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A quantitative systems pharmacology model of the
pathophysiology and treatment of COVID-19 predicts
optimal timing of pharmacological interventions
Rohit Rao 1✉, Cynthia J. Musante1 and Richard Allen1

A quantitative systems pharmacology (QSP) model of the pathogenesis and treatment of SARS-CoV-2 infection can streamline and
accelerate the development of novel medicines to treat COVID-19. Simulation of clinical trials allows in silico exploration of the
uncertainties of clinical trial design and can rapidly inform their protocols. We previously published a preliminary model of the
immune response to SARS-CoV-2 infection. To further our understanding of COVID-19 and treatment, we significantly updated the
model by matching a curated dataset spanning viral load and immune responses in plasma and lung. We identified a population of
parameter sets to generate heterogeneity in pathophysiology and treatment and tested this model against published reports from
interventional SARS-CoV-2 targeting mAb and antiviral trials. Upon generation and selection of a virtual population, we match both
the placebo and treated responses in viral load in these trials. We extended the model to predict the rate of hospitalization or death
within a population. Via comparison of the in silico predictions with clinical data, we hypothesize that the immune response to virus
is log-linear over a wide range of viral load. To validate this approach, we show the model matches a published subgroup analysis,
sorted by baseline viral load, of patients treated with neutralizing Abs. By simulating intervention at different time points post
infection, the model predicts efficacy is not sensitive to interventions within five days of symptom onset, but efficacy is dramatically
reduced if more than five days pass post symptom onset prior to treatment.
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INTRODUCTION
The coronavirus disease 2019 (COVID-19) pandemic, caused by
SARS-CoV-2, a novel coronavirus that emerged in 2019, is a major
public health burden worldwide. The pandemic has resulted in
more than 200 million confirmed cases and more than 4 million
recorded deaths as of September 20211. While COVID-19 vaccines
are highly efficacious2–5, there is a residual risk of severe cases of
COVID-19 for unvaccinated and/or high-risk populations6,7. Given
this residual risk, substantial efforts are being expended to meet
this urgent medical need through the development of pharma-
ceutical interventions such as SARS-CoV-2-neutralizing antibodies
and antiviral therapies8.
The development of novel pharmaceutical therapeutics, or

repurposing of existing therapeutics for COVID-19, is challenging
due to the complexity of the disease pathophysiology of viral
replication and the associated immune response. This is further
compounded by the uncertainties in optimal clinical trial design
such as dose (and regimen) selection, inclusion and exclusion
criteria, sample collection, and treatment duration. One way to
address these challenges is the utilization of quantitative systems
pharmacology (QSP) models, which leverage and incorporate
existing mechanistic knowledge and data to extrapolate to
forward predictions9,10. To this end, several within-host systems
models of COVID-19 were recently developed to elucidate the
relative importance of biological processes underlying COVID-19
pathophysiology and evaluate the efficacy of various therapeutic
interventions. These mathematical models provide mechanistic
support for a link between disease severity and the timing of
Type-1 interferon (IFN) activation after infection11, an impaired
CD8+ T-cell-dependent adaptive immune response12, and

post-hospitalization viral load dynamics13. Furthermore, mechan-
istic model-based analyses suggest that the efficacy of virus-
targeting therapeutic interventions declines sharply with the
time of intervention relative to symptom onset14–18. While
these models have yielded valuable insights about COVID-19
disease pathophysiology and potential therapeutic strategies in
general, there is a need for the development of integrated
systems models capable of more quantitatively describing key
readouts from emerging interventional randomized-controlled
clinical trials (RCTs) in COVID-19 patients to inform and accelerate
the development of novel COVID-19 therapeutics.
We previously published a prototype model of the immune

response to SARS-CoV-2 infection for collaborative development
with the aim of shortening the timeline of the traditional cycle for
QSP model development given the rapidly evolving nature of the
pandemic19. An important aspect of QSP model development
involves quantitatively recapitulating the heterogeneity observed
in clinical populations through the generation of a robust virtual
population20. Briefly, our typical strategy is to generate a
preliminary set of “plausible” parameter sets, then further refine
the “plausible population” into a “virtual population” by
comparison to randomized-controlled trial data. Here, we report
an updated version of the model with plausible and virtual
populations. The initial plausible population of parameter sets are
constrained against a curated dataset of published observational
clinical studies in COVID-19 patients, which span viral load and
immune responses in plasma and lung. The physiologically
constrained plausible population is then mapped onto clinically
employed COVID-19 disease severity metrics21 by using plasma
IL-6 levels as a key biomarker correlated with disease severity.
The plausible population is finally refined to generate a robust
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virtual population and partially validated using recently emerging
interventional RCTs investigating the efficacy of neutralizing
Ab cocktail and antiviral therapeutics in outpatients with
COVID-1922–25. To our knowledge, this is currently the only
integrated QSP model of within-host SARS-CoV-2 viral dynamics
and the immune response to quantitatively capture key
virological and clinical endpoints upon treatment of COVID-19
outpatients in interventional, RCTs through the development of a
robust virtual population.

RESULTS
Overview of model structure
The mathematical model links within-host viral dynamics of SARS-
CoV-2 to the activation of the innate and adaptive immune
response and the accumulation of tissue damage as a result of
proinflammatory mediated cell death. A high-level schematic of
the salient interactions accounted for in the model is depicted in
Fig. 1, with key details in the “Methods” section. A more detailed
description of the mechanistic interactions in our model can also
be found in ref. 19 and in the Supplementary materials section.
We developed a set of ordinary differential equations (ODEs)

to describe the dynamics of SARS-CoV-2 viral load and the
associated immune response, adapted from published models of
viral infection dynamics and the innate and adaptive immune
responses26–30.

Plausible population generation
We used a tiered approach to calibrate the model and generate a
robust virtual population. We first generated an initial plausible
population that constrains the model states, such as the viral load
and various immune mediators to physiologically reasonable
values, such that they qualitatively match a curated collection of
observational studies on COVID-19 summarized in Supplemen-
tary Table S1.
Subsequently, the final virtual population is formed by selecting

a subset of plausible subjects whose simulated responses were
constrained to interventional data from published RCTs in
outpatient COVID-19 patients.

The plausible population generated by constraining the
simulated viral load and various immune mediators to physiolo-
gically reasonable values is shown in Fig. 2 for selected
representative model variables. For a more complete depiction
of the dynamics, we represent the plausible population time
course from the time of infection. The time course of the plausible
population relative to the day of symptom onset, as described in
the methods is depicted in Supplementary Fig. 2. As evidenced by
the substantial variability in the plausible virtual population and
associated clinical observations, the QSP model captures the
significant heterogeneity in viral load and immune markers and is
thus able to represent subjects across the spectrum of disease
severity, including mild, moderate, and severe COVID-19 patients.
Simulated viral inoculation leads to an exponential increase in viral
load, which peaks on average ~5 days post infection, followed by
a rapid and steady decline. The increasing viral load engages the
innate and adaptive immune response, leading to the secretion of
several inflammatory cytokines. In agreement with a canonical
antiviral innate immune response31, the activation of the innate
immune mediators leads to an early peak in the time course of
Type I IFN, TNF-α, and IL-1β secretion, followed by a more delayed
increase in IL-6 and IL-10, the chief cytokine assumed to be a
biomarker of disease severity and the major counter-regulatory
anti-inflammatory cytokine in the QSP model, respectively. We
note that while there are a number of states such as IL-2, IL-1-β,
TNF-α that do not appear to change appreciably when viewed at
an aggregate level. However, the plausible population enables us
to capture potential individual-level trajectories that do vary
substantially upon infection in the case of some virtual subjects
that might be representative of subsets of true COVID-19 patients,
despite the aggregate level data not demonstrating significant
dynamics. Thus, rather than providing an exact match to the data,
the primary aim of developing the plausible population was to be
able to constrain the model states to physiologically plausible
dynamics which can then be refined based on subsequent RCT
data for specific patient populations or treatment scenarios, which
provide information on a subset of model variables. Moreover, the
plausible population is composed of virtual subjects exhibiting
physiologically realistic viral dynamics as shown by the ability to
select a subset of plausible subjects capable of closely matching
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Fig. 1 Simplified model schematic depicting the influence of key mediators. The model describes the productive viral infection of
susceptible Type II alveolar cells - infected cells together with free virus activate proinflammatory mediators of the innate and adaptive
immune systems (chiefly Type I interferons and CD8+ T cells) to clear the infected cells. The activation of this proinflammatory response
engages anti-inflammatory mediators such as Treg cells, IL-10, and TGF-β, which contribute to resolve the proinflammatory response.
Importantly, the proinflammatory response also causes the accumulation of tissue damage as a result of the inflammatory death of infected
and bystander alveolar cells. This can lead to positive feedback leading to a sustained immune response indicative of the more severe
outcomes of COVID-19. Finally, these processes are linked to certain circulating biomarkers of interest including IL-6, C-reactive protein [CRP],
ferritin, and surfactant protein D. A more detailed model schematic can be found in Fig. 1 of ref. 19 and in Supplementary Fig. 1.
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individual viral load trajectories obtained from participants of
SARS-CoV-2 human challenge studies32 (Supplementary Fig. 3).

