-gene regulatory link is provided a cell
type-specific score by the final model. Although this score is
within the [0,1] interval, it should not be interpreted as a
probability. In a setting where the positive and negative classes
are sampled in proportion to their frequency among all cis gene-
enhancer pairs, the raw score generated by a probabilistic
classification algorithm can be interpreted (possibly after calibra-
tion) as the probability of belonging to the positive class26,39.
However, in our setting, the positive class and negative classes in
the training sets are not necessarily proportional to their true
frequencies (which are not known). Therefore, a higher raw score
indicates a higher chance of belonging to the positive class, but
not quantitatively as the probability of belonging to the positive
class.
A probability has an absolute interpretation regardless of cell

type environment. However, the cell type-specific scores are
relative only with regard to the enhancer-gene link scores from
the same cell type, and not to the enhancer-gene link scores for
another cell type. Each cell type yields its own score distribution,
which makes it inappropriate to consider the same classification
cutoff for scores generated with different cell type-specific data. A
cell type-specific score of 0.42 may be low in one cell type’s
scoring distribution, but quite high for another cell type
distribution. Therefore, it is not suitable to compare raw cell
type-specific scores outside of the same cell type. Instead, the
Z-score (a measure of how many standard deviations a score is
from the mean of all scores in that cell type) or the F(score) (the
percentile of the score out of all the scores in that cell type) of the
cell type-specific scores form a better basis for comparing the
confidence of predicted enhancer-gene regulatory links scored in

different cell types. The Z-score and F(score) are accordingly
provided for every enhancer-gene pair to make the scoring
system more interpretable for the investigator.

Systems biology implications
In an effort to contextualize the regulatory landscape of the cells
scored in PEACOCK, some global analyses were conducted.
Although the user can select any cutoff value that they want,
enhancer-gene links with F(score) of no less than 0.95 (corre-
sponding to the top 5% highest scoring enhancer-gene links in
each cell line) were used to generate the statistics in Table 5.
Table 5 shows some of the most common points of interest

when it comes to summarizing the regulatory landscape, such as
how many enhancers regulate more than one gene, how many
genes are regulated by more than one enhancer, and which
enhancer or gene has the most regulatory partners. With the
exception of the proportion of enhancers linked to more than one
gene in HCT116 (noticeably lower), results seem to be consistent
across cell types for these metrics. Interestingly, although almost all
genes are linked to more than one enhancer, only around 28% of
enhancers were linked to more than one gene. This could be
accounted for by the fact that enhancers greatly outnumber genes,
or by the possibility that most enhancers tend to regulate only one
gene in each cell type. These results represent only a tiny sliver of
the potential statistical analyses that PEACOCK scores can facilitate.
Future work will include investigations into more complex

questions, such as how many of these highly scoring enhancer-
gene regulatory predictions assemble into cis-regulatory modules
(CRM) or complexes involving combinatorial regulation by more
than one transcription factor. We also plan to analyze what certain
additional features would bring to the model. For example, using
the expression of the gene in the cell line as a feature may allow
the final model to be reduced to fewer features. This could be
beneficial in cell lines where gene expression data is available, but
data for some of the other features are not. Exploratory analysis is
also planned to investigate if adding a distance feature (genomic
distance between enhancers and genes) can add predictive value.

Perspectives
PEACOCK is a simple yet effective approach to providing cell type-
specific scores to predicted enhancer-gene regulatory links across
many widely studied cell lines. It requires the data from only a few
common assays to generate features for all possible enhancer-
gene links made up of enhancers and genes located <1Mb apart.
These scores provide an avenue for investigators to evaluate
predicted enhancer-gene links from any database or collection of
enhancer-gene predictions in cell types of interest. Although
enhancer-gene prediction databases such as PEREGRINE are based
on experimental evidence, it is clear, based on the distribution of
the cell type-specific scores for all links predicted in PEREGRINE
(Fig. 3) that many of the enhancer-gene links are likely not active
in certain cell types, demonstrating the critical need for cell type-
specific scoring when incorporating predicted enhancer-gene
regulatory relationships for any application. By utilizing PEACOCK
scores for cell types of interest, investigators will be able to
contextualize predicted enhancer-gene regulatory relationships in
disease-relevant settings.
In conclusion, enhancers play a vital role in orchestrating the

