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Computational modeling of complex bioenergetic mechanisms
that modulate CD4+ T cell effector and regulatory functions
Ryan Baker1, Raquel Hontecillas1, Nuria Tubau-Juni1, Andrew J. Leber1, Shiv Kale1 and Josep Bassaganya-Riera 1✉

We built a computational model of complex mechanisms at the intersection of immunity and metabolism that regulate CD4+ T cell
effector and regulatory functions by using coupled ordinary differential equations. The model provides an improved understanding
of how CD4+ T cells are shaping the immune response during Clostridioides difficile infection (CDI), and how they may be targeted
pharmacologically to produce a more robust regulatory (Treg) response, which is associated with improved disease outcomes
during CDI and other diseases. LANCL2 activation during CDI decreased the effector response, increased regulatory response, and
elicited metabolic changes that favored Treg. Interestingly, LANCL2 activation provided greater immune and metabolic modulation
compared to the addition of exogenous IL-2. Additionally, we identified gluconeogenesis via PEPCK-M as potentially responsible for
increased immunosuppressive behavior in Treg cells. The model can perturb immune signaling and metabolism within a CD4+ T
cell and obtain clinically relevant outcomes that help identify novel drug targets for infectious, autoimmune, metabolic, and
neurodegenerative diseases.
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INTRODUCTION
Clostridioides difficile is an anerobic, gram-positive bacterium
responsible for opportunistic infections in the gastrointestinal
tract (GI) which can lead to nosocomial diarrhea, pseudomem-
branous colitis, or even death1. According to the Centers for
Disease Control (CDC), C. difficile infection (CDI) affects over
450,000 people every year in the U.S. alone, with about 29,000
deaths within one month from the diagnosis2. C. difficile facilitates
disease and more specifically tissue damage in part through the
production of toxin A (TcdA) and toxin B (TcdB), which are
glucosyltransferases that catalyze the glucosylation of GTP-
binding proteins Rho, Rac, and Cdc42 thereby modifying signal
transduction pathways that lead to cell death3. Host immunity to
C. difficile is orchestrated through temporally balanced T effector
(Th1/Th17) and T regulatory (Treg) responses4. For instance, IL-17
has been reported as a key cytokine in inducing severe
inflammation, promoting further neutrophil recruitment5. Indeed,
Th17 responses are dominant during the peak of inflammation,
while Treg cells are upregulated throughout the recovery/
resolution phase in preclinical models6. Similarly, increases in
CD4+Foxp3+ Tregs populations by Bacteroides fragilis treatment,
believed to alter metabolism, induces IL-10 and TGF-β production
and mucosal tolerance to CDI7. Thus, the increase in Tregs may
also be beneficial for treating both CDI and reducing recurrent
CDI. Furthermore, functional Tregs play crucial roles in providing
protection against autoimmune disease such as ulcerative colitis,
Crohn’s disease, and lupus as well as neurogenerative diseases
such as Alzheimer’s disease. Here, we present our computational
modeling efforts to study CD4+ T cells in general and Tregs in
particular. More specifically, we use our computational model to
evaluate whether activation of host LANCL2, a novel therapeutic
target, reduces immunopathogenic Th17 responses and enhances
protective Treg responses. Our in silico efforts also provide a
unique window to the changes in metabolic processes that shape
phenotype and function of CD4+ T cells in general and Treg in
particular during CDI.

CD4+ T cells subsets have distinct metabolic profiles. For
instance, Treg cells have reduced glucose cellular uptake, elevated
fatty acid oxidation, and higher levels of oxidative phosphoryla-
tion8,9. In contrast, pathogenic effector cells (e.g., Th1 and Th17) tend
to have heightened glucose import to the cells and a Warburg Effect
driven metabolism, with high glycolytic activity, high lactate
production, and reduced oxidative phosphorylation within the
mitochondria8,10. The TCA cycle is an important source of NADH for
energy production, but many other metabolic pathways flow
through sections of the TCA cycle. Pathways such as gluconeogen-
esis, glutaminolysis, fatty acid synthesis, and the malate-aspartate
shuttle all depend on portions of the TCA cycle and provide
mechanisms for balancing metabolites in the TCA cycle and other
pathways, providing alternative energy sources, and building blocks
for cell proliferation and function11. Many of these metabolic
pathways are necessary for CD4+ T cell differentiation and function,
but the mechanistic linkages between immunity and metabolism
remain poorly understood. Indeed, both immunity and metabolism
are complex massively and dynamically interacting systems, and
given their huge complexity, it can be difficult to accurately pinpoint
the underlying molecular mechanisms that mediate functional and
phenotypic outcomes.
An illustrative example of an emerging prototypical pathway in