Simulating COVID-19 clinical trials
Upon generation of the plausible population constrained to the
observational clinical studies, a subset of virtual subjects is
sampled from the plausible population to form a refined virtual
population that quantitatively matches the viral load time course
from interventional RCT data. Figure 3A depicts the mean
simulated viral load time course from the refined virtual
population closely matching the time course of the mean trial
data from the Blaze-1 Ph3 placebo and 2800 mg bamlanivimab
and 2800 mg etesevimab nAb cocktail arms, respectively. While
the QSP model adequately captures the more clinically relevant
high viral load regime (>1000 copies/mL), there is a discrepancy
between the simulated and clinically observed treatment arms at
very low viral loads (below 500 copies/ml) at the later time points
of the clinical trial (day 11). We hypothesize that this discrepancy

at low viral loads is due to the SARS-CoV-2 PCR assay
characteristics. While the model only accounts for the viable
virus, the PCR assay can detect inactive, unencapsulated viral
fragments33,34 that might not be representative of active ongoing
infection, especially at the low viral loads observed at later time
points in the clinical trial. This non-viable viral RNA might persist
for much longer than active virus and hence lead to the slower
than predicted dynamics (at low viral load) in the time course of
the observed treated group. Moreover, this lower viral load
regime is also below the reported lower limit of quantification of
the PCR assays used in comparable RCTs24,25. Similarly, the
simulated time course for mean change in viral load from
baseline for both placebo and treated groups is in reasonable
agreement with the clinical observations (Supplementary Fig. 4).
Key parameters and their distribution in the virtual population are
shown in Supplementary Fig. 5.
Figure 3B depicts both the simulated mean viral load reduction

at day 7 of the clinical trial along with its simulated variability

Fig. 2 Time course of plausible population model states compared against observational COVID-19 clinical data for viral load and
representative cytokines. Plausible population overlaid against observational COVID-19 clinical data for the viral load time course and
different representative cytokines (N= 14,545). For the purpose of visual representation of the time course of the viral and immune makers
from the day of infection, the time from symptom onset was translated to a time from infection by assuming an incubation period of 4.5 days
based on the mean incubation period for SARS-CoV-2 estimated35. Subsequently, the data are binned across 5-day intervals [0–5 d, 5–10 d,
15–20 days post infection] for visual representation. Data extracted from studies listed in Supplementary Table 1.
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characterized using 1000 bootstrapped trials in good agreement
with the corresponding trial observation. The size of the virtual
population (N= 502) is comparable to that reported in the
placebo (N= 517) and treatment (N= 518) arms. In addition, the
5.1 days mean incubation period for this virtual population, given
the assumption that symptom onset occurs at peak viral load, is
in good agreement with current epidemiological estimates of the
mean incubation period of 4–5 days for SARS-CoV-235–37. More-
over, the assumption that intervention occurs post viral load peak
in our population is further supported by the observed mean
placebo and treatment arm viral load trajectories, which exhibit a
monotonic decline from the start of treatment, suggesting that
the majority of mild/moderate COVID-19 outpatients enter the
trial after the peak in viral load. While we use a threshold of 104

copies/mL38 to represent an active infection in the current
plausible population and Blaze-1 virtual population, our results
are not materially affected by a lower threshold of 102 RNA
copies/mL, which corresponds to the lower limit of quantification
for SARS-CoV-2 PCR assays used in several clinical trials25,39

(Supplementary Fig. 6).
Subsequently, the placebo group viral load dynamics of the

Blaze-1 trial virtual population were partially validated against
that from the REGEN-COV Ph2 trial. In addition to an analysis of
the overall viral load-lowering response upon treatment, the
REGEN-COV Ph2 trial also reported a subgroup analysis where
subjects were stratified by increasing baseline viral load (i.e.,
subjects with baseline viral load >104, >105, >106 or >107,
respectively). We tested the ability of the model to reproduce the
placebo group viral load time course from the REGEN-COV Ph2
trial by using only the baseline viral load measurements for each
of the subgroups to inform the selection of a subset of virtual
subjects from the Blaze-1 virtual population. Figure 4A–D shows
the simulated placebo group trajectories from the REGEN-COV
virtual population (N= 402) in good agreement with the

observed placebo group dynamics for each reported subgroup
from the Ph2 trial. The model also adequately captures the
treatment group trajectories for each subgroup upon fitting the
Imax and using preclinical estimates to inform the neutralization
IC50 of the simulated REGEN-COV antibodies.
Following from this, the model predicts the subgroup responses

in agreement with REGEN-COV Ph2 trial findings, where patients
with higher baseline viral loads exhibited higher viral load
decreases upon treatment (Fig. 4E and Supplementary Fig. 7).
While the model slightly underpredicts the reduction in viral load
for the subgroup with baseline viral load >106 copies/mL; it is
capable of accurately predicting the other subgroup responses
and matches this group at day 7. While in Fig. 4, we choose to
select a subset of virtual subjects from the Blaze-1 Ph3 virtual
population (shown above) to test the ability of this virtual
population to recapitulate viral dynamics from different clinical
trials, an improved match to the REGEN-COV Ph2 trial data can be
obtained by appropriately selecting virtual subjects from the
determined plausible population (Supplementary Fig. 8). In
general, further refinement of the virtual populations can be
achieved by using individual-level data to inform the distribution
of viral load across trial time points.
As a further partial validation, using the same virtual population

shown in Fig. 4A–D, and the same pharmacodynamic parameters
for REGEN-COV, the model also adequately recapitulates the viral
load-lowering efficacy at day 7 reported in the Ph3 trial upon
simulation of a lower 2.4 g REGEN-COV dose (Fig. 4F) and 1.2 g
REGEN-COV dose (Supplementary Fig. 7).
The model also recapitulates the viral load dynamics for

molnupiravir, an antiviral intervention with a different mechanism
of action than the nAb cocktails. The model matches the
trajectories of the change in viral load from baseline for both
placebo and treatment arms (Supplementary Fig. 9).

Fig. 3 Calibration of the virtual population to the viral load time course from Blaze-1 Ph3 trial of bamlanivimab and etesevimab. A Mean
of the virtual population (N= 502) for the simulated placebo (PBO) group and the 2800mg bamlanivimab+ 2800mg etesevimab simulated
treated group matching the mean trial data from the observed Blaze-1 Ph3 placebo group and the 2800mg bamlanivimab+ 2800mg
etesevimab treated group. B log10 reduction in viral load from baseline at day 7 after treatment administration in the observed Blaze-1Ph 3
trial (blue) and the simulated the 2800mg bamlanivimab+ 2800mg etesevimab treated group. Error bars represent the 95% confidence
interval in the mean for clinical trial observations and the range of observations in the simulated virtual population. Violin plots are indicative
of 99% prediction interval of mean from 1000 bootstrapped samples of the virtual population. Data extracted from ref. 22.
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The primary outcome in the outpatient interventional RCTs are
reported as a reduction of hospitalizations or deaths. The virtual
populations detailed above were, therefore, selected so as to
recapitulate both the reported changes in viral load markers along
with the observed reductions in COVID-19-related events in these
clinical trials. To facilitate the selection of the virtual population,
the QSP model outputs must be appropriately translated to
clinically reported disease severity categories. In doing so, we
adopt a parsimonious approach and treat plasma IL-6 as the key
biomarker correlated to disease severity.
Based on the use of the plasma IL-6 threshold of 40 pg/mL40

(Supplementary Fig. 10) as the primary biomarker for clinical
endpoints in the model, the simulated Blaze-1 and REGEN-COV

trials are assessed for improvements in disease severity upon
intervention within the virtual population. A therapeutic inter-
vention that substantially decreases the viral load can decrease IL-
6 levels (Supplementary Fig. 11) and thus, the rate of simulated
COVID-19-related events (Fig. 5A). The rates of medically attended
visits or hospitalization in the placebo and treatment arms of the
virtual populations for the Blaze-1 Ph3 and REGEN-COV Ph2 trials
are appropriately matched to the observed event rates from the
corresponding clinical trials (Fig. 5B). Following from this, the
model also captures the observed relative risk reduction in event
rates. Hence, the model adequately captures the primary
endpoints of the aforementioned clinical trials and provides a
proof-of-concept for our approach to translate from key model

Fig. 4 Partial validation of the model against REGEN-COV antibody cocktail trial data. A–D Time course of the viral dynamics of the overall
virtual population and each of the subgroups compared against observations from the REGEN-COV Ph2 clinical trial for the placebo group
and the 8 g REGEN-COV treatment group. Error bars are representative of the standard error for the virtual population and clinical
trial observations. E Log10 reduction in viral load from baseline at day 5 for the overall virtual population and each of the subgroups
compared against observations from the REGEN-COV Ph2 clinical trial for the placebo group and the 8 g REGEN-COV treatment group. Error
bars are representative of the 99% prediction interval of the mean for the virtual population. F Log10 reduction in viral load from baseline at
day 5 for the overall virtual population compared against observations from the Ph3 trial REGEN-COV trial for the 2.4 g REGEN-COV treatment.
Error bars are representative of the 95% confidence interval for clinical trial observations. Violin plots are indicative of 99% prediction interval
of mean from 1000 bootstrapped samples of the virtual population. REGEN-COV Ph2 data extracted from 24 and REGEN-COV Ph3 data
extracted from ref. 39.
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states to disease severity (Fig. 5C). In addition, the relationship
between viral load and IL-6 in the virtual population is shown in
Supplementary Fig. 12.