extremely complicated system of gene expression necessary for
human development and the continued maintenance of our
differentiated cell populations. When normal enhancer regulation
of genes is disrupted, the disease can arise. In fact, enhancer
dysregulation has been associated with many diseases, including
many types of cancer. Despite their importance, relatively few cell
type-specific regulatory relationships between enhancers and
their target genes have been identified. There have been many
efforts at high throughput predictions of enhancer-gene
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regulatory links, but a statistically validated scoring system based
on gold standard data in a cell type-specific context has been
difficult to accomplish. Here we described the basis for attributing
cell type-specific scores for over 17 million enhancer-gene pairs
generated by a final model using the k-nearest neighbors
algorithm trained on experimentally validated enhancer-gene
links curated from peer-reviewed scientific articles (Supplementary
Figure 17). For cell types missing P300 ChIP-seq data, cell type-
specific scores were generated by a support vector machine
alternate final model. These scores are available in four cell types,
accessible in bulk download format from www.peregrineproj.org.
Enhancer-gene links previously predicted in the PEREGRINE
database and incorporated in the PANTHER Classification System
(www.pantherdb.org) for gene and variant search also have cell
type-specific scores attributed to them in the same cell types on
the PANTHER platform. These cell type-specific scores will allow
researchers to evaluate the quality of predicted enhancer-gene
links in a more systematic way and to better harness the
knowledge regarding enhancer-gene regulatory relationships.
PEACOCK genome-wide scoring of enhancer-gene links in specific
cellular settings provides the research community with an
accessible tool for contextualizing disease-associated variants
located within enhancers, facilitating the further investigation of
the role of individual enhancers in many devastating genetic
diseases.

METHODS
Assembling the datasets
Positive class datasets. Enhancer-gene links comprising the
positive training and test datasets (true active enhancer-gene
links) were obtained from four different cancer cell lines. The
datasets for HepG2 (liver) and HCT116 (colon) and MCF7 (breast)
were obtained through careful PubMed searches. The search
terms included the names of the cell lines and the word
“enhancer” and terms related to enhancer-gene linking experi-
ments, such as “CRISPR” or “luciferase.” The abstracts of the search
results were then read to ascertain if the paper was relevant. If the
paper seemed likely to include experimental evidence linking an
enhancer to at least one target gene in the desired cell type, the
paper and any necessary supplemental data were examined to
determine if there was enough evidence (based on the criteria in
Table 1) to include the enhancer-gene link in the curated list
(Supplementary Table 1 of Supplementary Materials). The dataset
for a third cell type, K562 (myelogenous leukemia), was obtained
from published CRISPRi-FlowFISH experiments40. Positive
enhancer-gene links were gathered from all results achieving
statistical significance (p < 0.05) in experiments which perturbed
enhancers within 450 kb of 30 genes and measured the effects on
gene expression. Because there were two datasets in K562, this
dataset is denoted as K562_1, and the next is denoted as K562_2.
The K562_2 dataset was obtained from published CRISPRi
experiments in K562 cells40. Positive enhancer-gene links were
gathered from all results achieving statistical significance (FDR
<0.05) in experiments where sgRNA-targeted enhancers located
within 1 Mb of target genes MYC and GATA1 were shown to
significantly alter their gene expression.
The enhancer coordinates from the above datasets were

mapped to the enhancers in the PEREGRINE enhancer set and
the genes were recorded with their PANTHER long IDs. Only
enhancer-gene links with protein-coding genes (recorded by their
PANTHER long IDs) were considered for further analysis. PERE-
GRINE enhancers were mapped to an enhancer from the literature
if there was at least a 33% overlap between their coordinates,
which was calculated using bedtools41. For all enhancer-gene links
that mapped to at least one PEREGRINE enhancer, the enhancer-
gene link was recorded using the PEREGRINE enhancer ID and the

gene’s PANTHER long ID. These enhancer-gene links made up the
positive class of each dataset.

