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Multi-omics peripheral and core regions of cancer
Bingbo Wang 1✉, Xianan Dong1, Jie Hu1 and Lin Gao1

Thousands of genes are perturbed by cancer, and these disturbances can be seen in transcriptome, methylation, somatic mutation,
and copy number variation omics studies. Understanding their connectivity patterns as an omnigenic neighbourhood in a
molecular interaction network (interactome) is a key step towards advancing knowledge of the molecular mechanisms underlying
cancers. Here, we introduce a unified connectivity line (CLine) to pinpoint omics-specific omnigenic patterns across 15 curated
cancers. Taking advantage of the universality of CLine, we distinguish the peripheral and core genes for each omics aspect. We
propose a network-based framework, multi-omics periphery and core (MOPC), to combine peripheral and core genes from different
omics into a button-like structure. On the basis of network proximity, we provide evidence that core genes tend to be specifically
perturbed in one omics, but the peripheral genes are diversely perturbed in multiple omics. And the core of one omics is regulated
by multiple omics peripheries. Finally, we take the MOPC as an omnigenic neighbourhood, describe its characteristics, and explore
its relative contribution to network-based mechanisms of cancer. We were able to present how multi-omics perturbations percolate
through the human interactome and contribute to an integrated periphery and core.
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INTRODUCTION
Complex diseases result from the interaction of multiple molecular
processes1–6. Genes rarely work alone. Instead, they are often
involved in complex pathways, interacting with other genes and,
combined with environmental factors, affecting diseases. To study
how disease-related genes interact, studying the relationship
between genotype and phenotype in biological networks is
necessary. Genes associated with diseases affect each other in cis-
regulatory or trans-regulatory fashions, and their relationships can
be modelled as a regulatory network7. Genes related to specific
diseases tend to cluster in the network neighbourhood, which
gives rise to the concept of disease modules6, which usually
consist of dozens of genes. To accurately identify the network’s
disease modules, researchers have developed the connectivity-
based DIAMOnD8 and C3 algorithms9. Both algorithms determine
the candidate genes to be imported to connect scattered
pathogenic genes and obtain connected disease modules.
Over the past decade, genome-wide association studies (GWAS)

have identified pathogenic variants for hundreds of diseases and
found that the heritability of most complex diseases is caused by
many common variants with small effects, and a small number of
rare variants with relatively large effects10. For a trait or disease,
rare variation only explains a small portion of the heritability, and
the heritability explained by the genome variation is much higher
than that explained by the rare variation. This phenomenon is
called “missing heritability”11. Most of the missing heritability
results from many small-effect common variations that are not
significant under the current sample size12–16. All genes active in
disease-related tissues affect disease risk, and these genes are
widespread across the genome. As the number of genes becomes
very large, the contribution of each gene becomes correspond-
ingly smaller, which leads to the limit of Fisher’s famous
“infinitesimal model”12,17. Therefore, some researchers have
proposed a new perspective on understanding complex diseases:7

from polygenic to omnigenic.
In the omnigenic model, core genes and peripheral genes play

distinct roles in diseases12. The number of core genes is small and

their variations are critical, which directly affects disease develop-
ment. In contrast, the number of peripheral genes is large and
their variations are moderate, which affects disease risk indirectly
through trans-effects on the core genes. There are two key
proposals: (1) most genes expressed in disease-related cells may
affect the core genes through regulation; and (2) almost all
disease heritability is determined by the variation in near
peripheral genes12. Boyle et al. anticipate that significant
phenotypic differences between species are driven by small
effects being accumulated, while differences in larger effects may
be an exception7. This is in line with the thinking of quantitative
genetics since Darwin, that evolutionary adaptation mainly comes
from many genes with small effects18–20. After the concept of the
omnigenic model was proposed, understanding of the disease
neighbourhood has developed from a mesoscopic partial module
to a macroscale omnigenic model.
Some studies have published evidence supporting complex

traits with the omnigenic model21–23, and others have suggested
that this model may underestimate the biological complexity of
common diseases18. Some key questions still need to be solved,
such as: how to define the core genes, what percentage of
peripheral genes are accounted for, and whether we can infer the
role of peripheral genes from their relationship to core genes.
Studies have proposed methods to define and identify core genes
from the perspective of genetic and topological characteristics.
Ratnakumar et al. proposed a method to identify candidate core
genes by combining GWAS hits with the protein–protein
interaction (PPI) network24. Wang et al. detected the peripheral
and core regions of disease based on the significance of the local
maxima of connectivity between the differentially expressed
genes in the human interactome, and applied it to the
comorbidity and drug recommendations for COVID-1925,26. The
latest development in the genetic architecture of schizophrenia
indicates that the omnigenic model may underlie the risk for the
disorder27, and the association between rare and common
variants implicated in psychiatric disease risk constitutes a
potentially general phenomenon occurring more widely in
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complex genetic disorders28. O’Connor et al. found that for most
complex traits, the genes and loci with the most critical biological
effects are often different from those with the strongest common-
variant associations29. Sinnott-Armstrong et al. found three
molecular traits that are highly polygenic, with thousands of
variants scattered across the genome, leading to trait variance30.
Cancer is caused by the dysfunction of genes and their

interactions, rather than the mutation or abnormality of a single
gene1,31,32. At present, some studies on the polygenic model of
cancer are represented by disease modules and driver path-
ways33–36. Cheng et al.37 identified the relative network config-
uration of the drug target module related to the disease module
using the network proximity, which helps to detect potentially
effective paired drug combinations for cancer. Based on biological
pathways and network information, many complex calculation
methods have been developed to facilitate detection of cancer-
driven variants and pathways38. For example, methods exist that
use known pathways from public databases39, such as HotNet240

based on networks, and Dendrix41 based on high exclusivity of
variants. Some studies also apply cancer pathways to cancer
classification42,43. Although cancer pathway analysis has become a
powerful tool in cancer genomics, our knowledge about
oncogenic pathways or modules remains incomplete. In the past
few years, great progress has been made in understanding the
molecular changes in cancer development. The latest advances in
high-throughput sequencing technologies have provided new
ideas for cancer genome-wide research and have greatly enriched
The Cancer Genome Atlas database (TCGA)44 of cancer multi-
omics data, which covers four types of omics technologies:
transcriptome differential expression (transcriptome), DNA differ-
ential methylation (methylation), somatic mutation, and copy
number variation (CNV).
Based on multi-omics data, Ding et al. found (1) somatic driver