Predicting the sensitivity of clinical outcomes to the timing of
therapeutic intervention
Finally, we determined the sensitivity of viral load-lowering
efficacy and severity reduction to the time of therapeutic
intervention relative to symptom onset (time of peak viral load
in the model). In general, the model predicts that early
intervention when closer to the time of peak viral load (symptom
onset) results in greater efficacy, depicted in Fig. 6 for the Blaze-1
virtual population upon the administration of the 2800 mg
bamlanivimab and 2800 mg etesevimab nAb cocktail. The model
predicts that intervention prior to 6d post symptom onset results
in greater than 50% improvement in severity outcomes, on
average. Efficacy is predicted to decline rapidly as the timing of
intervention is delayed to beyond 7 days relative to the time of
onset of symptoms. A qualitatively similar trend for the
dependence of efficacy on time of intervention is also observed
for simulated REGEN-COV nAb therapy (Supplementary Fig. 13).
Despite predicting higher therapeutic efficacy at early times of
intervention (<= 4 days) compared to later intervention (>4 d), a
slight non-monotonic response is predicted to occur in our
virtual population simulations, when intervention occurs very
early (<2 days post symptom onset). This non-monotonic
response occurs due to the selection of specific virtual subjects
in our population, where very early intervention is found to
increase the AUC of viral load post dosing compared to placebo
conditions, given the PK/PD parameters of the simulated
treatments. While this subset of patients can be filtered from
the final virtual population as further appropriate real-world
clinical data becomes available, given the current relative paucity
of outpatient data, it is possible that these virtual subjects are
representative of a model-identified risk where earlier

intervention might not always lead to substantially greater
clinical benefit.

DISCUSSION
To adequately inform drug development and clinical trial design
decisions, QSP models must reasonably encapsulate key
features of disease pathophysiology as well as appropriately
represent the observed heterogeneity in real-world clinical
populations. We report an updated version of our prototype
model of COVID-19 with a robust virtual population capable of
capturing the key viral load and severity endpoints from
outpatient RCTs of therapeutic interventions targeting the viral
dynamics of SARS-CoV-2. Furthermore, in recapitulating both
nAb and antiviral RCTs, the model can capture clinical responses
with distinct mechanisms of action.
Moreover, our results also act as a proof-of-concept for the

relatively simple approach we employed to translate the QSP
model outputs to disease severity metrics. As more mechanistic
information becomes available, the QSP model lends itself to the
incorporation of clinical information on additional biomarkers,
such as ferritin and CRP, which are preliminarily implemented in
the model41. More sophisticated probabilistic approaches, e.g.,
Markov chain-based models, might also be used to account for
the inherent uncertainty in the biomarker-based classification of
disease severity and clinical trajectories of COVID-19 patients. We
note however, that while linking IL-6 to severity can match
available data for virus-targeting therapies (nAbs and small
molecules), we would be cautious in using this approach for
immunomodulatory therapies without support from additional
data supporting a causative role for IL-6. Furthermore, data-
driven approaches for the prognosis of COVID-19 disease
progression might be leveraged for the calibration of additional
biomarkers in the QSP model and could focus on the potential

Fig. 5 The virtual population captures the relative risk reduction for the Blaze-1 Ph3 and REGEN-COV Ph3 placebo and treatment groups.
A Workflow depicting interplay between viral load dynamics and plasma IL-6 levels, the key biomarker used to stratify COVID-19 severity. A
therapeutic intervention that substantially decreases the viral load can decrease plasma IL-6 levels and thus, the rate of COVID-19-related
events. B Event rates in the observed and simulated placebo and treated group respectively for the Blaze-1 Ph3 and 2.4 mg REGEN-COV Ph3
treatment arm. C Relative risk reduction in classified events in the simulated and observed Blaze-1 Ph3 and 2.4 mg REGEN-COV Ph3 treatment
arms, respectively. Violin plots depict the 99% prediction interval of event rates and relative risk reduction, respectively from 1000
bootstrapped samples of the virtual population. Blaze-1 Ph3 virtual population, N= 502, REGEN-COV virtual population, N= 402. Data
extracted from refs. 22,39.
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for a combination of biomarkers found to be predictive of
changes in disease severity42.
The robustness of the virtual population is partially validated

using independent clinical data from the REGEN-COV Ph2 RCT,
where the model, in agreement with clinical observations24,39,
predicts that subjects with higher baseline viral load exhibit larger
reductions in viral load upon treatment, a finding borne out solely
from the dynamics of the model. A quantitative understanding of
this relationship has important implications for setting target
efficacy profiles during the clinical development of candidate
therapeutics, given that baseline viral load can vary due to a
multitude of potential factors including new SARS-CoV-2 variants,
seropositivity, vaccination status, immune competence, etc.39,43.
An important factor in the deployment of effective pharma-

ceutical therapies and consequently, clinical trial design is
identifying patient populations that will most benefit from an
intervention. We find that the clinical efficacy of the pharmaceu-
tical intervention is sensitive to the timing of intervention relative
to the time of symptom onset. The model predicts that
intervention within 6 days relative to symptom onset on average
would be necessary to achieve meaningful clinical efficacy in
outpatients with mild to moderate COVID-19 severity. Our
predictions are supported by recently published RCTs, which
suggest that early intervention improves clinical outcomes in this
patient population. RCTs in COVID-19 outpatients limiting recruit-
ment of subjects to within 5–7 days post symptom onset have
shown clinically meaningful improvements in clinical out-
comes22,39,43–45. Furthermore, both nAbs and antiviral therapies
were found to be at most marginally effective in reducing
mortality in hospitalized, COVID-19 patients, leading to disconti-
nuation of larger clinical trials in these patients due to low
likelihood of benefit44,46–48. Albeit a different population than the
one studied here, the reduced efficacy of virus-targeting
treatments in hospitalized patients is likely contributed by the
fact that such patients are further along the disease course, with
the reported average time of symptom onset to hospitalization
being 8–10 days49–51. The model predicts that at later times in the
disease course, the immune response will likely contribute more
to disease pathology with viral loads having decreased by several
orders of magnitude relative to peak viral loads. More recently,
early readouts from a clinical trial of AZD7442, a long-acting nAb
combination more closely analyzed the sensitivity to timing of
intervention in a prespecified analysis in COVID-19 outpatients

enrolled within 7 days of symptom onset. While hospitalization
rates decreased by 50% for the overall trial population, patients
treated within 5 days of symptom onset exhibited a 67% decrease
in risk of hospitalization52. These observations are in remarkably
close alignment with our predictions and lend further credence to
the predictive utility of the model in informing key clinical trial
design parameters, such as inclusion criteria, dose and dosing
regimen selection53,54.
In qualitative agreement with our results, previous systems

modeling studies also find that early intervention post infection is
required for adequate therapeutic efficacy15,16,55. However, many
prior models predicted that viral intervention post peak viral load
or more than 1–2 days post symptom onset would likely not result
in clinical efficacy56. Supporting our assumption that symptom
onset occurs at peak viral load, COVID-19 outpatients in recent
RCTs, enrolled on average within 4–5 days of symptom onset are
already post peak viral load. Our model suggests a relatively slow
attenuation of efficacy with meaningful reductions in the risk of
hospitalization predicted to occur with interventions starting up to
5 days post peak viral load or symptom onset. The less
pronounced attenuation of efficacy with time from peak viral
load can be at least partially attributed to the log-sensing
activation of the immune response in the QSP model, thus
enabling the immune system to be comparably responsive as the
viral antigen varies over orders of magnitude. Therefore, the
model suggests that RCTs in COVID-19 outpatients might
preferentially recruit patients within 5d post symptom onset to
appropriately evaluate the efficacy of therapeutics. This prediction
was further supported by recent results from an RCT of
nirmatrelvir, showing only marginal attenuation in clinical efficacy
when dosed within 5 days of symptom onset (88% reduction in
risk of hospitalization) compared to within 3 days of symptom
onset (89% reduction in risk of hospitalization)43.
The model lends itself to several potential additional analyses

not presented in this work. In this study, we focused on
developing a robust virtual population to support the develop-
ment of therapeutic interventions applicable to COVID-19 out-
patients. However, given the generality of our tiered approach and
comprehensive mechanistic architecture of the model, the model
can be used to develop robust virtual populations in other patient
populations, as in hospitalized patients with severe COVID-19.
While the focus of the current study has been on modeling virus-
targeting interventions, given the comprehensive immune