the intersection of immunity and metabolism and a drug target is
LANCL2, an immunometabolic regulator whose natural ligand,
abscisic acid (ABA), is a plant derived phytohormone that is
important for glycemic control in humans12,13. Named after their
sequence similarity to bacterial lanthionine synthase C-like proteins,
the mammalian homologs LANCL1, LANCL2, and LANCL3 were
found to not contribute to lanthionine synthesis14. Instead, LANCL2
was found to bind ABA and a variety of synthetic molecules
resulting in the increased glucose uptake via the increased
expression of GLUT1/413. Activation of LANCL2 also has been
shown to stimulate metabolite entrance into the TCA cycle via
increased enzymatic activity of pyruvate dehydrogenase (PDH)15.
Activation of LANCL2 also increases STAT5 phosphorylation and
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FOXP3 expression via IL-2 receptor interaction, leading to an
increase in Treg cells and a decrease in Th17 cell populations16.
Conversely, loss of LANCL2 results in increased lactate production
via glycolysis specifically through the increasing hexokinase and
lactate dehydrogenase (LDH) activity in CD4+ T cells17. In silico
modeling efforts have made substantial gains in the past 10 years
to describe functional relationships in biochemistry, cell signaling
pathways, and cellular processes18–20. Previously implemented in
silico models that function on many levels of immunity, including
macrophage differentiation21, systems-level response of the
immune system to CDI6, co-infections22, hybrid agent-based/ODE
modeling of Helicobacter pylori infection of the gut23, comprehen-
sive mathematical models of metabolism24,25, and a dynamic model
of CD4+ T cell differentiation26 provide a foundation upon which
this work is built. Our recent modeling efforts presented here have
incorporated components of metabolism as critical modulators of
immune signaling and CD4+ T cell differentiation. Given the dual
roles of LANCL2 and the increasing importance of metabolism on
regulating immune signaling, modeling LANCL2 effect on CD4+ T
cell differentiation during infection such as CDI may prove to be
valuable in defining new therapeutic opportunities. Metabolic
regulation of immunity and modulation of metabolism by
immunological changes has become a focus of substantial research
efforts11. The addition of metabolic regulation as well as LANCL2
into our model of CD4+ T cell differentiation have provided us
mechanistic insights into how LANCL2 activation reduces Th17 and
increases iTreg CD4+ T cell phenotypes via LANCL2 as well as
insight into the importance of citrate transport and lactate
accumulation in shaping regulatory and effector responses. The
use of computational modeling in understanding how to pharma-
cologically manipulate the intersection of immunity and metabo-
lism to influence the balance of effector versus Treg cells has
applications in the treatment of infectious, autoimmune, metabolic,
and neurodegenerative diseases.

RESULTS
Creation of ODE model of CD4+ T cell differentiation and
metabolism
We created an ODE model of CD4+ T cell bioenergetics aimed at
predicting differentiation of Naïve CD4+ T cells into a terminal
state from input cytokine concentration and metabolites (Fig. 1a).
The model consists of 66 enzymes, 75 immune modulators, and
108 metabolites that cover metabolic and immunological
processes at varying granularities. The differentiated phenotypes
encompass Th1 (T-bet activated), Th2 (GATA3 activated), Th17
(RORγ-t activated), Th22 (AhR activated), and Treg (FOXP3
activated). The underlying structure of the cytokine signaling
pathways were expanded upon from our prior work in Carbo
et al.26 to now include components of Th22 differentiation as well
as a more up-to-date understanding of molecular signaling
pathways within CD4+ T cells. The metabolic portion of the
model encompasses glycolysis, gluconeogenesis, the pentose
phosphate pathway (PPP), tricarboxylic acid (TCA) cycle, oxidative
phosphorylation (OxPhos), fatty acid oxidation, glutaminolysis,
and the malate-aspartate shuttle. Enzyme kinetics and reactions
for the model were derived from primary literature and Sabio-RK27

when available and relevant. Metabolic enzyme concentrations for
each of the CD4+ T cell phenotypes were extracted and
normalized from a single cell RNA-Seq study28 and used to
determine enzyme concentrations based on CD4+ T cell
phenotype. Metabolic enzyme concentrations ([E]) are determined
by a weighted average, calculated using the phenotype value of
each cell type (pi) and the metabolic enzyme concentration ([e]i) of
each cell type derived from the CD4+ T cell RNAseq study28 where

n is equal to the number of cell types.

E½ � ¼
Xn
i¼1

pi e½ �i

These two layers of the model are connected by a convergence
layer consisting of nodes representing each of the CD4+ T cell
phenotypes. The model determines the relative composition of the
CD4+ T cell population (pi) based on input cytokine concentrations
via the immune signaling portion of the model. The model contains
five transcription factors that each correspond to a T cell phenotype.
The level of activation of each transcription factor is transformed
using a sigmoidal function to return five intermediate phenotype
values from 0 to 1. If the sum of the p values exceed 1, the values are
normalized such that they sum to 1. The Naïve phenotype value is
assigned last as the difference between 1 and the sum of all other
phenotype values. The relative CD4+ T cell composition is then used
to determine expression of metabolic enzymes thereby allowing for
regulation of metabolism. A subset of metabolites also can modulate
aspects of immune signaling thereby impacting CD4+ T cell
differentiation though a feedback loop. These interactions of
metabolism on immune signaling were identified through electronic
literature mining followed by manual curation (Supplementary Figs.
1, 2). Ultimately, the model is designed to allow us to interrogate
how naïve CD4+ T cells respond to a complex cytokine milieu as
well as how modulation of metabolism and signal transduction
components impacts differentiation.