Negative class datasets. Enhancer-gene pairs comprising the
negative training and test datasets were gathered based on the
justification that physically inaccessible DNA could not contain
enhancers and genes that were actively engaged in transcriptional
regulatory activity. Although there is reason to believe that in
Drosophila, some genes are active in the heterochromatic state42,
we can find no evidence to show which genes this might be true
for in human cells, if any. However, we recognize the possibility
that such genes may exist and thereby erroneously be included in
the negative set, although they would likely represent only a
minute fraction of enhancer-gene pairs.
Additionally, there are areas of the genome for which

euchromatin and heterochromatin-associated marks overlap,
which have been documented to be enriched in imprinted
genes43. This raises the possibility of heterochromatin marks in
certain parts of the genome coinciding with active genes or
enhancers, rendering ChIP-seq and other histone modification-
targeting assays potentially problematic for determining which
regions of the genome are inactive. FAIRE-seq and DNase-seq
experiments assay for areas of the genome that are physically
exposed and vulnerable to digestion, offering a potentially more
exact representation of active versus inactive chromatin. There-
fore, these DNA accessibility experiments were utilized for the
construction of the negative set.
The bed files containing the peaks from ENCODE for DNase-seq

and FAIRE-seq experiments were examined. Bedtools was used to
determine which enhancers from the PEREGRINE set never
overlapped with any of the peaks. Bedtools was also used to
determine which genes (plus a 2 kb window on each end) had no
overlap with any of the peaks. Enhancers or genes that met these
requirements were considered inaccessible. All of the possible cis
enhancer-gene links (enhancer-gene pairs where the enhancer
and gene were located <1Mb apart), which included either an
inaccessible enhancer and/or an inaccessible gene, were labeled
as negative.
To generate the most useful training and test datasets, the

negative class was sampled to match the genomic local
environment of the positive class observations, reducing the
chances of differences in features being the result of factors
pertaining to anything other than the presence or absence of an
active regulatory relationship between an enhancer and gene.
This was done by randomly sampling the portion of the negative
class, including cis enhancer-gene pairs targeting the genes found
in enhancer-gene links in the positive set. Negative enhancer-
gene pairs included in the training and test sets were required to
target a gene that was found in a positive enhancer-gene link in
the same cell type (Fig. 4). For each gene found in any enhancer-
gene links in the positive class, 30 negative enhancer-gene pairs
targeting that same gene were randomly sampled from total the
negative sets for HepG2, HCT116, and MCF7 to comprise the
negative class. For the K562_1 dataset, 400 enhancer-gene pairs
were selected that were found to be inaccessible and failed to
achieve statistical significance from CRISPR experiments (p > 0.10)
which examined the effect that enhancer deletion had on
previously selected nearby genes’ expression levels. For the
K562_2 dataset, 1,303 enhancer-gene pairs were selected that
failed to achieve statistical significance from CRISPRi experiments
(FDR > 0.05) which examined the effect that enhancer perturba-
tion had on nearby MYC or GATA1 expression levels. It was then
confirmed that none of them were in the positive set. These
enhancer-gene pairs make up the final negative class instances in
each dataset.

Combining the positive and negative classes into datasets. Nega-
tive examples were combined with positive examples to create
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each training or testing dataset in each cell line. Due to the fact
that positive observations were so hard to come by (via a very
time-consuming and labor-intensive literature search), we did not
have as many as we would wish for. However, since negative
observations were very easy to come by due to the fact that they
were derived via DNA accessibility assays, we were not restricted
in how many could be included in the training and testing
datasets. The justification for including more negatives than
positives was that even though it created a class imbalance, it
should at least still give the algorithm more data to train on and,
thereby, hopefully result in a better model. We are planning to
investigate the use of SMOTE to address the class imbalance issue,
but in the meantime, we believe that by reporting metrics that
place more importance on the rare positive class (AUPRC instead
of AUC, for example) we are providing an honest estimate of
model performance.

Joint training datasets. Joint training datasets were assembled
using enhancer-gene links from more than one cell type. Positively
classed enhancer-gene links from multiple cell types were
combined to make the positive class of enhancer-gene links for
joint training sets. The negative class for joint training sets was
assembled in the same way.