Fig. 6 Model predicted attenuation of relative risk reduction with increasing time of intervention initiation relative to symptom onset.
Sensitivity of (A) viral load-lowering efficacy and (B) disease severity reduction to the time of intervention for the simulated 2800mg
bamlanivimab+ 2800mg etesevimab treatment and Blaze-1 Ph3 virtual population. The model predicts that early intervention when closer to
peak viral load (symptom onset) results in greater viral load-lowering efficacy and relative risk reduction in severity endpoint. Error bars
indicate 99% prediction intervals of mean.
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component of the model, additional interventions of interest
especially immunomodulatory interventions can be subsequently
incorporated and validated against emerging clinical trial data in
hospitalized COVID-19 patients. The mechanistic detail in the
model can facilitate modeling-based investigations of both
specific immunomodulatory interventions that have been in
explored in COVID-19 patients, such as the IL-6 inhibitors (e.g.,
tocilizumab, sarilumab)50,57, JAK inhibitors (e.g., tofacitinib, bar-
icitinib)58 as well as broader immunosuppressive agents such as
corticosteroids59. In such cases, the model can be used to support
the rationale, inform dosing regimen, inclusion/exclusion criteria
for clinical trials. Moreover, the model can be used to support the
rationale of using novel combinations of antiviral and immuno-
modulatory agents in specific patient populations60,61. The model
can be adapted to multiple therapeutic scenarios, such as pre- and
post-exposure prophylaxis. This is especially relevant to the
treatment of close contacts of infection-confirmed cases, with a
number of clinical trials exploring the efficacy of pharmaceutical
interventions in such settings62. Furthermore, virtual populations
might also be constructed to match viral load and immune
dynamics in vaccinated individuals upon breakthrough infection
as more RCT or other appropriate datasets on such subjects
become available.
The model calibration procedure described in preceding

sections can be used to obtain a virtual population representative
of SARS-CoV-2 variants that might exhibit differing viral dynamics
compared to the SARS-CoV-2 clades prevalent in the 2019-2021
period of the COVID-19 pandemic, including the Alpha and Beta
variants. As proof-of-concept to show that our virtual population
approach can be adapted for other emerging variants of concern
(VOC), we developed a preliminary virtual population matching
the virological characteristics of the Delta variant, the dominant
VOC worldwide during model development in Nov 2021. We do
not predict the effects of pharmaceutical interventions in the
Delta variant infections. This is due to the substantial uncertainty
in the differences in disease pathophysiology, and viral dynamics
between the Delta variant and older variants of SARS-CoV-2 at the
time of model development. As more data becomes available the
preliminary virtual population, and associated workflow, pre-
sented in this work can be adapted to address such questions
(Supplementary Fig. 14) as well as be updated to account for the
current VOC (Omicron [67] and potential future VOC). Emerging
SARS-CoV-2 variants of concern can potentially impact the
epidemiological properties of COVID-19, such as to changes in
infectiousness, associated disease severity. VOC can warrant a re-
consideration of the efficacy of pharmaceutical interventions. For
instance, despite considerable efficacy against the 2019–2020
clades of SARS-CoV-2, the FDA withdrew the EUA for the use of
bamlanivimab alone in 2021 due to evidence showing signifi-
cantly reduced efficacy against the Delta variant, which was
quickly becoming the dominant variant of concern in the United
States63,64. The impact of VOCs on the efficacy of targeted
therapeutic interventions has become even more pertinent given
the emergence of the Omicron VOC and more recently, BA.4 and
BA.5 sub-variants65,66, with the US FDA limiting the use of some
antibody cocktail therapies67,68. Given the potential implications,
mechanistic model-informed analysis can help address questions
associated with how variants can impact key drug development
parameters, including changes to the dose/dosing regimen, the
development of new antiviral combinations, and the withdrawal
altogether of therapies no longer effective against more recent
variants. For instance, if the neutralization potency antibody
cocktails were estimated for novel variants, the QSP model can be
simulated with these estimates to predict the impact of the VOC
on the clinical efficacy of such therapeutics. Moreover, the model
virtual population can be further updated to RCT data on the viral
dynamics, clinical severity profiles, and baseline seropositivity
characteristics of populations with Omicron VOC infections.

While the approach followed here ensures response to
infection is physiologically reasonable, it should be noted that
the final virtual populations are matched solely on available data
from RCTs, which is currently viral load and severity data.
Similarly, if available, data from interventional RCTs with viral
load and immune biomarkers could be used to build matching
virtual populations. If this should fail, it would highlight required
model refinements and potentially highlight novel biology and
pathophysiology.
In summary, the QSP model is to our knowledge, currently the

only model capable of quantitatively capturing key clinical
endpoints from recently conducted interventional RCTs in out-
patient populations involving therapies with distinct mechanisms
of action. We presented a robust virtual population, which was
partially validated against the REGEN-COV RCT and is capable of
informing key clinical trial design parameters for novel COVID-19
interventions. There are a number of limitations to our approach.
Chiefly, while model components directly describing the viral load
dynamics are calibrated against both hospitalized and outpatient
datasets, the majority of immune states are informed by data in
hospitalized COVID-19 subjects. In addition, the model does not
distinguish between distinct compartments of infection, such as
the upper and lower respiratory tract, and further does not
account for the mechanistic influence of excessive immune
activation on the incidence of systemic complications or the
impact of systemic comorbidities on disease severity. We do not
comprehensively account for the endogenous humoral SARS-CoV-
2 antibody response dynamics, which is found to be associated
with baseline viral load. Subsequent releases of the model will
focus on addressing these limitations and extending the model to
other patient-care settings, such as in the case of high-risk
vaccinated subjects with pre-existing immunity and the develop-
ment of immunomodulatory treatments in hospitalized patients.

METHODS
We previously published a prototype model of the immune
response to SARS-CoV-2 infection capable of describing the
physiologically relevant scenarios of COVID-19 disease progression
and amenable for further quantitative characterization against
emerging COVID-19 clinical datasets. The results presented in this
study involve two key methodological extensions of the previous
study, (1) the development of a robust virtual population to
quantitatively capture viral and immune dynamics from RCT and
observational data in COVID-19 patients, (2) incorporation of a log-
linear activation of the immune response enabling the host
immune system to remain responsive to pathogen levels ranging
over orders of magnitude.
Briefly, we developed a set of ordinary differential equations

(ODEs) to describe the dynamics of SARS-CoV-2 viral load, and the
innate and adaptive immune response26–30. In our model,
uninfected susceptible alveolar Type II cells are infected by
SARS-CoV-2 to form productively infected cells, which shed the
viable virus. The modeled viable virus is representative of clinically
measured viral loads upon polymerase chain reaction (PCR) assay
of nasopharyngeal swab samples. Viable virus and infected cells
activate the innate and adaptive mediators of the host immune
response. Infected alveolar cells produce Type I IFN, which forms
an integral part of the innate immune response in our model by
preventing the infection of additional susceptible cells and, thus,
implicitly accounting for the antiviral effects of IFN-stimulated
gene products69.
The model further describes the virus and infected cell-induced

maturation of macrophages and neutrophils as well as dendritic
cells, which are the primary antigen-presenting cells (APC)
responsible for activating the adaptive immune response. The
activated CD8+ cytotoxic T cells (CTLs) are the key adaptive
immune mediators involved in the clearance of infected cells,
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while the activated CD4+ Th1 and Th17 cells are assumed to
maintain a permissive inflammatory milieu through the secretion
of proinflammatory cytokines that potentiate the activation of the
CTLs. Finally, the model accounts for various clinically relevant
biomarkers including proinflammatory cytokines such as IL-6,
C-reactive protein, ferritin, and surfactant protein D. For simplicity,
the model considers only the alveolar and plasma compartments,
corresponding to the major site of infection and the primary site
for bioanalytical sample collection, respectively. Further details
regarding the model structure are included in the Supplementary
materials and methods.
The preliminary version of the model19 accounted for the

saturable maturation kinetics (with Hill coefficient =1) of the
macrophages, neutrophils and dendritic cells by the virus and
infected cells. Importantly, in the current refined model, we
hypothesize that in the context of an ongoing infection with an
exponentially proliferating pathogen, these cells behave as
logarithmic sensors such that the production of mature innate
immune cells due to viable virus and infected cells varies in a log-
dependent manner (Supplementary materials: Supplementary
equations). This enables the host immune system to remain
responsive to pathogen levels ranging over orders of magnitude.
Without this characteristic the model can match viral load data but
predicts marginal improvements on disease severity following
viral load-lowering therapies that are administered after the peak
in the viral load occurs. This is largely because, with the prior
implementation, the immune response is saturated at viral load
levels below that observed in treated patients who are observed
to have reductions in severity. While still an active area of research,
a number of theoretical and experimental studies support the
existence of signaling architectures capable of log-sensing (often
referred to as the Weber–Fechner property) in varied biological
sensory systems, including the immune system70–74. Sontag70

developed a log-sensing network architecture that reproduced
prior experimental results by Johansen et al.75, where exponential
increases in antigen stimulation resulted in the greatest immune
activation relative to constant or linear antigen stimulation,
suggesting that the immune response can detect exponentially
increasing pathogen populations due to its lack of adaptation to
exponential ramps. More recently, Nienaltowski found that the
fraction of the total population of immune cells activated in
response to inflammatory cytokine stimuli varied with the
logarithm of the stimulus74. For simplicity, we assume that the
log-dependent activation of the immune system is due to
activation of the innate immune cells, and not the adaptive
immune T cells. Moreover, we also do not propose specific
intracellular or extracellular motifs that give rise to log-sensing
given that this is still an active area of research with multiple
feasible formulations71,73.