Model validation shows appropriate differentiation to
cytokine cocktails
We utilized experimentally defined cytokine cocktails and expected
CD4+ T cell differentiation as the independent and dependent
variables to calibrate the model respectively (Supplementary Table
1). Due to the high number of parameters within the immune layer
of the model that required estimation, we performed 310 parallel
calibration runs using a high-powered cluster computing resource
to perform parameter estimation using the particle swarm
algorithm29. We implemented a parameter set with the smallest
root-mean-square deviation (RMSD) from the validation dataset to
create our final model. It is important to reiterate parameter
calibrations only occurred for values that were for the immunolo-
gical portion of the model as metabolic enzyme kinetics were
derived from literature. The calibration with the lowest RMSD value
was used for subsequent manual curation to incorporate realistic
model parameters values. To further assess our calibrated model,
we re-determined differentiation of CD4+ T cells based on our pre-
defined input cytokine cocktails. Our results indicate that naïve
CD4+ T cells appropriately differentiate into the predicted
phenotype for a given cytokine cocktail (Fig. 1b). Analysis of
metabolism and produced cytokines also indicate hallmark features
such as the relative increase of glycolysis shown by enhanced
lactate production increased lactate production, and the increase in
mitochondrial function (mitochondrial ATP production) and fatty
acid oxidation for Tregs (Fig. 1c). The production of IL-17 and IL-10
were also specific to their respective T cell phenotypes upon
differentiation (Th17 and Treg) (Fig. 1c).

In silico characterization of resolving C. difficile infection
We chose to initially apply our immunometabolic model of CD4+ T
cell differentiation on a time course study of resolving CDI given the
clinical relevance of C. difficile as well as the importance of host
CD4+ T cell responses during and after infection. The data set
consisted of a temporal RNA-Seq analysis of mouse colons on Days
0, 3, 4, 5, and 10 post inoculation with C. difficile, as well as flow
cytometry analysis of recruited immune cell populations. Input
cytokine concentrations were derived from normalized and
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Fig. 1 Calibration and assessment of immuno-metabolic model of CD4+ T cell differentiation. a Graphical representation of the layered
approach to the model. Cytokine concentrations are inputted into the model to determine a portion of CD4+ T cell differentiation. Type and
composition of differentiated CD4+ T cells determine metabolism. Metabolism feeds back into immune signaling and can impact CD4+ T cell
differentiation at specific junctures. b Predicted CD4+ T cell differentiation based on defined inputs for a given state. c Generated cytokine
values (IL-10 and IL-17) and metabolite values (intracellular lactate, ATP from oxidative phosphorylation) for each CD4+ phenotype using pre-
defined input cytokine cocktails.
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transformed RNA-Seq data (Fig. 2a). Based on these inputs, our
model indicated an initial mixture of primarily CD4+ Tregs (51.3%),
Th1 (3.2%), Th17 (2.3%), and Th22 (43.2%) cells prior to infection
with C. difficile (Fig. 2b). These results are in accord with our prior
results showing primarily a CD4+ Treg and with lower amounts of
Th1 and Th17 populations in unchallenged colons6. Three days after
infection, the model indicated Treg population had decreased to a
third of the pre-infection levels (14.1%) and the population consisted
of a mixture of Th1 (35.1%), Th17 (25.0%), and Th22 (25.8%) cells
(Fig. 2b). Due to a decrease in IL-2 concentration in the input data,
Treg levels dropped close to zero (0.1%) on day 4, with an increased
Th17 response (37.5%). A similar response to day 3 was observed on
day 5 post inoculation. By day 10, CD4+ Tregs had re-emerged as a
dominant cell population and consisted of 28.7% of the overall
population and Th22 (28.2%), Th1 (38.1%), and Th17 (5.0%)
represented the remainder. Analysis of lactate production followed
suit with IL-17 production by CD4+ T cells and ATP generation via
OxPhos correlated with IL-10 production by CD4+ T cells (Fig. 2c).
Our analysis suggests a return to pre-infection state by day 10 post
infection, while a strong effector response was observed on days 3,4,
and 5. Our in-silico analysis suggested a mixed Th1/Th17/Th22
response during infection and a recovery phase by day 10 that
consisted of primarily Treg cells.

An increase in Treg cells and a decrease in Th17 cells is thought to
be beneficial for CDI30,31. Our in silico model also suggested a wave
like phenomena where an initial robust Th1/Th17 response is
mitigated by a Treg response. We had integrated LANCL2 into our
model given its known ability to increase Treg function when
activated and decrease Treg activity when inhibited. LANCL2 was
specifically incorporated into the model via its ability to activate
pyruvate dehydrogenase (PDH) and pyruvate kinase (PK) and
activate STAT5 (Fig. 3a). Activation of LANCL2 also results in the
translocation of GLUT4 to the plasma membrane; however, CD4+
T cells express mainly GLUT1 (not GLUT4), so this phenomenon was
not included in the model. In silico stimulation of LANCL2 via varying
doses (10−7 to 1 μΜ) of LANCL2 ligands such as ABA during the CDI
model resulted in enhanced Treg populations for all days pre and
post challenge with the largest changes on Days 3, 4, and 5 where
the Treg recovered from 14.1%, 0.1%, and 14.6 to 43%. (Fig. 3b).
Conversely, Th17 cells decreased from 37% to <4% for the highest
concentrations of ABA. Analysis of CD4+ T cell metabolism on Days
0, 3, 4, 5, 8, and 10 post challenge indicated a dose dependent,
increased oxidative phosphorylation and IL-10 production in
comparison to untreated control (Fig. 3c). This in silico prediction
fit with prior experimental results observed by Leber et al. where
activation of LANCL2 resulted in increased Treg cells as well as
diminished disease severity in a model of IBD15. The increased