mutations, germline pathogenic variants, and their interactions in
tumours; (2) the tumour genome and epigenome’s influence on
the transcriptome and proteome; and (3) the relationship between
the tumour and the microenvironment45. Using multi-omics
technologies, Bhattacharya et al. performed transcriptome-wide
association studies46 and Duan et al.47 analysed cancer subtypes.
Shi et al.48 have developed a novel algorithm, Iterative Clique
Enumeration (ICE), for identifying relatively independent maximal
cliques as co-expression modules and a module-based approach
to the analysis of gene expression data. Zhang et al.49 proposed a
method, iMCMC, to identify mutated core cancer modules. Yang
et al. revealed common and specific cancer patterns by analysing
pan-cancer DNA methylation50. Vandin et al. detected significantly
mutated pathways in cancer51. Sánchez-Vega et al.52 analysed the
mechanisms and patterns of somatic alterations in ten canonical
pathways (containing 246 genes).
At present, research on cancer multi-omics remains in the

polygenic graph pattern. The abundant multi-omics cancer data
can accelerate the development of cancer biology and related
technologies to provide us with opportunities to study cancer’s
omnigenic graph pattern. Analysing cancer’s omnigenic pattern is
an important way to comprehensively understand cancer’s
molecular mechanisms and eliminate the prejudices of single
data research. For the research on the multi-omics omnigenic
pattern of cancer, some unresolved problems remain: (1) Are the
omnigenic patterns omics specific? (2) Does the omics-specific
omnigenic pattern have universality across cancers? (3) How do
the peripheral and core regions from multi-omics of a specific
cancer affect each other, and what is the proximity between them
in the network?
In this study, we curated transcriptome, methylation, somatic

mutation, and CNV omics datasets from 15 cancers, and depicted
the connective properties between the genes perturbed in each
omics aspect in the human interactome. We developed a unified
network-based CLine (Connectivity Line) to pinpoint omics-specific

omnigenic patterns across cancers. We observed that the
omnigenic patterns present bimodal, fragmented, unimodal, and
steepest descent patterns, respectively, in these four omics
aspects. Furthermore, these omics-specific patterns have univers-
ality in 66.7%, 86.7%, 93.3%, and 93.3% of cancers, respectively.
From an omnigenic perspective, we distinguished between the
omics-specific peripheral and core regions, and explored their
differential scales and connectivity for cancers. Then, we provided
network-based framework multi-omics periphery and core (MOPC)
for integrated analysis of cancers. We determined that core genes
are specific while peripheral genes are shared between multiple
omics aspects. Meanwhile, peripheral genes irregularly surround
and regulate other omics cores. The integrated multi-omics
neighbourhood of cancer displays a button-like structure. Finally,
we take MOPC as an omnigenic neighbourhood. Its characteristics
are described through biological profile verification, pathway
enrichment analysis, eQTL regulatory relationship analysis, and
cancer relationship quantification. We explored the relative
contribution of MOPC to the commonalities between cancers,
and explained cancer–cancer relationships. MOPC provides a
network-based, and practical tool for omnigenic analysis of
cancers.

RESULTS
Omics-specific omnigenic patterns of cancer
To study cancer’s omnigenic pattern, we curated cancer multi-
omics data from UCSC Xena53, including a publicly-available
samples of four types of omics aspects (transcriptome differential
expression, DNA differential methylation, somatic mutation, and
copy number variation) for 15 cancers (see Supplementary Table
1). We used indicator fold change to measure the degree of each
gene’s perturbation in the transcriptome and methylation, and
indicator frequency to measure the gene’s perturbation in the
somatic mutation and CNV (Supplementary Table 3). To ensure
experimental accuracy and feasibility, we selected the top 25% of
the perturbed genes in each omics aspect (a wide range of about
4000 genes, Supplementary Table 2) for subsequent analysis.
Furthermore, we analysed the structural properties of these
thousands of genes perturbed in a certain study from the
perspective of connectivity significance in the network (human
interactome, Supplementary Table 4) to get an Omics-Specific
Omnigenic Pattern (OSOP). The omnigenic pattern was con-
structed based on the wave mode of the connectivity significance
(Largest Connected Component, LCC z-score) of genes as different
degrees of perturbation were considered. We developed a unified
network-based framework, CLine (Connectivity Line, see ‘Meth-
ods’), to pinpoint the omics-specific omnigenic pattern. CLine
shows gene connectivity in regular fluctuation with the varying
perturbation degrees in the network.
We took rectum adenocarcinoma (READ) as a typical example,