Features
Features of an enhancer-gene pair include traits that are
characteristic of the enhancer, the gene, and the enhancer and
the gene simultaneously. Features which are classically relevant to
enhancer activity on target genes were considered for establishing
a feature set for enhancer-gene link data. There are nine main
features in each cell type-specific dataset of enhancer-gene pairs.
They are described in Table 2. All continuous variables were
subsequently standardized (rescaled to have a mean of zero and a
standard deviation of one). Since the eQTL features are based on
GTEx’s cis-eQTL datasets, only cis enhancer-gene pairs were
included in the dataset, as defined by GTEx, which was 1 Mb
upstream or downstream of each gene’s transcription start site.
The bedtools window command was used to gather all enhancers
within 1 Mb of each gene’s transcription start site. These
17,354,145 cis enhancer-gene pairs were then attributed features
based on the datasets described in Table 2.
The nearest gene was recorded as a binary value because we

were interested in how often the nearest gene is the target gene
of an enhancer, rather than incorporating the information

conveyed in the genomic distance as a feature since, in some
cases, the nearest gene may be much closer or farther away than
the nearest gene for another enhancer. For other features, the
decision to be reported as binary vs continuous was simply based
on how the data was reported from the primary source it was
collected from. For example, some ChIP-seq-based features are
reported as binary because we opted to use data from ENCODE’s
Registry of candidate cis-Regulatory Elements (cCREs) where
available, which reported a list of enhancers with “high” peak
levels for certain epigenomic signatures associated with active
enhancers. This was also true for H3K4me3 peaks over promoters.
ENCODE reported that as a binary result, so it was used as a binary
feature in these analyses. In the case of H3K4me1 peaks over
enhancers and H3K27ac over promoters, this was not available in
the cCREs data, so ChIP-seq peak data reported from ENCODE was
reported as a continuous variable.
Interaction terms were created between the features that were

only for enhancers and only for promoters (Table 3). This was in an
effort to create features in the model that represented the entire
enhancer-gene link, rather than just the enhancer or just the gene.
Interaction terms were also considered that were the result of an
interaction effect—the estimate for a feature’s effect differing by
levels of another feature in the model. This was clearly shown by
eQTL * eQTL average absolute coefficient (the interaction of
the eQTL combined Z-statistic, a measure of significance, and the
average of the absolute values of the eQTL coefficients, a measure
of effect size). Interactions between H3K4me1 and H3K27ac, two
active enhancer marks, were also examined.

Model selection and prediction performance
To select a predictive model that would be appropriate for this
application (a modestly sized dataset with a binary outcome,
relatively few features, and large class imbalance), the prediction
performance of each model with all features was examined.
Random forest, flexible discriminant analysis, linear discriminant
analysis, gradient boosting machines, ridge regression, k-nearest
neighbors, and support vector machines with Gaussian radial,
polynomial, linear, hyperbolic tangent, Laplace radial, Bessel, and
ANOVA radial basis kernels were all evaluated in terms of the
AUPRC and AUC values they achieved on MCF7 and K562_2 test
sets. Models were also evaluated on their prediction performance
using any of the HepG2, HCT116, or K562_1 datasets that did not
serve as training data for that model (i.e., a model trained on
HepG2 data could be tested on the HCT116 dataset, the K562_1
dataset, the K562_2 dataset, or the MCF7 dataset.). No model was
ever evaluated using test data containing observations that were
used in the training dataset for that model. Default values were
used for hyperparameters for models where hyperparameters
exist.
To select the final model used for all enhancer-gene link

scoring, the sum of the minimum AUPRC and the mean AUPRC
across all tests was calculated to determine the highest-
performing model, which also performed consistently well across
test sets. For each training set, the best model was designated as
the model with the highest sum of the minimum AUPRC and the
mean AUPRC across validation sets. Models were disqualified if the
minimum AUPRC was <0.10. Among the remaining best models
from each training set (mean AUPRC: 0.55–0.64), the model with
the highest mean AUC (0.93) was selected as the best-performing
full model. Feature selection was then performed on this model by
dropping each feature one by one and evaluating the AUPRC in
the smaller model. The model performed slightly better without
Feature 11 (Supplementary Table 16). Further dropping of features
was not found to increase prediction performance (Supplemen-
tary Table 17). This was used as the final model for scoring new
data (mean AUPRC: 0.65).