Generating a plausible population
A tiered approach was used to calibrate the model and generate a
robust virtual population. The initial plausible population con-
strains the model states to a curated set of observational studies
on COVID-19 summarized in Supplementary Table S1. Observa-
tional clinical datasets were selected by prioritizing studies with
(1) longitudinal measurements of cytokines and immune cell
populations in plasma and, where possible, the bronchioalveolar
space, (2) longitudinal nasopharyngeal viral load, and (3) other
plasma biomarker measurements stratified by disease severity
which record the time of measurements relative to symptom
onset. When possible, we selected studies with concordant assay
sensitivities and readouts. The observational data used to
constrain the model states in the plausible population are
primarily from hospitalized COVID-19 patients since such datasets
were more readily available and of higher quality at the time of
model development; however, we used outpatient data when

possible, to inform some of these states such as plasma IL-6 and
the viral load76,77. Nevertheless, despite the challenges, the data
were suitable for the generation of a plausible population given
the initial goal of constraining the model to a physiologically
realistic regime.
To generate this plausible population, we uniformly sampled

biologically relevant parameters (Supplementary Table S2) with
high sensitivity and uncertainty (based on prior work) within the
fivefold bounds of a nominal parameter set and filtered solutions
that were within twofold bounds of viral load and immune
mediator measurements in the curated set of literature data.
These bounds were selected as (a) a reasonable and computa-
tionally tractable space to base our search and (b) a broad enough
range from which to select a final virtual population. Additional
data, in particular individual data from interventional randomized
control trials (RCTs) including viral load and immune response
biomarkers, could suggest refinements to the final virtual
population. However, the strategy applied here should be capable
of identifying a matching virtual population to such data.
The incubation period of the infection needs to be assumed to

calibrate the time course of simulated infection to the time-
dependent dynamics of viral and immune mediators in the
curated datasets, which are reported relative to time from
symptom onset. Several epidemiological studies suggest that
the viral load of SARS-CoV-2 peaks around the onset of COVID-19
symptoms13,51,78,79. Informed by this epidemiological evidence,
we assume that symptom onset coincides with the timing of the
peak in viral load for the plausible virtual subjects, thus enabling
the translation of the time from “day of symptom onset” to time
from “day of infection” in the curated datasets. Thus, rather than
assume a fixed, identical SARS-CoV-2 incubation period for each
virtual subject, we obtain a distribution of incubation periods
across the plausible population based on the individual viral load
trajectories of each virtual subject.
Infection with SARS-CoV-2 was simulated using an inoculum

equivalent to 10 viral RNA copies/mL. We further account for an
endogenous Ab response that begins to have an appreciable
effect on viral clearance on day 20 post infection using a
phenomenological representation. While this is roughly in
alignment with clinical findings that almost all infected individuals
are seropositive 14–28 days from symptom onset80, the simplistic
phenomenological representation in our model can be more
finely refined to these observations as more appropriate clinical
datasets become available. Moreover, we assume that, post peak,
the virus can no longer infect new susceptible cells within the host
when the viral load declines below 104 viral RNA copies/mL81,
comparable to the detection limits of rapid antigen tests82. Studies
suggest a ratio between 103 and 104 PCR assay measurements (in
RNA copies/mL) and the number of infectious units measured in
tissue culture infective dose (TCID50)83. While this assumption was
made to limit the incidence of rebound in viral load at later time
points once a low viral load regime (<104 viral RNA copies/mL)
post peak is reached, our results are not materially impacted by
decreasing this threshold to 102 viral RNA copies/mL, correspond-
ing to the limit of quantification for gold-standard PCR assays84.

Linking to disease severity
The primary outcome in the outpatient interventional RCTs,
detailed in subsequent sections, are reported as a reduction of
hospitalizations or deaths. We ultimately aimed to generate a final
virtual population that would match both the observed reductions
in COVID-19-related events in these clinical trials along with the
reported changes in viral load markers. Therefore, upon genera-
tion of the plausible population, the QSP model outputs must be
appropriately translated to clinically reported disease severity
categories.
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In doing so, we adopt a parsimonious approach and treat
plasma IL-6 as the key biomarker correlated to disease severity.
Numerous clinical studies provide evidence for a link between
increasing plasma IL-6 levels and COVID-19 disease severity and
prognosis40,41,50,85–88. Del Valle et al., in a large study of >1400
COVID-19 patients, found a threshold of 70 pg/mL of plasma IL-6
levels at hospitalization could independently predict disease
severity and mortality. A recent, RCT evaluating the efficacy of
Tocilizumab in > 300 subjects further showed plasma IL-6 levels
were significantly correlated with baseline clinical severity and
were also a significant predictive biomarker for clinical severity
through day 28 of the trial40,41. To translate the plausible
population to the incidence of hospitalization reported in
outpatient clinical trials, a threshold of 40 pg/mL is employed for
plasma IL-6 levels, corresponding to a value closer to the lower tail
of the plasma IL-6 distribution observed in hospitalized patients
with mild-moderate COVID-19 severity40,41. Moreover, given the
uncertainty in using a plasma biomarker as an indicator of a hard-
end point such as hospitalization, we conservatively apply this
threshold to the peak IL-6 levels attained at any point over the
entire time course of the simulated infection. This threshold is also
in qualitative agreement with observations of plasma IL-6 levels in
COVID-19 patients with mild disease severity and COVID-19
patients with moderate to severe disease severity (Supplementary
Fig. 10). Note that this approach is more suitable for estimating
event rates in trial populations than the timing of hospitalization
or death in specific patients.

Virtual population refinement to match interventional data
The final virtual population is formed by selecting a subset of
plausible subjects whose simulated responses were constrained to
interventional data from published RCTs in outpatient COVID-19
patients. Three RCTs were selected for model calibration and
validation, specifically, the Blaze-1 Ph3 nAb trial of bamlanivimab
and etesevimab (NCT04427501)22, the Ph2 and Ph3 REGN-COV
nAb trial of casirivimab and imdevimab (NCT04425629)24,39, and
the Ph2 interim analysis of the antiviral molnupiravir [MK-4422/
EIDD-2801] (NCT04405570)25. These three RCTs primarily evalu-
ated the effectiveness of their respective pharmaceutical inter-
ventions in reducing the rate of hospitalization in outpatients with
mild to moderate COVID-19 at high risk of hospitalization.
The above RCTs reported the mean viral load dynamics, with

the nAb trials further reporting the rate of medically related
events through day 29 of the trial, in the placebo and treatment
arms, respectively, and the associated relative risk reduction in
event rate upon treatment. Thus, a final virtual population was
selected from the plausible population such that it matched both
the reported viral load time course and the disease severity rates
in the placebo and treatment arms of the trial using importance
sampling methods published in ref. 89. The virtual population
matching the Blaze-1 clinical trial observations was selected such
that it was of comparable in size to the trial population (N= 516).
Since the clinically observed viral load time course is reported
relative to the start of treatment, it was necessary for us to
assume a time of infection to calibrate the QSP model. As for the
plausible subjects, the time of the peak viral load post simulated
infection was assumed to coincide with the time of symptom
onset. In the case of each of the simulated interventions, the
time of intervention relative to the simulated time of symptom
onset (time to peak viral load) is given by the mean time from
symptom onset to randomization reported for the corresponding
clinical trial.
Despite generating the final virtual population by calibrating

the model to only the viral load measurements and severity
information available in the interventional trials, our tiered model
calibration approach, ensures all other model states are still

constrained to physiologically plausible values informed by the
curated set of observational clinical data in COVID-19 patients.

Modeling-neutralizing antibody therapeutics. The pharmacody-
namic effect of the nAb cocktails are modeled to decrease the
rate constant for the production of infected cells due to viable
virus. This is informed by their mechanism of action whereby the
nAbs selectively bind to the spike protein of SARS-CoV-2, thus
neutralizing the virus particles, preventing their entry into
susceptible cells, and subsequent replication (see Supplementary
materials section on modeling antiviral and anti-SARS-CoV-2-
neutralizing antibody treatments)90.
Blaze-1 Ph3 nAb trial: The efficacy of the nAb cocktail

bamlanivimab and etesevimab was evaluated in an RCT for
outpatients with recently diagnosed, mild to moderate COVID-19.
A two-compartment model was used to describe the plasma
pharmacokinetics of bamlanivimab and etesevimab. The model
parameters and equations were adapted from the publicly
available Emergency Use Authorization (EUA) document for the
nAb cocktail (Supplementary materials: Supplementary equa-
tions)23. The QSP model was calibrated to the Blaze-1 Ph3 placebo
and 2800mg bamlanivimab and 2800mg etesevimab treatment
arms. The maximal effect (Emax) and the potency (EC50) of the
individual nAbs was informed by the preclinical and clinical values
reported in the EUA document and further optimized to match
the observed viral load time course and severity improvements
from the clinical trial.
REGEN-COV nAb trials: The pharmacokinetics of REGEN-COV

(casirivimab and imdevimab) were described using a one-
compartment model matched to produce the reported noncom-
partmental analysis (NCA) parameters from24, including the
maximal plasma concentration (Cmax), plasma concentration at
day 28 post administration (CDay 28), and half-life for each
antibody, respectively (Supplementary Fig. 15). The QSP model
was matched to the placebo and 8 g REGEN-COV treatment arms
from the REGEN-COV2 Ph2 trial. As partial validation of the
simulated Blaze-1 placebo group time-course, a subset of virtual
subjects from the virtual population was sampled such that their
selection was informed only by the baseline placebo viral load
measurement for each of the reported subgroups from the
REGEN-COV Ph2 trial. Subsequently, the predicted viral load time
course of the virtual population subset was validated against the
entire viral load trajectories of the subgroup placebo arm viral
load time courses from this trial.
The maximal effect (Emax) was fitted to match the Ph2 trial

observations. The potency (EC50) of the individual nAbs was
informed by the published preclinical in vitro estimates90 and
further optimized to match the observed viral load time course
and severity improvements from the Ph2 clinical trial and the
reported viral load difference between treated an placebo
groups at day 7 in the Ph3 trial. The simulated treatment
dynamics of the REGEN-COV Ph2 trial, and the suitability of our
log-sensing hypothesis were further compared against the lower
dose 2.4 mg and 1.2 mg dose of the REGEN-COV treatment arm
from the Ph3 trial.