Fig. 2 Predicted CD4+ T cell differentiation during Clostridioides difficile infection based on gene expression from RNA-Seq expression.
a Gene expression of input cytokines from Clostridioides difficile infection associated with each CD4+ differentiated state prior to infection and
on days 5 and 10 post infection. b Predicted CD4+ T cell differentiation based on cytokine gene expression on a given day pre or post
infection. c Production of cytokines (IL-17 and IL-10) and metabolites (intracellular lactate accumulation and ATP from Oxidative
Phosphorylation).
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energy derived from aerobic respiration was due to increased
pyruvate dehydrogenase (PDH) activity. Within our CD4+ T cell
model, increased PDH activity and fatty acid oxidation leads to
higher accumulation of acetyl-coA. Allosteric activation of pyruvate
carboxylase via acetyl-CoA causes an increased influx of metabolites
into the TCA cycle. Increased TCA metabolites combined with
increased acetyl-CoA concentration leads to greater TCA cycle flux,
driving higher NADH production. Activated LANCL2 acting on FOXP3
acetylation also alters the gene expression of metabolic enzymes
such as ATPase, which has its highest value associated with the Treg
cell type. This dual functionality of immune and bioenergetic
changes mitigates the differentiation of Th1 and Th17 cells while
concurrently enhancing Treg activity within our model.

Abscisic acid increases Treg function and pushes increased
TCA cycle activity
An increase in IL-2 has been shown to increase Treg phenotypes as
well as broadly enhance proliferation of other CD4+ T cell
populations32 (Fig. 4a)33. resulting in an approximately equal CD4+
T cell proportions. From this baseline, we modulated IL-2

concentration. Increasing IL-2 from 1e−5 μΜ to the control
concentration (3.09E−03 μΜ) increased Treg populations from 0.0
to 16.2% (Fig. 4b), while further increasing IL-2 to 0.1 μΜ only
resulted in an additional increase to 21.2%. Th17 decreased from 26.5
to 2.1% over the same gradient while other CD4+ T cell subsets were
altered marginally. Analysis of metabolism and produced cytokines
resulted in a dose-dependent decrease in lactate and IL-17 and a
dose-dependent increase in ATP produced from OxPhos and IL-10
(Fig. 4c).
We compared the effects of varying the concentration of IL-2

(10−7 to 1 μΜ) to varying the concentration of ABA (10−7 to 1 μΜ)
(Fig. 4d). Increasing concentrations of ABA and IL-2 both decreased
Th17 differentiation and increased Treg differentiation. Increasing
ABA and IL-2 both reduced the production of IL-17. ATP produced
from OxPhos was increased by similar amounts in response to ABA
and IL-2. Lactate production was reduced by both ABA and IL-2,
however, higher concentrations of ABA continued to reduce lactate
where higher concentrations of IL-2 had no additional effect. Th1
differentiation is affected differently by ABA and IL-2 concentration.
As IL-2 concentration increases, it causes a slight increase in Th1

Fig. 3 The effect of varying concentrations of ABA on CD4+ T cell differentiation during Clostridioides difficile infection. a Gene
expression of input cytokines from Clostridioides difficile infection associated with each CD4+ differentiated state prior to infection and on days
5 and 10 post infection. a Known connections of LANCL2 to immune signaling and metabolism. b Increase in percentage of Treg and decrease
in percentage of Th17 cells in the presence of varying concentrations of ABA (10−7 to 1 μΜ). c Increase in amount of produced IL-10 and ATP
from oxidative phosphorylation and decreased IL-17 production and accumulated lactate in the presence of varying concentrations of ABA.
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Fig. 4 The effect of varying concentrations of IL-2 on CD4+ T cell differentiation using a mixed differentiation cocktail of cytokines.
a Known connections of IL-2 in the model of CD4+ T cell differentiation. b Composition of CD4+ T cells using varying concentrations of IL-2.
Baseline signifies starting concentration used in the model c Changes in IL-17, lactate, IL-10, and ATP from oxidative phosphorylation using
varying concentrations of IL-2 (10−5 to 0.1 μΜ). d Comparison of varying concentrations of IL-2 (10−4 to 1 μΜ) versus ABA (10−4 to 1 μΜ) on
Th17, Th1, and Treg differentiation as well as IL-17, Lactate, and ATP from oxidative phosphorylation.
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differentiation whereas at higher concentrations of ABA, Th1
differentiation begins to decrease. Additionally, due to pathways
associated with proliferation not being included in our model, the IL-
2-mediated increase in proliferation cannot be shown. Increased
proliferation caused by exogenous IL-2 broadly increase the
numbers of both effector and regulatory cells. Our results suggest
that IL-2 operates in a narrow concentration margin driving
induction of Tregs while LANCL2 activation is effective at broader
activity ranges at increasing Treg differentiation while promoting
metabolic pathways that are preferred by regulatory cells.