and selected the top differentially-expressed genes (DEGs, 4033
genes). As Fig. 1a shows in red, the CLine forms a ‘bimodal
pattern’. In the low perturbation part (log2(FC) cutoff = 0.8), the
curve forms the first local peak. An LCC with significant size (LCC
z-score = 3.58) is formed by 3674 genes that are weakly perturbed
by READ, suggesting that they form a statistically-detectable
connected region in the network. In the high perturbation part
(log2(FC) cutoff = 3.7), CLine forms a second local peak. A
statistically-detectable connected region (LCC z-score = 1.28) is
also formed by 147 genes that are highly perturbed by READ.
These two regions correspond to the peripheral and core regions,
respectively, from an omnigenic perspective. CLine’s wave mode,
which we called an omnigenic pattern, interprets the formation of
the peripheral and core regions of the DEGs, and indicates their
identifiability in the network.
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Fig. 1 Omics-specific omnigenic pattern of cancer. a Network-based Connectivity Line, CLine. Illustration of Rectum Adenocarcinoma (READ).
The perturbed genes in the transcriptome, methylation, somatic mutation and CNV aspects present an omics-specific omnigenic pattern. The
abscissa is the cutoffs of fold change and frequency index, and the ordinate calculates the connectivity significance LCC z-score. i. The CLine of
the transcriptome aspect forms a bimodal pattern. In the low perturbation cutoff part (fi= 0.8), the LCC z-score of 3674 genes forms the first
local peak in the line (z-score = 3.58). In the high perturbation cutoff part (fi= 3.7), the LCC z-score of 147 genes forms the second local peak
(z-score = 1.28). ii. The CLine of the methylation aspect presents a fragmented pattern, and all LCC z-scores are below 0 regardless of the low
or high perturbation cutoffs. iii. The CLine of the somatic mutation aspect presents a unimodal pattern. When fi= 0.09, the LCC z-score =
17.03, which forms the only peak in the line. iv. The CLine of CNV aspect presents a steepest descent pattern. When the cutoffs slightly increase
from 0.68 to 0.70, LCC z-scores drop from 1.92 (significant connectivity) to 0.3 (quasi-random) in the high perturbation cutoff part. The grey
histograms represent the distribution of the number of genes under different cutoffs. b Universality of pattern. Least squares fitting was used
to construct a uniform curve across cancers (UCurve), highlighted by heavy continuous lines in the normalised coordinates. The red UCurve fits
bimodal CLine in 66.7% of cancers; the green UCurve fits the fragment CLine in 86.7% of cancers; the yellow UCurve fits the unimodal CLine in
93.3% of cancers; and the blue UCurve fits the steepest descent CLine in 93.3% of cancers (details in Supplementary Figs. 1–4). c Different omics
aspects of cancer show perturbations of the biological network in different ways, forming four omics-specific neighbourhoods, each of which
exhibits different connectivity characteristics. Both the node sizes and thickness of edges are proportional to the strength of the perturbation.
We highlighted the weakly-perturbed peripheral region with light shades, and the highly-perturbed core region with dark shades.
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For the other three omics aspects, DNA differential methylation
(methylation), somatic mutation, and copy number variation
(CNV), we observed that the methylation CLine conforms to a
‘fragment pattern’, the somatic mutation CLine shows a ‘unimodal
pattern’, and the CNV CLine presents a ‘steepest descent pattern’.
In methylation, all LCC z-scores were <0 in the whole CLine,
indicating that the connectivity of the differentially-methylated
genes (DMGs) was, unexpectedly, worse than random. Even if
different scales with different cutoffs were considered, the DMGs
tended to be scattered and avoid interaction, showing a
fragmented pattern. In the weakly-perturbed region, as the fold
change cutoffs progressively increase, the LCC z-score decreases
from −1.95 to the minimum of −8.16 (log2(FC) cutoff = 0.095).
Then the curve gradually rises and reaches the global maximum
z-score of −0.34 in the highly-perturbed region (log2(FC) cutoff =
0.29). This characteristic wave mode of CLine, with an upward
trend but significantly lower throughout, indicates the omnigenic
pattern of the methylation is fragmented. The weakly-perturbed
genes form a fragmented peripheral region. Comparatively highly
perturbed genes form a quasi-random connected core region.
The CLine of somatic mutation has a unimodal pattern. As the

perturbation degree cutoffs go from low to high, the LCC z-scores
increase and then decrease, showing a single peak. Initially, the
low-frequency cutoff is 0.015 and the LCC z-score is 1.56. The LCC
z-score gradually rises to a maximum of 17.03 at the high
perturbed frequency cutoff of 0.09. Afterwards, the LCC z-score
continues to reduce to a lower level (z-score = 6.89 at a frequency
cutoff of 0.13). Forming one dominant peak in the highly
perturbed part, this characteristic of CLine indicates the omnigenic
pattern of the somatic mutation is unimodal. The highly-perturbed
genes form a remarkable connected core region.
CNV’s CLine has the steepest descent pattern. At the beginning,

when the low-frequency cutoff = 0.46, the LCC z-score = 2.44. As
the cutoff increases, the LCC z-scores remain steady. When the
cutoffs slightly increase from 0.68 to 0.70, the LCC z-scores drop
precipitously from 1.92 (significant connectivity) to 0.3 (quasi-
random), and a step phase change occurs at a high cutoff. This
characteristic CLine wave mode indicates that CNV’s omnigenic
pattern has the steepest descent. A well-connected peripheral
region exists at low perturbed cutoffs. As connectivity abruptly
reduces, the disconnected core region is hard to discover at a high
perturbed cutoff.

Universal omnigenic patterns across cancers
We used the CLine framework across 15 cancers in four omics
aspects, 60 tests overall. We applied four rigorous criteria to
decide whether CLine in a test agreed with the corresponding
omnigenic pattern’s wave mode. The key indicator dratio (see
‘Methods’) quantified the CLine curve’s amplitude ratio at low,
medium, and high perturbation degree cutoffs. Then, we achieved
agreement rates of 66.7%, 86.7%, 93.3%, and 93.3% for the CLine
of 15 cancers in the transcriptome, methylation, somatic mutation,
and CNV studies, respectively (Supplementary Figs. 1–4, Supple-
mentary Table 5). This suggests that most of the cancers
conformed to the corresponding common wave mode in CLine.
OSOP presents its universality, that is, omics aspects have specific
universal connectivity patterns across cancers. To denoise and
highlight OSOP, we constructed a Uniform Curve across the
cancers based on the fitting curve (UCurve, Fig. 1b, Supplementary
Figs. 1–4) to indicate the shared wave mode of multiple CLines. For
providing uniform coordinates for multiple cancers, we normal-
ised their perturbation degree cutoffs (see ‘Methods’). Figure 1c
visually describes the corresponding disease neighbourhoods.