Modeling antiviral therapeutics. The antiviral, molnupiravir is the
pro-drug of the pharmacologically active EIDD-1931, a nucleoside
analog which acts by introducing random point mutations
throughout the SARS-CoV-2 viral RNA, leading to error catastrophe
of viable virus91. Informed by this mechanism of action, the
pharmacodynamic effects of molnupiravir are modeled as
inhibiting the production of viable virus from infected cells (see
Supplementary materials section on modeling antiviral and SARS-
CoV-2-neutralizing antibody treatments). The plasma concentra-
tion of EIDD-1931 for model simulations were obtained from
published clinical literature92 (Supplementary Fig. 16). The Emax of
the therapeutic is fixed to 1, informed by preclinical in vitro assay
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information for the active form of the molecule, EIDD-193191. The
EC50 was optimized to match the viral load time course from the
Ph2 interim analysis25. In modeling the antiviral molnupiravir, as a
simplification we do not attempt to explicitly model the
intracellular concentration of its active metabolite EIDD-1931
and instead optimize the EC50 relative to the reported plasma
concentration of EIDD-1931.

Preliminary virtual population of SARS-CoV-2 variants of
concern
As a proof-of-concept, we show that our virtual population
approach can be updated to model viral dynamics of emerging
variants of concern (VOC). We used the plausible population in
Fig. 1 to obtain a preliminary virtual population for the Delta
variant of SARS-CoV-2. While the Delta variant was the prevalent
VOC worldwide at the time of model development, our approach
can be similarly adapted to match viral dynamics information for
emerging VOC as needed. Delta variant SARS-CoV-2 was reported
to have a higher peak viral load (lower Ct value), higher viral load
upon controlling for days from symptom onset, a longer duration
of viral load shedding, and a potentially shorter incubation
period93–98. We selected a subset of virtual subjects from the
developed plausible population with viral dynamics that are in
general agreement with the virological observations from the
above-mentioned epidemiological studies. We match data pre-
sented in ref. 96, describing the greater viral load in Delta variant
infections in a cohort of isolated close contacts of individuals with
confirmed SARS-CoV-2 infection. Given the Blaze-1 Ph3 clinical
trial was completed in early 2021, prior to the emergence of the
Delta variant and thus, did not report a significant proportion of
Delta variant infections, we assume viral infections in the Blaze-1
population are more representative of the 19A/19B clade reported
in ref. 96. Furthermore, since Li et al. did not report a time of the
first test since estimated close contact exposure, we assume the
measurement of viral load is made 2 days post infection, where
the viral load in the Blaze-1 population corresponds to the
reported viral load of the 19A/19B clade.

Model simulation
The model was simulated in MATLAB 2019a, and ode15s was used
to integrate the model differential equations. The computation
time for a single run of the model was on the order of 1 s. The
most recent release of the code is available in full at https://
github.com/openPfizer/QSP_model_COVID19.

DATA AVAILABILITY
The data to reproduce all figures in the manuscript is available in full at https://
github.com/openPfizer/QSP_model_COVID19.

CODE AVAILABILITY
The code to reproduce all figures in the manuscript is available in full at https://
github.com/openPfizer/QSP_model_COVID19.

Received: 15 March 2022; Accepted: 9 February 2023;

REFERENCES
1. WHO. WHO COVID-19 Dashboard (World Health Organization, 2020).
2. Baden, L. R. et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N.

Engl. J. Med. 384, 403–416 (2021).
3. Polack, F. P. et al. Safety and efficacy of the BNT162b2 mRNA covid-19 vaccine. N.

Engl. J. Med. 383, 2603–2615 (2020).

4. Voysey, M. et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222)
against SARS-CoV-2: an interim analysis of four randomised controlled trials in
Brazil, South Africa, and the UK. Lancet 397, 99–111 (2021).

5. Sadoff, J. et al. Safety and efficacy of single-dose Ad26.COV2.S Vaccine against
covid-19. N. Engl. J. Med. 384, 2187–2201 (2021).

6. Taylor, P. C. et al. Neutralizing monoclonal antibodies for treatment of COVID-19.
Nat. Rev. Immunol. 21, 382–393 (2021).

7. Kim, P. S., Read, S. W. & Fauci, A. S. Therapy for early COVID-19: a critical need. J.
Am. Med. Assoc. 324, 2149–2150 (2020).

8. Paules, C. I. & Fauci, A. S. COVID-19: the therapeutic landscape. Medicine 2,
493–497 (2021).

9. Musante, C. J. et al. Quantitative systems pharmacology: a case for disease
models. Clin. Pharm. Ther. 101, 24–27 (2017).

10. Schmidt, B. J., Papin, J. A. & Musante, C. J. Mechanistic systems modeling to guide
drug discovery and development. Drug Disco. Today 18, 116–127 (2013).

11. Jenner, A. L. et al. COVID-19 virtual patient cohort suggests immune mechanisms
driving disease outcomes. PLoS Pathog. 17, e1009753 (2021).

12. Blanco-Rodriguez, R., Du, X. & Hernandez-Vargas, E. Computational simulations to
dissect the cell immune response dynamics for severe and critical cases of SARS-
CoV-2 infection. Comput. Methods Prog. Biomed. 211, 106412 (2021).

13. Neant, N. et al. Modeling SARS-CoV-2 viral kinetics and association with mortality
in hospitalized patients from the French COVID cohort. Proc. Natl Acad. Sci. USA
118, https://doi.org/10.1073/pnas.2017962118 (2021).

14. Cao, Y., Gao, W., Caro, L. & Stone, J. A. Immune-viral dynamics modeling for
SARS-CoV-2 drug development. Clin. Transl. Sci. https://doi.org/10.1111/cts.13099
(2021).

15. Goncalves, A. et al. Timing of antiviral treatment initiation is critical to reduce
SARS-CoV-2 viral load. CPT Pharmacomet. Syst. Pharm. 9, 509–514 (2020).

16. Sadria, M. & Layton, A. T. Modeling within-host SARS-CoV-2 infection dynamics
and potential treatments. Viruses 13, https://doi.org/10.3390/v13061141 (2021).

17. Goyal, A., Reeves, D. B., Cardozo-Ojeda, E. F., Schiffer, J. T. & Mayer, B. T. Viral load
and contact heterogeneity predict SARS-CoV-2 transmission and super-spreading
events. eLife 10, https://doi.org/10.7554/eLife.63537 (2021).

18. Goyal, A., Cardozo-Ojeda, E. F. & Schiffer, J. T. Potency and timing of antiviral
therapy as determinants of duration of SARS-CoV-2 shedding and intensity of
inflammatory response. Sci. Adv. 6, https://doi.org/10.1126/sciadv.abc7112 (2020).

19. Dai, W. et al. A prototype QSP model of the immune response to SARS-CoV-2 for
community development. CPT Pharmacometrics Syst. Pharmacol. https://doi.org/
10.1002/psp4.12574 (2020).

20. Cheng, Y. et al. Virtual populations for quantitative systems pharmacology
models. Methods Mol. Biol. 2486, 129–179 (2022).

21. COVID-19 Treatment Guidelines Panel. Coronavirus disease 2019 (COVID-19)
treatment guidelines. National Institutes of Health. https://www.covid19treatment
guidelines.nih.gov/ (2019).

22. Dougan, M. et al. Bamlanivimab plus etesevimab in mild or moderate covid-19. N.
Engl. J. Med. 385, 1382–1392 (2021).

23. Emergency Use Authorization (EUA) for Bamlanivimab 700mg and Etesevimab
1400 mg IV Administered Together Center for Drug Evaluation and Research
(CDER) Review (fda.gov). https://www.fda.gov/media/146255/download.

24. Weinreich, D. M. et al. REGN-COV2, a neutralizing antibody cocktail, in outpatients
with covid-19. N. Engl. J. Med. 384, 238–251 (2021).

25. Fischer, W. A. 2nd et al. A phase 2a clinical trial of molnupiravir in patients with
COVID-19 shows accelerated SARS-CoV-2 RNA clearance and elimination of
infectious virus. Sci. Transl. Med. 14, eabl7430 (2022).

26. Baccam, P., Beauchemin, C., Macken, C. A., Hayden, F. G. & Perelson, A. S. Kinetics
of influenza A virus infection in humans. J. Virol. 80, 7590–7599 (2006).

27. Lee, H. Y. et al. Simulation and prediction of the adaptive immune response to
influenza A virus infection. J. Virol. 83, 7151–7165 (2009).

28. Pawelek, K. A. et al. Modeling within-host dynamics of influenza virus infection
including immune responses. PLoS Comput. Biol. 8, e1002588 (2012).

29. Rogers, K. V., Martin, S. W., Bhattacharya, I., Singh, R. S. P. & Nayak, S. A Dynamic
Quantitative systems pharmacology model of inflammatory bowel disease: part 1
model framework. Clin.Transl. Sci. 14, 239–248 (2021).

30. Palsson, S. et al. The development of a fully-integrated immune response model
(FIRM) simulator of the immune response through integration of multiple subset
models. BMC Syst. Biol. 7, 95 (2013).

31. Iwasaki, A. & Pillai, P. S. Innate immunity to influenza virus infection. Nat. Rev.
Immunol. 14, 315–328 (2014).

32. Killingley, B. et al. Safety, tolerability and viral kinetics during SARS-CoV-2 human
challenge in young adults. Nat. Med. 28, 1031–1041 (2022).