Exposure of Treg and Th17 cells to extracellular lactate leads
to diverging metabolic effects
Experiments performed by Haas et al. showed that exposing Th17
cells to lactate cause them to have higher production of IL-17 and
reduced motility34. Conversely, increased lactate uptake in Treg cells
makes them more immunosuppressive35. With these seemingly
opposing results stemming from a metabolic input, we ran an in
silico experiment to determine if there were differences in how
these two cell types reacted to increased lactate concentrations. For
lower concentrations of extracellular lactate, the effect was a slight
decrease in efficacy of lactate export from the cell. Increased lactate
concentrations led mostly to pyruvate being transported in greater
number to the mitochondria (Fig. 5a, b). Due to the increased flux of
metabolites, the concentration of oxaloacetate was also increased
(Fig. 5c). Due to the expression of the lactate importer being higher
in Tregs, as well as the mitochondrial transporter for pyruvate,
increasing the concentration of lactate had a greater effect overall
on the metabolite concentrations within the mitochondria. This
effect is compounded by a further higher expression of PEPCK-M in
Treg cell types (Fig. 5d), a rate-limiting enzyme that catalyzes the
conversion of oxaloacetate to phosphoenolpyruvate. This reaction is
the sole link between the TCA cycle and gluconeogenesis in CD4+
T cells due to the lack of expression of PEPCK in all cell types. This
bottleneck in metabolism combined with such a drastic difference in
expression causes the amount of PEP produced by Treg cells to be
much greater than the amount produced by Th17 cells (Fig. 5e).
Another metabolic pathway affected by lactate uptake, fatty acid
synthesis, showed the difference between Th17 and Treg produc-
tion is dampened greatly compared to PEP production levels
(Fig. 5f). These results would suggest that PEP exported from the
mitochondria, and potentially gluconeogenesis plays an important
role in Treg function and differentiation. Higher oxidative phosphor-
ylation capabilities of the Tregs also allows for citrate to progress
through the TCA cycle more effectively by maintaining higher levels
of NAD+ in the mitochondria. When the C. difficile in silico
experiment is run multiple times with increasing concentrations of
lactate, there is minimal difference to the phenotypes of the T cells,
but major differences in the metabolic outcomes associated with
Treg cells. Corresponding to the level of Treg within the simulated
population, the amount of PEP produced in the mitochondria either
increases drastically, or minimally in response to increasing lactate
concentrations (Fig. 5g). The immunological discrepancies between
Th17 and Treg response to lactate can potentially be explained by
their divergent metabolic states, highlighted by the model. Treg
cells direct higher amounts of lactate through the mitochondria to
gluconeogenesis via PEPCK-M, whereas Th17 cells leverage more
non-mitochondrial means of energy generation. Further investiga-
tion is required to determine if the increase in gluconeogenesis is
responsible for increased immunosuppressive behavior in Tregs.

DISCUSSION
The homeostatic regulation of immune responses is key to proper
resolution of infectious diseases and the management of
inflammatory, metabolic, neurodegenerative, and autoimmune
diseases. Effector and Treg CD4+ T cell responses work together

to provide targeted responses to many different stimuli within the
body. While both are necessary for proper immune function,
tipping the scales in favor of a Treg response can be beneficial for
the protection, resolution, and healing of certain infectious,
metabolic, neurodegenerative and autoimmune diseases36,37.
More specifically, strong effector responses in infectious diseases
of the GI tract lead to increased damage of the epithelial layers
and loss of barrier function38,39. On the other hand, autoimmune
diseases are characterized by their excessive and dysregulated
effector CD4+ T cell responses40. This paper describes the
development of a computational and mathematical model of
CD4+ T cell differentiation and bioenergetics to elucidate and
further characterize the underlying mechanisms by which CD4+
T cells may be pushed towards a Treg phenotype and function.
While this model is broadly applicable to any disease in which
CD4+ T cells play a major role in the immune response, we
focused our initial efforts on the use of the model to describe and
predict the effects of potential therapeutic interventions in the
context of C. difficile infection (CDI). We calibrated our model to
experimentally derived cytokine cocktails, identified the baseline
immune response to CDI using our model, simulated treatment of
CDI with ABA or IL-2 in a comparison study, and identified
gluconeogenesis via PEPCK-M as an emerging metabolic pathway
implicated in the induction Treg responses.
Our previous computational modeling efforts led to the creation of