Distinction of peripheral and core regions
From the omnigenic perspective, Boyle et al.7 proposed that
diseases are directly affected by a few core genes and indirectly

affected by many peripheral genes. Therefore, the disease
neighbourhood structurally comprises peripheral and core
regions. Any expressed peripheral gene influences disease by
regulating core genes. Relatively speaking, core genes produce
strong disease perturbations while peripheral genes produce
weak perturbations. The conceptual distinction between periph-
eral and core regions in the human interactome is useful for
understanding cancers. We used the network-based UCurve
framework to further distinguish the peripheral and core regions.
First, we selected the LCC of perturbed genes corresponding to a
high cutoff with the local maximum LCC z-score in the UCurve as
the core region. Core genes produce strong perturbations and
form a local connected subnetwork. For core regions, the LCC was
selected for transcriptome omics aspect corresponding to the
second peak, for somatic mutation omics aspect corresponding to
the single peak, and for fragmented highly perturbed genes in
methylation and CNV omics aspects, the LCCs were selected with
maximum z-scores in the high perturbation cutoff part. Next, we
identified peripheral regions based on genes that were wide-
spread in the human interactome and were either cancer-related
or showed connectivity. In practice, to facilitate subsequent
research and reduce computational complexity, we uniformly
selected the LCC formed by the top 1500 genes (see Supplemen-
tary Materials) as the cancer neighbourhood, where several criteria
were met: (i) CLine identified them with a low perturbation cutoff,
and significant connectivity is guaranteed, except for methylation
aspect; (ii) biological enrichment analysis (see Supplementary
Materials) revealed their association with cancer; and (iii) these
1500 genes, providing a wide range across the whole genome,
were perturbed to a certain degree regardless of the omics aspect
(details of perturbation degree in Table 1). Finally, by the LCC of
the top 1500 genes, the peripheral region was defined as the rest,
after removing the core. Then, according to UCurve, we obtained
the peripheral and core regions for each of the four omics aspects
for 15 cancers (Supplementary Tables 1, 6).
As previously shown, not all CLines agreed with the criteria of

the corresponding OSOP’s wave mode, possibly because of the
small sample size, uneven distribution, or noise in the data. For
example, the failed CLine of cholangiocarcinoma (CHOL), based on
the somatic mutation data, is usually caused by too few samples

Table 1. Degree of perturbation of the omnigenic neighbourhood in
multi-omics aspects.

Cancers Transcriptome
|log2(FC)|

a
Methylation
|log2(FC)|

a
Somatic
mutation
Frequencea

CNV
Frequencea

BLCA 7.732, 1.279 0.459, 0.141 0.508, 0.025 0.730, 0.583

BRCA 8.063, 1.344 0.411, 0.113 0.317, 0.007 0.779, 0.640

CHOL 10.639, 2.546 0.473, 0.060 0.333, 0.028 0.861, 0.639

COAD 9.577, 1.360 0.531, 0.141 0.719, 0.037 0.727, 0.574

ESCA 6.333, 1.119 0.376, 0.088 0.870, 0.016 0.815, 0.690

HNSC 7.418, 1.196 0.429, 0.120 0.713, 0.016 0.761, 0.580

KIRC 8.251, 1.501 0.369, 0.074 0.535, 0.009 0.896, 0.345

KIRP 7.349, 1.330 0.407, 0.064 0.143, 0.012 0.701, 0.601

LIHC 9.258, 1.123 0.422, 0.136 0.332, 0.035 0.770, 0.565

LUAD 9.016, 1.419 0.346, 0.092 0.521, 0.028 0.758, 0.622

LUSC 9.900, 1.944 0.418, 0.113 0.792, 0.034 0.912, 0.774

PRAD 6.801, 0.915 0.413, 0.100 0.142, 0.006 0.622, 0.230

READ 10.104, 1.438 0.587, 0.131 0.852, 0.025 0.897, 0.661

THCA 8.645, 0.912 0.374, 0.028 0.589, 0.002 0.186, 0.058

UCEC 7.625, 1.634 0.522, 0.135 0.649, 0.048 0.481, 0.336

aMaximum and minimum values.
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and an uneven data distribution (Supplementary Fig. 3, Supple-
mentary Table 1). The failed CLine of lung adenocarcinoma (LUAD)
obtained by CNV (Supplementary Fig. 4) increased suddenly and
rose sharply to a sky-high LCC z-score when it approached the
highest cutoffs. This noise is caused by a highly-perturbed motif
(intrinsic triplet), which delays the steepest descent pattern. In
such cases, we used the cwDTW algorithm54 to map a failed CLine
to the corresponding uniformed UCurve (Supplementary Fig. 5).
cwDTW solves the problem of end-to-end mapping between two
signals, based on continuous wavelet transforms (CWT) and
dynamic time warping (DTW). Thus, extended by cwDTW, our
UCurve shows comprehensive advantages in exploring peripheral
and core regions for all cancers: (i) a regular curve across multiple
cancers is constructed in unified coordinates and highlighted
OSOP; (ii) cwDTW extends the adaptability of UCurve; and (iii) the
core region is the LCC corresponding to a high perturbation cutoff
with the local maximum z-score in the UCurve. This is a
consolidated method of defining the core, thus eliminating data
differences while maintaining various core scales across cancers
(sizes of cores shown in Table 2).
Furthermore, we thoroughly analysed the scale and connectiv-

ity significance of the peripheral and core regions. First, the
average sizes of neighbourhoods across cancers in the transcrip-
tome, methylation, somatic mutation, and CNV studies were 942,
691, 1044, and 976, respectively (Fig. 2a). The cancer neighbour-
hood’s smallest scale in the methylation aspect indicates weak
regulation between methylation sites. DNA methylation is an
epigenetic mechanism and mainly serves as a repressive or
activating mark for gene expression. The average sizes of the four
omics cores were 31, 11, 26, and 134, respectively (Fig. 2b). Then,
we compared the connectivity significance of the cancer
neighbourhoods and core regions between different omics
aspects. The average LCC z-scores of neighbourhoods across the
15 cancers were 0.88, −5.67, 4.01, and 1.93, respectively (Fig. 2c),
and the average LCC z-scores of the cores were 2.53, −0.62, 7.83,
and 0.63, respectively (Fig. 2d). Among them, cancer neighbour-
hoods in the somatic mutation and CNV studies were more
detectable, while the cancer neighbourhood in the methylation
study was completely randomly distributed across the network. In
addition, core regions in the transcriptome and somatic mutation
studies formed detectable connected subgraphs, and core regions
in the methylation and CNV studies tended to scatter randomly.

Therefore, different strategies should be adopted to analyse the
disease neighbourhoods of different omics studies. Our CLine and
its uniform UCurve determined common structural properties
across cancers and discriminated the differential connectivity
pattern between multiple omics studies.