Fig. 4 Negative enhancer-gene examples. The diagram illustrates
how for each positive enhancer-gene example (gene A:e4 marked
by a blue line), ten enhancers targeting the gene from the positive
example (gene A) were randomly chosen from those in the
complete set of negative examples to be included in the dataset
(Ten enhancers connected to gene A by a red line). This was done so
that the negative examples would come from a cellular environment
similar to the positive examples. This was only performed for the
HepG2, HCT116, and MCF7 datasets. The K562_1 and K562_2
datasets are from two different CRISPR datasets that reported
negative and positive examples within the same ~1Mb long region.
Therefore, the experimental design for these two datasets ensured
that the negative and positive examples came from the same
genomic regions.
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Scoring new enhancer-gene links
All cis enhancer-gene pairs (n= 17,354,145) for which complete
features data was available were scored with the HepG2+ K562_1-
trained final model in a cell type-specific manner. All cis enhancer-
gene pairs in cell types (e.g., HCT116) missing only the P300 feature
were scored with the K562_1-trained final model in a cell type-
specific manner. Of these, the scores of all cis PEREGRINE enhancer-
gene links (n= 880,946) were examined. Two-sample KS tests were
used to evaluate the difference in distributions of the scores of
PEREGRINE enhancer-gene links compared to all cis enhancer-gene
pairs not reported in PEREGRINE for all cell types.

Comparison with other methods
The performance of the random classifier was measured by
calculating the proportion of positive links within each dataset,
which is equivalent to the AUPRC of a random classifier. The
dataset used for this calculation appears at the head of each
column in Table 4. A distance-only model was trained in each of
the HepG2, HCT116, and K562_1 datasets. Each of those models
was then tested on the remaining datasets and the AUPRC was
calculated for each (Supplementary Tables 13–15). The distance
between the enhancer and the gene was calculated by subtract-
ing the midpoint of the enhancer from the midpoint of the gene
in each link. A set of models using the absolute value of the
distance between the gene and enhancer was also evaluated but
did not yield any interesting differences (Supplementary Tables
13–15). The AUPRC reported in Table 4 for each test set is the
highest AUPRC among all trained distance-only models, so
comparisons would be as favorable toward distance-only models
as possible. Models trained on the HepG2 dataset delivered the
highest AUPRCs when tested on the HCT116, K562_1, and MCF7
datasets. Models trained on the HCT116 dataset delivered the
highest AUPRCs when tested on the HepG2 and K562_2 datasets.
A complete breakdown of all testing/training combinations can be
found in Supplementary Tables 13–15.
To make comparisons between PEACOCK and other published

methods fair, test datasets were filtered to include only
observations that were predicted in both PEACOCK and the
published method it was being compared against. Since each
resource used a different set of enhancers, bedtools was used to
evaluate the overlap between enhancers in both sets. Enhancers
from existing resources found to overlap at least 33% with
enhancers used by PEACOCK were deemed comparable. The same
test dataset was then used to calculate the AUPRC for both
PEACOCK and the published method being compared to PEA-
COCK. The PRC for both were plotted together for comparison
(Supplementary Figs. 8–10). PEACOCK was compared separately to
predictions generated by the ABC model, GeneHancer, and
TargetFinder.

Systems biology implications
Enhancer-gene links with F(score) of no less than 0.95 (corre-
sponding to the top 5% highest scoring enhancer-gene links in
each cell line) were taken as a subset of all 17 M scored enhancer-
gene links in each cell line. For each of these subsets, genes that
appear in more than one link and enhancers that appear in more
than one link were tallied and entered as a percentage of the total
number of genes and enhancers appearing in the subset.
Additionally, the number of enhancers linked were tallied for
each gene and sorted in order to obtain the gene with the largest
number of linked enhancers. The enhancer linked to the most
genes was derived analogously.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
The complete set of scored cis enhancer-gene pairs for all cell types are available in
bulk data download files on the PEREGRINE website (www.peregrineproj.org). Cell
type-specific scores for PEREGRINE enhancer-gene links were also integrated into the
PANTHER web interface for querying PEREGRINE enhancer-gene link information
(www.pantherdb.org).

CODE AVAILABILITY
The GitHub for this project, especially for training/testing datasets and pipelines, is
available at https://github.com/USCbiostats/PEACOCK.
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