a CD4+ T cell differentiation model26 that could predict the
differentiation of four phenotypes (Th1, Th2, Th17, and Treg). The
model created by Carbo et al. at the NIMML consisted of multiple
cytokine signaling pathways involving the extracellular cytokine,
cytokine receptor, various intermediate signaling molecules, and the
transcription factors associated with each phenotype41. The current
work has completely transformed our previous CD4+ T cell model in
two major ways: increasing substantially the granularity of the
immune signaling and incorporating bioenergetics into the model.
The increased granularity of the model allows for the description of an
additional phenotype (Th22), while the addition of many bioenergetic
pathways provides a metabolic profile for the cell populations and
new mechanisms for altering the immune response via new
connections from metabolism to the immune signaling pathways42,43.
The new model is capable of accurately predicting the

phenotype and function of the cell population in addition to its
metabolic profile given the cytokine cocktails used in biological
experiments for selective differentiation. The validation of the
immunological component of the model improves confidence in
the model outputs, but the portion of the results associated with
the metabolic component of the model are computational
estimations of the metabolic profile for each phenotype. The
model predicts that effector CD4+ T cells have increased
glycolytic activity, with increased lactate export, whereas Treg
cells have increased TCA activity and increased ATP production
from oxidative phosphorylation. These metabolic profiles match
what has been reported previously in experimental metabolic
studies of CD4+ T cells8,44 and provide scaffolding for additional
metabolites to interact with the immune portion of the model.
Differentially expressed metabolic genes cause each phenotype’s
metabolism to react differently to various perturbations such as
altering concentrations of ABA (the natural LANCL2 agonist), IL-2,
or extracellular lactate. We have used these differences to
compare the therapeutic efficacy of ABA and IL-2 in inducing a
Treg response in the context of CDI, as well as to identify
pathways that are likely associated with each phenotype.
A key feature of this model is its ability to predict the relative

abundance of CD4+ T cell subsets based only on the estimated
concentrations of the cytokines within the tissue sample. For
instance, the model can take modified RNAseq data to estimate
cytokine concentrations and is able to provide predicted
phenotypes and immunological functions along with a break-
down of how metabolites are flowing through the cell. This allows
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for an in-depth estimation of how CD4+ T cells are functioning in
an environment without needing to isolate cells from the sample
and perform a metabolic analysis on them. We have found that
maintaining a comprehensive computational model has allowed
for the rapid analysis global system-wide datasets and led to the
ability to quickly extract more useful information from the results
of biological experiments.
During CDI, broad spectrum antibiotics create a microenviron-

ment that favors successful colonization of by C. difficile. Spores
ingested during this time survive the gastric acid barrier and enter
the colon. C. difficile penetrates the mucus layer of the colon,

adheres to epithelial cells, and produces toxin A and B, which elicit
an inflammatory response by the host45. This inflammatory response
is associated with disease severity, because as effector cells respond
to the invading bacteria, they also cause indiscriminate tissue
damage to the epithelial layer of the gut46. In a mouse model of CDI,
the inflammatory response peaks 3–5 days after inoculation with the
spores, followed by a switch to a strong Treg response by days 8–10
which corresponds to the recovery phase of the disease. Our model
can accurately reproduce these experimental behaviors and
provides an estimate of how each CD4+ T cell phenotype
differentiates over time. Experimental studies have shown that

Fig. 5 The effect of varying concentrations of extracellular Lactate (0, 10−9, 10−7, 10−5 μM) on Treg, Th17, and a population of T cells
responding to Clostridioides difficile infection. a Cartoon representation of how lactate imported into the cell would be utilized. b Increasing
mitochondrial pyruvate concentration due to increasing lactate concentrations are more apparent in Treg cell types. c Oxaloacetate
concentrations within the mitochondria of simulated Treg and Th17 cells. d PEPCK-M concentrations for each of the T cell populations.
e Phosphoenolpyruvate concentrations within the mitochondria of simulated Treg and Th17 cells. f Concentration of palmitic acid produced
by Treg and Th17 cells under variable extracellular lactate concentrations. g Phosphoenolpyruvate concentration within the mitochondria of
simulated T cells responding to Clostridioides difficile infection under variable lactate concentrations.
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reduction of the inflammatory response leads to amelioration of the
disease47. As such, excessive pathogenic effector CD4+ T cell are
indicators of increased colonic pathology and disease severity
whereas Treg cells are markers of tissue resolution and disease
recovery. Our in silico experiments demonstrated an increase in
Th17 cell differentiation during the peak of CDI, and a subsequent
decrease going into the recovery stage. Treg cell differentiation was
generally inverse to Th17 and was mostly suppressed until the
recovery phase. Our model shows Th1, Th2, and Th22 are still able to
differentiate due to Th1/Th2 differentiating cytokines being present
in substantial concentrations. While the consensus of CDI studies has
been that the infection is cleared by day 10, cytokines associated
with Th1 and Th2 are still present and potentially contributing to
tissue damage. Indeed, our model suggests that the inflammatory
response may last for several days past the infection clearance. This
lingering inflammation connected to effector responses may disrupt
the healthy gut microbiota from recolonizing the gut after CDI and
contribute to the recurrence of the infection. As such, increasing the
Treg response, even into the recovery phase, may induce better
recolonization by healthy microbiota and accelerate recovery.
While the model does show increased inflammation at the end