Relationship between multi-omics periphery and core regions
The ultimate aim of these omnigenic patterns is to integrate
multiple omics aspects and provide a network-based platform for
characterising the MOPC of cancer. The UCurve framework has
helped us construct omics-specific peripheral and core regions.
However, the relationship between these omics aspects remains
unclear, hampering further integrated analysis based on MOPC.
In this respect, we quantified the relationship between the

multi-omics core and peripheral regions based on their network
proximity1. Gene sets that were proximal in the network tended to
have similar biological functions and pathogenicity. We used three
indicators (see ‘Methods’) to quantify network proximity and show
relationships between different regions: (1) the Jaccard coefficient;
(2) the statistical significance p-value of overlap; and (3) the
distance in the network. These indicators quantified the amount of
overlap between these regions, whether the degree of overlap
was significantly higher than random, and the shortest-path
proximity in the network, respectively. Taking rectum adenocarci-
noma as an example, we found a lower overlap and longer
distance between the core regions than expected, indicating that
core regions tend to be highly and specifically perturbed in one
omics aspect. In addition, the large overlap and short distance
between the peripheral regions of different omics aspects
indicated that peripheral regions tend to be weakly but diversely
perturbed in multiple omics aspects (Fig. 2e–g). After performing
tests for all cancers (see Supplementary Figs. 7–9), we discovered
that the high perturbation of core genes usually observed in one
omics aspect has independent characteristics, while peripheral
genes can be simultaneously perturbed in multiple omics aspects.
Furthermore, to test whether the core region of an omics aspect

is significantly close to the peripheral region of the same omics
aspect, we compared the network distance between the core and
peripheral regions (Fig. 2h). We found that the network distance
between the intra-omics core and peripheral regions is almost
indistinguishable from the inter-omics values (Fig. 2h,
Mann–Whitney U Test p-value = 0.5657). We observed the

Table 2. The size of the core and peripheral regions of 15 cancers in four omics aspects.

Cancers Transcriptomea Methylationa Somatic mutationa CNVa Multi-omics neighbourhooda

BLCA 16, 1012 21, 666 25, 1081 8, 952 70, 3273

BRCA 36, 969 9, 733 16, 1077 451, 524 503, 2822

CHOL 24, 877 10, 830 42, 1058 23, 961 93, 3266

COAD 12, 899 20, 664 23, 1018 41, 951 95, 3038

ESCA 7, 1001 9, 639 13, 989 8, 928 35, 3133

HNSC 19, 952 21, 573 16, 1049 134, 785 187, 2948

KIRC 17, 892 7, 643 6, 1114 42, 956 69, 3164

KIRP 18, 838 5, 700 18, 981 279, 709 317, 2826

LIHC 60, 950 10, 592 30, 1035 448, 535 539, 2688

LUAD 47, 841 15, 692 14, 950 361, 607 426, 2600

LUSC 10, 926 7, 599 117, 845 8, 972 142, 2949

PRAD 145, 745 10, 666 26, 1020 8, 977 185, 2967

READ 16, 885 9, 684 22, 972 75, 902 121, 2969

THCA 11, 959 7, 778 15, 1029 112, 888 144, 3177

UCEC 20, 921 10, 732 12, 1053 13, 989 55, 3238

aNumber of core genes, number of peripheral genes.
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phenomenon that peripheral genes not only surround their own
core genes, but are widespread in the network, likewise regulating
core genes of other omics aspects. Thus, we found some
relationships between peripheral and core regions: (i) core genes
are specific between multiple omics aspects, and core genes are
highly perturbed in one omics aspect; (ii) peripheral genes are
weakly perturbed, but are influenced in multiple omics aspects;

and (iii) omics perturbations interact with each other, and
peripheral genes irregularly surround and regulate core genes of
multiple omics aspects. This result shows the intricate regulatory
interactions among and between omics perturbations.
Based on these observations, we proposed a visual button-like

structure to describe the multi-omics neighbourhood in an
integrated way. The disc is shared by the peripheral regions,
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and the four holes correspond to the independent cores of
different omics aspects (Fig. 2i). The button-like structure
characterises cancer’s integrated MOPC, where the periphery
and core comprise the peripheral and core regions, respectively,
from the four omics aspects. Furthermore, we compared the
number of omics aspects involved in each peripheral and core
gene set (Fig. 2i), and showed that 21% of peripheral and 2% of
core genes are perturbed concurrently in multiple omics aspects.
This means that cancer tends to affect different genes in different
omics aspects, and the trend is more pronounced as the degree of
perturbation gets bigger. We provided the integrated MOPC as a
multi-omics neighbourhood (Table 2), which offers insights for
network-based mechanisms of cancer.

Applications of multi-omics periphery and core in cancers
We take the MOPC as an omnigenic neighbourhood. To study how
the MOPC describes cancer’s biological characteristics, we
performed biological profile verification, enrichment analysis,
eQTL regulatory relationship analysis, and cancer relationship
research.
First, to mark the functional profiles of the peripheral and core

regions, we analysed the excess overlap between genes in ten
biological datasets (Table 3, Supplementary Table 7) and the
peripheral and core genes (see ‘Methods’, Fig. 3a). The average
values across the cancers all exceeded 1, indicating that genes in
the MOPC have biological significance. A significant excessive
overlap of peripheral genes on OMIM, GWAS, and ClinVar
indicated that they are potentially disease-related genes, and
the significant excessive overlap on drug targets indicated that
they can be screened for cancer treatment. In addition, the

excessive overlap of peripheral genes on the Cancer Gene Census
(CGC) was very high (average excess overlap = 1.88), which shows
that peripheral genes likely lead to cancer development.
Second, we performed KEGG enrichment analysis on the MOPC,