33. Alexandersen, S., Chamings, A. & Bhatta, T. R. SARS-CoV-2 genomic and sub-
genomic RNAs in diagnostic samples are not an indicator of active replication.
Nat. Commun. 11, 6059 (2020).

R. Rao et al.

11

Published in partnership with the Systems Biology Institute npj Systems Biology and Applications (2023)    13 

https://github.com/openPfizer/QSP_model_COVID19
https://github.com/openPfizer/QSP_model_COVID19
https://github.com/openPfizer/QSP_model_COVID19
https://github.com/openPfizer/QSP_model_COVID19
https://github.com/openPfizer/QSP_model_COVID19
https://github.com/openPfizer/QSP_model_COVID19
https://doi.org/10.1073/pnas.2017962118
https://doi.org/10.1111/cts.13099
https://doi.org/10.3390/v13061141
https://doi.org/10.7554/eLife.63537
https://doi.org/10.1126/sciadv.abc7112
https://doi.org/10.1002/psp4.12574
https://doi.org/10.1002/psp4.12574
https://www.covid19treatmentguidelines.nih.gov/
https://www.covid19treatmentguidelines.nih.gov/
https://www.fda.gov/media/146255/download


34. Rhee, C., Kanjilal, S., Baker, M. & Klompas, M. Duration of severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) infectivity: when is it safe to discontinue
isolation? Clin. Infect. Dis. 72, 1467–1474 (2021).

35. Lauer, S. A. et al. The incubation period of coronavirus disease 2019 (COVID-19)
from publicly reported confirmed cases: estimation and application. Ann. Intern.
Med. 172, 577–582 (2020).

36. Guan, W. J. et al. Clinical characteristics of coronavirus disease 2019 in China. N.
Engl. J. Med. 382, 1708–1720 (2020).

37. Li, Q. et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-
infected pneumonia. N. Engl. J. Med. 382, 1199–1207 (2020).

38. Ke, R., Zitzmann, C., Ho, D. D., Ribeiro, R. M. & Perelson, A. S. In vivo kinetics of
SARS-CoV-2 infection and its relationship with a person’s infectiousness. Proc.
Natl Acad. Sci. USA 118, https://doi.org/10.1073/pnas.2111477118 (2021).

39. Weinreich, D. M. et al. REGEN-COV antibody combination and outcomes in out-
patients with covid-19. N. Engl. J. Med. https://doi.org/10.1056/NEJMoa2108163
(2021).

40. Del Valle, D. M. et al. An inflammatory cytokine signature predicts COVID-19
severity and survival. Nat. Med. 26, 1636–1643 (2020).

41. Tom, J. et al. Prognostic and predictive biomarkers in patients with coronavirus
disease 2019 treated with tocilizumab in a randomized controlled trial. Crit. Care
Med. https://doi.org/10.1097/CCM.0000000000005229 (2021).

42. Wynants, L. et al. Prediction models for diagnosis and prognosis of covid-19:
systematic review and critical appraisal. BMJ 369, m1328 (2020).

43. Hammond, J. et al. Oral nirmatrelvir for high-risk, nonhospitalized adults with
covid-19. N. Engl. J. Med. https://doi.org/10.1056/NEJMoa2118542 (2022).

44. Jayk Bernal, A. et al. Molnupiravir for oral treatment of Covid-19 in non-
hospitalized patients. N. Engl. J. Med. 386, 509–520 (2022).

45. Gottlieb, Robert L. et al. Early remdesivir to prevent progression to severe
Covid-19 in outpatients. N. Engl. J. Med. 386, 305–315 (2022).

46. Ader, F. et al. Remdesivir plus standard of care versus standard of care alone for
the treatment of patients admitted to hospital with COVID-19 (DisCoVeRy): a
phase 3, randomised, controlled, open-label trial. Lancet Infect. Dis. https://
doi.org/10.1016/S1473-3099(21)00485-0 (2021).

47. Wang, Y. et al. Remdesivir in adults with severe COVID-19: a randomised, double-
blind, placebo-controlled, multicentre trial. Lancet 395, 1569–1578 (2020).

48. Lilly’s bamlanivimab and etesevimab together reduced hospitalizations and
death in Phase 3 trial for early COVID-19 | Eli Lilly and Company. https://
investor.lilly.com/news-releases/news-release-details/lillysbamlanivimab-and-
etesevimab-togetherreduced#:~:text=Across%20the%20two%20Phase%
203,were%20deemed%20COVID%2D19%20related.

49. Beigel, J. H. et al. Remdesivir for the treatment of covid-19—final report. N. Engl. J.
Med. 383, 1813–1826 (2020).

50. Rosas, I. O. et al. Tocilizumab in hospitalized patients with severe covid-19
pneumonia. N. Engl. J. Med. 384, 1503–1516 (2021).

51. Rasmussen, A. L. & Popescu, S. V. SARS-CoV-2 transmission without symptoms.
Science 371, 1206–1207 (2021).

52. AZD7442 reduced risk of developing severe COVID-19 or death in TACKLE Phase
III outpatient treatment trial.(astrazeneca.com) https://www.astrazeneca.com/
media-centre/press-releases/2021/azd7442-phiii-trial-positive-in-
covidoutpatients.html#:~:text=In%20a%20prespecified%20analysis%20of,arm%
20(27%2F251).

53. Singh, R. S. P. et al. Innovative randomized phase I study and dosing regimen
selection to accelerate and inform pivotal COVID-19 trial of nirmatrelvir. Clin.
Pharm. Ther. 112, 101–111 (2022).

54. Emergency Use Authorization (EUA) for Paxlovid (nirmatrelvir tablets co-
packaged with ritonavir tablets). Center for Drug Evaluation and Research
(CDER) Review. https://www.fda.gov/media/155194/download.

55. Kim, K. S. et al. A quantitative model used to compare within-host SARS-CoV-2,
MERS-CoV, and SARS-CoV dynamics provides insights into the pathogenesis and
treatment of SARS-CoV-2. PLoS Biol. 19, e3001128 (2021).

56. Perelson, A. S. & Ke, R. Mechanistic modeling of SARS-CoV-2 and other infectious
diseases and the effects of therapeutics. Clin. Pharm. Ther. 109, 829–840 (2021).

57. Lescure, F. X. et al. Sarilumab in patients admitted to hospital with severe or
critical COVID-19: a randomised, double-blind, placebo-controlled, phase 3 trial.
Lancet Respir. Med. 9, 522–532 (2021).

58. Guimaraes, P. O. et al. Tofacitinib in patients hospitalized with covid-19 pneu-
monia. N. Engl. J. Med. 385, 406–415 (2021).

59. Group, R. C. et al. Dexamethasone in hospitalized patients with covid-19. N. Engl.
J. Med. 384, 693–704 (2021).

60. Feuillet, V., Canard, B. & Trautmann, A. Combining antivirals and immunomo-
dulators to fight COVID-19. Trends Immunol. 42, 31–44 (2021).

61. Kalil, A. C. et al. Baricitinib plus remdesivir for hospitalized adults with Covid-19. N.
Engl. J. Med. 384, 795–807 (2021).

62. O’Brien, M. P. et al. Subcutaneous REGEN-COV antibody combination to prevent
covid-19. N. Engl. J. Med. 385, 1184–1195 (2021).

63. Hadfield, J. et al. Nextstrain: real-time tracking of pathogen evolution. Bioinfor-
matics 34, 4121–4123 (2018).

64. Planas, D. et al. Reduced sensitivity of SARS-CoV-2 variant Delta to antibody
neutralization. Nature 596, 276–280 (2021).

65. Wolter, N. et al. Early assessment of the clinical severity of the SARS-CoV-2
omicron variant in South Africa: a data linkage study. Lancet 399, 437–446 (2022).

66. Fall, A. et al. The displacement of the SARS-CoV-2 variant Delta with Omicron: an
investigation of hospital admissions and upper respiratory viral loads. EBioMe-
dicine 79, 104008 (2022).

67. Cavazzoni, P. Coronavirus (COVID-19) Update: FDA Limits Use of Certain Monoclonal
Antibodies to Treat COVID-19 Due to the Omicron Variant (FDA, 2022).

68. Kozlov, M. Omicron overpowers key COVID antibody treatments in early tests.
Nature https://doi.org/10.1038/d41586-021-03829-0 (2021).

69. Perry, A. K., Chen, G., Zheng, D., Tang, H. & Cheng, G. The host type I interferon
response to viral and bacterial infections. Cell Res. 15, 407–422 (2005).

70. Sontag, E. D. A dynamic model of immune responses to antigen presentation
predicts different regions of tumor or pathogen elimination. Cell Syst. 4,
231–241.e211 (2017).

71. Adler, M. & Alon, U. Fold-change detection in biological systems. Curr. Opin. Syst.
Biol. 8, 81–89 (2018).

72. Adler, M., Mayo, A. & Alon, U. Logarithmic and power law input-output relations
in sensory systems with fold-change detection. PLoS Comput. Biol. 10, e1003781
(2014).

73. Olsman, N. & Goentoro, L. Allosteric proteins as logarithmic sensors. Proc. Natl
Acad. Sci. USA 113, E4423–E4430 (2016).

74. Nienaltowski, K. et al. Fractional response analysis reveals logarithmic cytokine
responses in cellular populations. Nat. Commun. 12, 4175 (2021).

75. Johansen, P. et al. Antigen kinetics determines immune reactivity. Proc. Natl Acad.
Sci. USA 105, 5189–5194 (2008).

76. Tjan, L. H. et al. Early differences in cytokine production by severity of coronavirus
disease 2019. J. Infect. Dis. 223, 1145–1149 (2021).