of the infection from Th1/Th2 cell types, disease severity still tracks
most strongly with Th17 cells and inversely with Treg cells. Our
prior work and that of others has highlighted the importance of
LANCL2 as a regulator of immunity and metabolism, increasing
Treg differentiation and decreasing Th17 differentiation15. From a
metabolic perspective, LANCL2 activation results in increased
utilization of pyruvate within the mitochondria as opposed to
complete glycolysis and lactate production13,15. Activation of
LANCL2 results in the activation of STAT5 and is a promising
avenue for therapeutic development given the high abundance of
LANCL2 in Treg cells when compared to other CD4+ T cell
subsets28. Activation of LANCL2 has been shown to be highly
favorable for reducing symptoms of IBD by causing CD4+ T cells
to favor regulatory phenotypes15,16. Our computational modeling
suggests that LANCL2 activation pushes the CD4+ T cell towards a
Treg phenotype at the signal transduction, but also pushes for a
metabolic environment that mimics that of a Treg cell, including
increased aerobic respiration, decreased lactate production, and
increased fatty acid utilization.
We compared LANCL2 activation with increasing IL-2 concen-

tration, another potential route for immune signaling and
therapeutic intervention. IL-2 is a pleiotropic cytokine capable of
inducing T memory and Treg cells at low concentrations and T
effector responses at high concentrations48. Development of Treg
cells occurs via IL-2-JAK1/3-STAT5 STAT5 mediated pathways. How
IL-2 drives Th1 differentiation remains unclear, although Ross et al
proposed that IL-2 causes the preconditioning of the cells
underlying signal transduction network, making CD4+ T-cells
more sensitive to Th1 inducing stimuli. Our results suggest that IL-
2 activation at lower concentrations induced differentiation into a
Treg phenotype, but at elevated concentrations we observed a
slight increase in pathogenic Th1 cell populations. The magnitude
of change was relatively small compared to changes in cytokines
between the days of infections. This smaller change is consistent
with the effect of IL-2 on STAT-5 phosphorylation in the general
CD4+ T cell population seen by Li et al.49. In contrast, the model
indicated induction of Tregs via LANCL2 activation induced a
more robust activation of Tregs at lower concentrations and did
not induce, but rather mitigated Th1 differentiation. Combined
with the proliferative effects of IL-2, this further exemplifies the
benefit of using LANCL2 activation over IL-2 to induce a sustained
Treg response safely and effectively.
The underlying mechanisms by which Tregs and Th17 cells

differentiate as well as the metabolic pathways that they depend
upon to differentiate are required knowledge to alter the immune
response of an organism. With a better understanding of these
immunological mechanisms, it is possible to target specific

pathways within metabolism to induce Treg subsets. Based on our
modeling work, we propose that gluconeogenesis, specifically
through the little studied enzyme PEPCK-M, is an important
pathway for Treg differentiation and function. Several studies of
the uptake of lactate in CD4+ T cells showed that lactate pushes
both Th17 cells to become more effector-like and Treg cells to
become more immunosuppressive34,35. In our model, uptake of
lactate increased the concentration of pyruvate entering the
mitochondria for both Treg and Th17 cells. However, Treg cells are
primed to push additional pyruvate into the TCA cycle due to the
increased activity of fatty acid oxidation, which maintains a high
concentration of acetyl-CoA, allosterically activating pyruvate
carboxylase. Due to their increased expression of PEPCK-M, Tregs
can effectively siphon oxaloacetate into the gluconeogenesis
pathway by exporting phosphoenolpyruvate from the mitochondria.
This model was engineered to investigate immunological

mechanisms controlling CD4+ T cell differentiation and to study
the metabolic profiles of such cells. The model can be recalibrated
to experimental cytokine concentrations and provides metabolic
profiles for CD4+ T cell phenotypes. It captures the known
phenomena that effector CD4+ T cells have higher glycolytic
activity while Tregs have more oxidative phosphorylation activity.
Therefore, while the initial proof-of-concept was done in CDI, the
model is a widely applicable tool for the quantitative analysis of
the metabolic and immunological mechanisms of CD4+ T cells in
the context of a wide range of inflammatory, infectious, metabolic,
neurodegenerative, and autoimmune diseases.

METHODS
The CD4+ T cell bioenergetics model was developed as a
continuation of the CD4+ T cell differentiation model developed
by A. Carbo et al.26 We added several species to the model that
were discussed as theoretical by Lu et al.50, but never actualized in
an SBML compliant model, including TNFa, AhR, and IL-22. We also
updated the connections within the model to better represent a
more up-to-date understanding of immune signaling and CD4+ T
cell differentiation. Many metabolic pathways are represented
within the model, including glycolysis, gluconeogenesis, the TCA
cycle, oxidative phosphorylation, fatty acid oxidation, fatty acid
synthesis, and the malate aspartate shuttle. These two portions of
the model were developed in parallel, with the now-realized
intention of finding connections between the two models to
complete the immuno-metabolic collaboration. Connections from
metabolism to immunity were identified using literature mining
programs that searched for combinations of keywords within the
abstracts of articles on PubMed. A complete list of equations can
be found in Supplementary File 2, and corresponding parameter
values can be found in Supplementary Table 2. The system of
differential equations were organized in an Antimony file51, which
was solved using Pycotools and tellurium python packages52,53.
For each experiment, a 72 h time-course simulation was
performed, and the final values for each model species were
output for comparison. The 72 h simulation facilitates the
complete differentiation of the cell and allows time for the
metabolic trends to become apparent between simulations.