by the Over-Representation Analysis (ORA) in ConsensusPathDB
(http://consensuspathdb.org/). We collected 225 KEGG pathways
enriched in cancers (hypergeometric test p-value < 0.01, Supple-
mentary Table 8) and showed the distribution of cancers involved
in each pathway (Fig. 3b). Either specific (29% ≤ 3 cancers) or
corresponding (54% ≥ 7 cancers) pathways existed between
cancers. In particular, 27 pathways were enriched in a specific
cancer while 25 pathways were involved in all cancers. Among
them, we found generalised cancer mechanisms, including human
T-cell leukaemia virus 1 infection55, the thyroid hormone signalling
pathway56, platelet activation57, transcriptional misregulation in
cancer, and the cAMP signalling pathway58. For specific mechan-
isms, we found that retinol metabolism reduces cholangiocarci-
noma risk59, allograft rejection occurs in kidney renal clear cell
carcinoma60, ovarian steroidogenesis inhibits liver hepatocellular
carcinoma61, MSH and MLH1 gene alterations in mismatch repair
increase the oesophageal carcinoma risk62, and lung adenocarci-
noma63 influences renin–angiotensin system gene expression. We
visualised these representative pathways (−log10(p-value), hyper-
geometric test) in Fig. 3c. This result shows that different cancers
participate in some common and specific pathways, suggesting
that different cancers participate in the same pathway through
shared peripheral regions, which establishes relationships
between cancers. Similar results exist for GO terms and reactome
pathways (see Supplementary Fig. 10a–d and Supplementary
Table 8).

Fig. 2 Relationship between multi-omics periphery and core. a–d Distinction of peripheral and core regions of four omics aspects (O1, O2,
O3, and O4). a The violin chart shows the scales of the neighbourhoods (Table 2) across 15 cancers. The average sizes are 942, 691, 1044, and
976, respectively (median: 936, 687, 1046, and 983). b Of these, the scales of the core regions average 31, 11, 26, and 134, respectively (median:
18, 10, 18, and 42). c We show the LCC z-scores of neighbourhoods across 15 cancers. The average sizes are 0.88, −5.67, 4.01, and 1.93,
respectively (median: 0.76, −6.37, 4.2, and 2.08). d LCC z-scores of cores shown with average values of 2.53, −0.62, 7.83, and 0.63 (median, 1.09,
−1.03, 7.38, and 0.21). e–g Common peripheries and specific cores. Taking READ as an example, four peripheral and four core regions were
obtained from different omics aspects. Network proximity: Jaccard coefficient (JAC), Overlap p-value (hypergeometric test), and network
distance between any two regions are shown in the heat maps. The overlap between the peripheral region is large (average JAC= 0.048, p-
value = 0.01) and the distance is close (sAB = 0.21), while the core regions are basically non-overlapping (average JAC= 0.017, p-value = 0.25)
and far away (sAB = 1.05). Correspondingly, grey or green violins display the network proximity values among cores or among peripheries. We
noticed significant differences between these violin pairs (Mann–Whitney U test p-values, 1.77 × 10−5, 1.74 × 10−5, and 3.49 × 10−5). h The blue
violin describes the network distance between the core and peripheral regions of the same omics aspect; the light blue violin collects the
network distance between the core and peripheral regions from different omics aspects. There is no significant difference between these two
sets (Mann–Whitney U test p-value, 0.5657). i Button-like structure of the omnigenic neighbourhood. The peripheral regions (highlighted in
light green) are common, and the core regions (highlighted in four colours) are specific to the four omics aspects. A node is marked with
multiple colours, indicating that it is perturbed in multiple omics aspects. The bar chart shows the number of omics aspects in which a
peripheral or core gene is perturbed. The results indicate that most core genes (98%) are perturbed in specific omics aspects, and a certain
percentage of peripheral genes (21%) and a few core genes (2%) tend to be perturbed in multiple omics aspects. The error bars indicate the
95% confidence intervals.

Table 3. Datasets for biological profile verification.

Dataset Gene number source

Essential 7935 DEG: http://tubic.tju.edu.cn/deg/

OMIM 2266 OMIM: https://omim.org/

GWAS74 6271 The new NHGRI-EBI Catalogue of published genome-wide association studies (GWAS Catalogue). PMID: 27899670

ClinVar75 5428 ClinVar: Public Archive of Relationships Among Sequence Variation and Human Phenotype. PMID: 24234437

TF76 1610 The human transcription factors. PMID: 29425488

Drug target37 2256 Network-based prediction of drug combinations. PMID: 30867426

Virus host 947 CCSB: http://interactome.dfci.harvard.edu/V_hostome

Kinase 514 http://kinase.com/human/kinome

Promoter77 3934 A high-resolution map of active promoters in the human genome. PMID: 15988478

CGC cancer78 555 A census of human cancer genes. PMID: 14993899
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To explore the regulatory relationship between peripheral and
core genes in the MOPC, we used the PancanQTL database’s eQTL
cancer data64, including significant data on cis-eQTL and trans-
eQTL regulatory effects. The significantly regulated genes are
called egene as the ground truth. For 15 cancers, the number of

core genes regulated by peripheral genes was higher than
random genes (z-scores >1 in Fig. 3d), indicating that the cancer
periphery tends to work by regulating the core. Furthermore, to
determine differences in the degree to which eQTL regulates the
cores, we calculated the excess overlap between the cores and
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egene, and found that multiple omics cores were subject to eQTL.
The CNV core was among the most regulated regions (Fig. 3e).
Finally, to determine the roles of different peripheries in core
regulation, we calculated the proportion of peripheral genes
occupying the eQTL. The results show that the variation that
regulated the core genes was mainly occupied by the methylation
and CNV peripheries (Fig. 3f). Through these experiments, we
observed that, in the cancer neighbourhood, the variation in the
peripheral genes significantly regulates core gene expression
levels, which directly affects cancer. Core genes account for only a
few of the total number of genes, so the role of peripheral genes
should not be ignored in understanding cancer.
Finally, we hypothesised that cancers describe their similarities