77. Gastine, S. et al. Systematic review and patient-level meta-analysis of SARS-CoV-2
viral dynamics to model response to antiviral therapies. Clin. Pharm. Ther. 110,
321–333 (2021).

78. Cevik, M. et al. SARS-CoV-2, SARS-CoV, and MERS-CoV viral load dynamics,
duration of viral shedding, and infectiousness: a systematic review and meta-
analysis. Lancet Microbe. 2, e13-e22 (2020).

79. He, X. et al. Temporal dynamics in viral shedding and transmissibility of COVID-
19. Nat. Med. 26, 672–675 (2020).

80. Iyer, A. S. et al. Dynamics and significance of the antibody response to SARS-CoV-
2 infection. Preprint at medRxiv https://doi.org/10.1101/2020.07.18.20155374
(2020).

81. Ke, R. et al. Daily longitudinal sampling of SARS-CoV-2 infection reveals sub-
stantial heterogeneity in infectiousness. Nat. Microbiol. 7, 640–652 (2022).

82. Schuit, E. et al. Diagnostic accuracy of rapid antigen tests in asymptomatic and
presymptomatic close contacts of individuals with confirmed SARS-CoV-2 infec-
tion: cross sectional study. BMJ 374, n1676 (2021).

83. Sender, R. et al. The total number and mass of SARS-CoV-2 virions. Proc. Natl
Acad. Sci. USA 118, https://doi.org/10.1073/pnas.2024815118 (2021).

84. Tom, M. R. & Mina, M. J. To interpret the SARS-CoV-2 test, consider the cycle
threshold value. Clin. Infect. Dis. 71, 2252–2254 (2020).

85. Chen, G. et al. Clinical and immunological features of severe and moderate
coronavirus disease 2019. J. Clin. Investig. 130, 2620–2629 (2020).

86. Van Singer, M. et al. COVID-19 risk stratification algorithms based on sTREM-1 and
IL-6 in emergency department. J. Allergy Clin. Immunol. 147, 99–106 e104 (2021).

87. Sonnweber, T. et al. Investigating phenotypes of pulmonary COVID-19 recovery: a
longitudinal observational prospective multicenter trial. eLife 11, https://doi.org/
10.7554/eLife.72500 (2022).

88. Maeda, T., Obata, R., Rizk, D. D. & Kuno, T. The association of interleukin-6 value,
interleukin inhibitors, and outcomes of patients with COVID-19 in New York city.
J. Med. Virol. 93, 463–471 (2021).

89. Allen, R. J., Rieger, T. R. & Musante, C. J. Efficient generation and selection of
virtual populations in quantitative systems pharmacology models. CPT Pharma-
comet. Syst. Pharm. 5, 140–146 (2016).

90. Baum, A. et al. Antibody cocktail to SARS-CoV-2 spike protein prevents rapid
mutational escape seen with individual antibodies. Science 369, 1014–1018
(2020).

91. Sheahan, T. P. et al. An orally bioavailable broad-spectrum antiviral inhibits SARS-
CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in
mice. Sci. Transl. Med. 12, https://doi.org/10.1126/scitranslmed.abb5883 (2020).

92. Painter, W. P. et al. Human safety, tolerability, and pharmacokinetics of molnu-
piravir, a novel broad-spectrum oral antiviral agent with activity against
SARS-CoV-2. Antimicrob. Agents Chemother. https://doi.org/10.1128/AAC.02428-
20 (2021).

R. Rao et al.

12

npj Systems Biology and Applications (2023)    13 Published in partnership with the Systems Biology Institute

https://doi.org/10.1073/pnas.2111477118
https://doi.org/10.1056/NEJMoa2108163
https://doi.org/10.1097/CCM.0000000000005229
https://doi.org/10.1056/NEJMoa2118542
https://doi.org/10.1016/S1473-3099(21)00485-0
https://doi.org/10.1016/S1473-3099(21)00485-0
https://investor.lilly.com/news-releases/news-release-details/lillysbamlanivimab-and-etesevimab-togetherreduced#:~:text=Across%20the%20two%20Phase%203,were%20deemed%20COVID%2D19%20related
https://investor.lilly.com/news-releases/news-release-details/lillysbamlanivimab-and-etesevimab-togetherreduced#:~:text=Across%20the%20two%20Phase%203,were%20deemed%20COVID%2D19%20related
https://investor.lilly.com/news-releases/news-release-details/lillysbamlanivimab-and-etesevimab-togetherreduced#:~:text=Across%20the%20two%20Phase%203,were%20deemed%20COVID%2D19%20related
https://investor.lilly.com/news-releases/news-release-details/lillysbamlanivimab-and-etesevimab-togetherreduced#:~:text=Across%20the%20two%20Phase%203,were%20deemed%20COVID%2D19%20related
https://www.astrazeneca.com/media-centre/press-releases/2021/azd7442-phiii-trial-positive-in-covidoutpatients.html#:~:text=In%20a%20prespecified%20analysis%20of,arm%20(27%2F251)
https://www.astrazeneca.com/media-centre/press-releases/2021/azd7442-phiii-trial-positive-in-covidoutpatients.html#:~:text=In%20a%20prespecified%20analysis%20of,arm%20(27%2F251)
https://www.astrazeneca.com/media-centre/press-releases/2021/azd7442-phiii-trial-positive-in-covidoutpatients.html#:~:text=In%20a%20prespecified%20analysis%20of,arm%20(27%2F251)
https://www.astrazeneca.com/media-centre/press-releases/2021/azd7442-phiii-trial-positive-in-covidoutpatients.html#:~:text=In%20a%20prespecified%20analysis%20of,arm%20(27%2F251)
https://www.fda.gov/media/155194/download
https://doi.org/10.1038/d41586-021-03829-0
https://doi.org/10.1101/2020.07.18.20155374
https://doi.org/10.1073/pnas.2024815118
https://doi.org/10.7554/eLife.72500
https://doi.org/10.7554/eLife.72500
https://doi.org/10.1126/scitranslmed.abb5883
https://doi.org/10.1128/AAC.02428-20
https://doi.org/10.1128/AAC.02428-20


93. Brown, C. M. et al. Outbreak of SARS-CoV-2 infections, including COVID-19 vac-
cine breakthrough infections, associated with large public gatherings—Barn-
stable County, Massachusetts, July 2021. MMWR Morb. Mortal. Wkly Rep. 70,
1059–1062 (2021).

94. Kissler, S. M. et al. Viral dynamics of SARS-CoV-2 variants in vaccinated and
unvaccinated individuals. N. Engl. J. Med. 385, 2489–2491 (2021).

95. Chia, P. Y. et al. Virological and serological kinetics of SARS-CoV-2 Delta variant
vaccine-breakthrough infections: a multi-center cohort study. Clin. Microbiol.
Infec. 28, 612-e1 (2021).

96. Li, B. et al. Viral infection and transmission in a large, well-traced outbreak caused
by the SARS-CoV-2 Delta variant. Nat. Commun. 13, 460 (2021).

97. Teyssou, E. et al. The Delta SARS-CoV-2 variant has a higher viral load than the
Beta and the historical variants in nasopharyngeal samples from newly diag-
nosed COVID-19 patients. J. Infect. 83, e1–e3 (2021).

98. Wang, Y. et al. Transmission, viral kinetics and clinical characteristics of the
emergent SARS-CoV-2 Delta VOC in Guangzhou, China. EClinicalMedicine 40,
101129 (2021).

ACKNOWLEDGEMENTS
We sincerely thank Annaliesa Anderson, Arthur Bergman, Britton Boras, Phylinda
Chan, Wei Dai, Bharat Damle, Sandeep Menon, Gianluca Nucci, Theodore Rieger, Ravi
Singh, Nessy Tania and, RES group for their comments and feedback on the
manuscript and during the development of the model. This research is supported by
Pfizer, Inc.

AUTHOR CONTRIBUTIONS
R.R., C.J.M., and R.A. wrote the manuscript. R.R. and R.A. designed the research. R.R.
performed the research. R.R., C.J.M., and R.A. analyzed the results.

COMPETING INTERESTS
Pfizer Inc. supported the research by R.R., C.J.M., and R.A. R.R., C.J.M., and R.A. were
employees of Pfizer during the completion of this study.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41540-023-00269-6.

Correspondence and requests for materials should be addressed to Rohit Rao.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://
creativecommons.org/licenses/by/4.0/.

© The Author(s) 2023

R. Rao et al.

13

Published in partnership with the Systems Biology Institute npj Systems Biology and Applications (2023)    13 

https://doi.org/10.1038/s41540-023-00269-6
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	A quantitative systems pharmacology model of the pathophysiology and treatment of COVID-19 predicts optimal�timing of pharmacological interventions
	Introduction
	Results
	Overview of model structure
	Plausible population generation
	Simulating COVID-19 clinical trials
	Predicting the sensitivity of clinical outcomes to the timing of therapeutic intervention

	Discussion
	Methods
	Generating a plausible population
	Linking to disease severity
	Virtual population refinement to match interventional data
	Modeling-neutralizing antibody therapeutics
	Blaze-1 Ph3 nAb trial
	REGEN-COV nAb trials
	Modeling antiviral therapeutics

	Preliminary virtual population of SARS-CoV-2 variants of concern
	Model simulation

	DATA AVAILABILITY
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