Immune layer
Immune signaling pathways account for 31 reactions and
75 species within the model. The model takes as inputs external
cytokine concentrations (IFNg, IL-2, IL-4, IL-6, IL-9, IL-10, IL-12, IL-
21, IL23, TGFb, and TNFa). These cytokines bind to their respective
receptors and influence the activation of immune signaling
molecules and transcription factors associated with each CD4+
T cell phenotype that has been included in this model (Th1: T-bet,
Th2: GATA3, Th17: RORγt, Th22: AhR, Treg: FOXP3). We utilized Hill
Equations to create a structure for rate laws that allowed multiple
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signals to affect the activation or production of immune signaling
molecules. The Hill–Langmuir equation can be written as

d
dt

Xprod
� � ¼ c ´

An

An þ kað Þnð Þ ; (1)

for instances of activation by A. Conversely, instances of inhibition
by I can be expressed in a similar format:

d
dt

Xprod
� � ¼ c ´

kið Þn
In þ kið Þnð Þ: (2)

By combining these equations together, we created a rate law
structure that, for a species with three inhibitors and 3 activators,
would have the following structure:

d
dt Xprod
� � ¼ Vf ´

ki1ð Þni1
Ini11 þ ki1ð Þni1 ´

ki2ð Þni2
Ini22 þ ki2ð Þni2

´ ki3ð Þni3
Ini33 þ ki3ð Þni3 ´

c1 ´Ana11

Ana11 þ ka1ð Þna1

þ c1 ´Ana22

Ana22 þ ka2ð Þna2 þ
c3 ´Ana33

Ana33 þ ka3ð Þna3

0
BBBBB@

1
CCCCCA
:

(3)

For each signaling molecule and transcription factor, A and I
values were determined by the concentration of the signaling
molecule assigned to that variable, and k, c, and n values were
estimated using particle swarm, a parameter estimation algorithm.
For each phenotype (including Naïve), an input cytokine cocktail
was set as the initial condition corresponding to cocktails used in
the lab to induce differentiation of each cell type (Supplementary
Table 1). The phenotype values were used as the outputs of the
model for calibration. The particle swarm algorithm searched the
parameter space for parameter sets that minimized the error
between expected model outputs and actual model outputs. Each
protocol was expected to output phenotype values of 0.85 for the
phenotype associated with the protocol, and 0.00 for the
phenotype values that were not targeted. A higher weight (5
times) was applied to the error from the protocol-associated
phenotype, as to stop the parameter estimation algorithm from
minimizing off-target error more than promoting the desired
phenotype. A network diagram shows the directionality of
interactions between immune signaling molecules (Supplemen-
tary File 1). Other connections, such as the effects of LANCL2
activation, had parameters estimated individually to ensure they
recapitulated previously published experimental results15.

Metabolism layer
The metabolic layer of the model consists of glycolysis,
gluconeogenesis, TCA cycle, fatty acid oxidation, fatty acid
synthesis, gluconeogenesis, pentose phosphate pathway,
malate-aspartate shuttle, oxidative phosphorylation, and LANCL2
ligand ABA. Glycolysis, the TCA cycle, and oxidative phosphoryla-
tion were the initial focus of this model; additional pathways were
added and connected when pathway enrichment analyses
indicated there would be meaningful change between cell types,
and model results indicated that a node required an additional
sink or source for the model to be biologically viable. Supple-
mentary File 1 shows the network diagram for metabolism and its
connections to the immune layer. Connections from each
phenotype to the metabolic enzymes are generalized as to
increase legibility of the diagram. Kinetic parameters were
obtained from the Sabio-RK Biochemical Reactions Kinetics
Database. Most reactions were found using the standard Enzyme
Commission number (EC number), followed by ensuring enzyme,
substrates, and products matched the expected values. Parameter
values that required estimation included those associated with
reactions for import/export of molecules. These boundaries of the

model required a reduction of enzymatic activity to maintain
biological values such as approximate ATP requirements of a
CD4+ T cell. Characteristic concentrations for metabolic enzymes
were determined using a normalization of single-cell RNAseq data
for CD4+ T cells divided by cell type28.

Automated literature mining
Connections between the immune and metabolic layers were
identified using the Natural Language ToolKit (NLTK) and
Biopython packages in Python54,55. Keywords were exhaustively
searched in pairs, restricting the keywords to the same sentence.
2321 abstracts were identified as describing potential connections
using automated methods. A subset of 130 articles were found to
contain meaningful connections between metabolism and immu-
nity after manual curation, which resulted in 2 connections being
added into the model from metabolism to immunity (Lactate to
STAT3 activation and NADPH to STAT3 activation).
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