through their peripheries. We applied the MOPC to obtain their
relationship. We first obtained three convincing cancer similarity
datasets for verification, including disease ontology (DO) similar-
ity65, symptom similarity66, and comorbidity data67 (see ‘Meth-
ods’). We screened these three types of similarity data based on
the 15 cancer multi-omics aspects, and obtained 55 pairs of DO
similarity values among 11 cancers, 54 pairs of symptom similarity
values among 11 cancers, and 29 pairs of comorbidity relative risk
(RR) values among 10 cancers. Moreover, we used two methods to
predict cancer similarity based on MOPC: (1) disease similarity
simAB, and (2) Jaccard coefficient (see ‘Methods’). Furthermore, we
calculated the Pearson correlation coefficient between the
predicted values and the ground truth similarities (DO, symptom
similarity, and comorbidity RR). The results showed that the
similarity based on MOPC positively correlated with DO similarity,
symptom similarity, and comorbidity RR (Fig. 3g, Supplementary
Fig. 10e), indicating that MOPC is valid in indicating relationships
between cancers. MOPC obtained greater relationship accuracy
than just the core because it included the large-scale periphery.
MOPC improved the correlation coefficients to 6.12, 1.26 and 2.31
times the ability of the core for each ground truth similarity,
respectively. Specifically, we focused on the relationship between
colon adenocarcinoma (COAD) and READ. Biologically, they are
the same type of colorectal cancer. The main difference is the
anatomical location. Therefore, a sophisticated method should
give them a very high similarity score. Based on the cores, their
similarity ranked fourth, but based on MOPC, their relationship
ranked first. This illustrates the great potential of the periphery in
predicting the relationship between cancers. We then focused on
shared peripheral genes of COAD and READ. As the Venn diagram
in Fig. 3h shows, they shared numerous overlapping peripheral
genes (2101, 54%). We suggest the pathways underlying their

pathology are involved in these overlapped peripheral genes. For
further test, we used ten classic cancer signalling pathways that
frequently undergo genetic variation52, including cell cycle, Hippo,
Myc, Notch, Nrf2, PI3K, RTK/RAS, TGF, P53 and Wnt. We calculated
the enrichment significance (hypergeometric test p-value, see
‘Methods’) of overlapping peripheral genes in signalling pathways.
We detected the key oncogenic signalling pathways Myc and
Notch, the abnormal activation of which drives colorectal cancer’s
carcinogenesis. Stabilising c-Myc promotes colorectal carcinogen-
esis and glucose metabolism68. Meanwhile, therapies have
potential in abrogating Notch signalling and, thus, inhibiting
colorectal cancer development and progression69. The presence of
the Myc and Notch signalling pathways in the periphery suggests
that the weakly-perturbed periphery also contains significant
cancer signalling molecules.
The genetic architecture of diseases describes the number of

genomic variants that contribute to risk of disease and their effect
size distribution. Cancer is polygenic but some mutations are
drivers and have large effect70. Therefore, network medicine
consortium, based on polygenic model, detects mesoscopic scale
module formed by driver genes. Omnigenic model takes it further
that most variants contribute to risk of cancer. To present the
outstanding characteristics of omnigenic neighbourhood, we
compare it with three representative polygenic modules. We
gather network-based DIAMOnD8 modules, a group of cancer
driver genes from Broad Institute of MIT and Harvard71 (indicated
by Driver(1), Supplementary Table 9) and another group of cancer
driver genes from Pan-Cancer Analysis of Whole Genomes
(PCAWG) Consortium72 (indicated by Driver(2), Supplementary
Table 10) (Details see Supplementary Materials section 7).

(1) We present the overlap between omnigenic neighbourhood
and these three polygenic modules (Supplementary Fig. 11).
We find that the induced intermediate DIAMOnd gene set
has significant overlap (hypergeometric test p-value < 0.01)
with peripheries of multiple omics. For Driver(1) and
Driver(2) were identified based on somatic mutation, they
are only significant overlap with core and periphery of
Somatic mutation data. The remarkable thing is that their
significant overlap with the periphery are higher than with
the core. These all are compatible with the importance of
the periphery.

(2) We do KEGG pathway enrichment analysis of omnigenic
neighbourhood and polygenic modules (Supplementary Fig.
12). It is observed that about 30–50% KEGG pathways,

Fig. 3 Characteristics of multi-omics periphery and core (MOPC). a Functional profiles. The excess overlap between the peripheral and core
region was calculated with ten biological functional datasets. The items with index excess overlap >1 (excess white line) mark the functional
profiles of the peripheral and core regions. The error bar corresponds to the fluctuation of the results across 15 cancers. The results of
peripheral regions (excess overlap >1, green bar) are slightly weaker than those of the core regions (grey bar), showing that their functionality
should not be ignored. b The distribution of the number of cancer MOPCs enriched in KEGG pathways. c Enriched pathways shared or specific
among cancer MOPCs. The ten representative pathways are focused on and their enrichment results are displayed (−log10(p-value),
hypergeometric test). d–f Regulatory relationship analysis in eQTL, based on cis-eQTL and trans-eQTL in the PancanQTL database (see
‘Methods’). d We counted the number of core genes directly regulated by peripheral genes. The z-score represents the statistical significance
compared with that of 1000 random experiments. e We counted the number of core genes regulated by eQTL. The excess overlap values
between the cores and the ground truth egene (see ‘Methods’) are given. The CNV (O4) core has the most excess overlap with egene (mean,
1.5). f We counted the number of peripheral genes, which regulate core genes, and showed the proportion of peripheral genes that are
responsible. The periphery of CNV (O4) accounts for the largest proportion (average, 0.52). g The omnigenic neighbourhood portrays cancer
similarity. We used simAB to calculate the relationship between cancers (‘Methods’), where the grey image represents the result of the cancer
similarity analysis based on core genes, and the green image represents the result of the cancer similarity analysis based on the omnigenic
neighbourhood. The points represent the similarities between cancers. We verified the results by comparison with DO similarity, symptom
similarity, and comorbidity RR. The fitted line is the Pearson correlation coefficient between the predicted and known similarity between
cancers. The shading indicates the 95% confidence interval. In the three similarity verification experiments, based on the omnigenic
neighbourhood, the Pearson correlation coefficient increased by 6.12-fold, 1.26-fold, and 2.31-fold, respectively. h Common mechanism of
rectum adenocarcinoma (READ) and colon adenocarcinoma (COAD) in the periphery. The Venn diagram shows the number of overlapping
peripheral genes between COAD and READ (2101, Jaccard coefficient = 0.54). The heat map is also used to show the enrichment results
(−log10(p-value), hypergeometric test) on the shared peripheral genes in ten classic cancer signalling pathways42 that frequently undergo
gene variations. The error bars indicate the 95% confidence intervals.
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enriched by polygenic modules (hypergeometric test p-
value < 0.01), are reinforced by omnigenic neighbourhood.
Biological functions of polygenic modules need to be
supplemented by the periphery. There are functional
pathways enriched only by peripheries, and the common
pathways which are enriched by several peripheries have an
underlying association with cancer (validated in literature).
The functional pathways that indirectly affect cancers are
embedded in their common peripheries. On the other hand,
the significance of enrichment reduces under the removal of
one omics data. This indicates that each omics offers its own
contribution to the understanding of cancer. For example, if
the Methylation core is removed, the multi-omics core will
ignore the relationship between cancer and inflammatory
mediator regulation of TRP channels (more examples in
Supplementary Table 11). Furthermore, we show the
functional pathways enriched by a given omics core, and
find that other multiple omics peripheries can reinforce
these pathways. Such as Transcriptome core is reinforced by
peripheries of Transcriptome, Methylation and CNV. This
indicated the complex regulatory relationship
between omics.

(3) We test cancer similarity described by polygenic modules
(Supplementary Fig. 13), and verify the results by calculating
correlation coefficient with DO similarity, symptom similar-
ity, and comorbidity RR. In 89% (8 in 9) tests, the omnigenic
neighbourhood achieves higher correlation coefficients than
polygenic modules, present a greater ability to portray the
relationship between cancers. Meanwhile, different omics
contribute differently to the similarity. Transcriptome and
Methylation play a more critical role in portraying the
relationship (Supplementary Fig. 14).

(4) We do drug targets enrichment analysis of omnigenic
neighbourhood (Supplementary Fig. 15). 229 protein targets
of 72 approved drugs for 12 cancers (from repoDB
database73, details in Supplementary Table 12) are har-
vested as ground truth. Among multi-omics core, DIAMOnD
module, Driver(1) and Driver(2), only DIAMOnD module
contains significantly more drug targets. Nevertheless, as
long as we look at the periphery, considerably more drug
targets can be detected. Omnigenic neighbourhood is the
region with the largest number (average 70.3 across
cancers) and the strongest significance (-log10(p-value)
average 5.55, hypergeometric test) of drug targets. Again,
different omics contribute differently to drug targets.
Transcriptome and Somatic mutation plays a crucial role in
portraying more drug targets.

Overall, omnigenic neighbourhood presents three outstanding
characteristics than polygenic modules. First, it enhances and
identifies underlying functional pathways of cancer. Second, it
puts forward a greater ability to portray the relationship between
cancers. Finally, it accommodates a greater variety of drug targets,
offer a methodological neighbourhood for explaining drug
therapeutic effects through the interactome.

DISCUSSION
We studied the omnigenic pattern, which is constructed based on
the wave mode of the connectivity significance of cancer genes
while considering different degrees of perturbation. We devel-
oped a unified network-based pattern CLine that pinpoints the
OSOP across 15 cancers.
The mesoscopic scale disease module1 focuses on connected

subgraphs formed by these strongly cancer-relevant core genes.
Previous work1 used incomplete PPI networks to explain why
disease modules are unconnected. We observed that the
connectivity of the cancer-perturbed genes depends on the

omics aspects. Therefore, different strategies should be adopted
to analyse the disease neighbourhood of different omics studies.
Previous methods8,9,74–76 based on network proximity could only
identify mesoscopic cores in transcriptome and somatic mutation
aspects, and to present macroscopic cancer neighbourhoods in
somatic mutation and CNV aspects. Our CLine and its uniform
UCurve identify the common structural properties across cancers
and discriminate the differential connectivity pattern between
multiple omics aspects. We have provided a practical tool for
analysing cancers from the omnigenic model in multiple omics
studies.
With the huge volume of data from large-scale cancer

genomics, an open challenge is to distinguish core regions,
conditional on genotypes and expression levels, that have the
strongest effects on cancer or with interpretable mechanistic links
to cancer formation and progression. The usual assumption is that
cancer-associated genes tend to cluster in the same network
neighbourhood. In fact, cancer core regions do not correspond to
any one well-connected component as observable modules in the
present incomplete interactome. They are scattered, forming
many separate components. Despite the best curation efforts, the
samples and interactome remain incomplete and systematically
biased toward multi-omics cancer genes and mechanisms. There-
fore, not all CLines meet the criteria of the wave of the
corresponding OSOP, which may be because of the uneven
distribution of sample numbers and incomplete interactome. For
example, CHOL’s CLine in the somatic mutation does not meet the
unimodal pattern, which is largely because of too few samples
(sample number 36, Supplementary Fig. 3, Supplementary Table
1), and LUAD’s CLine in the CNV does not meet the steepest
descent pattern (Supplementary Fig. 4), which may be because of
interactome noise in the highly-perturbed region. We selected the
LCC of perturbed genes corresponding to a high cutoff with the
local maximum LCC z-score in the UCurve as the core region. This
network-based approach defines and indicates the cancer core.
For any CLine that did not meet the corresponding criteria, we
used the cwDTW algorithm54 to map it to the corresponding
UCurve. This is an adaptive way to deal with problems such as
inadequate samples and an incomplete interactome. An alter-
native method is by reducing the criteria through parameter α in
formula 3, which defines the standards of the omnigenic pattern.
Another key problem to be solved in the MOPC is to determine

how many distinct peripheral genes contribute to cancer variation.
This remains a challenge in our omnigenic pattern. Because of
huge differences in sample size, the scales of the regions
perturbed by cancers varies greatly under the same pre-set
parameters of the statistic model. Therefore, based on bio-
enrichment and experience, the LCC of genes with the top 1500
perturbation degrees were selected as the cancer neighbourhood
for each omics aspect. Another unsolved problem is that if most
peripheral genes act through interactome networks, then what
graph pattern mediates their contribution to the core region? Key
master regulators, propagation paths, and direct or indirect
interactions may all contribute. Moreover, for DNA differential
methylation and CNV omics aspects, the highly-perturbed genes
did not form a significant connected subgraph. The results are
influenced by the choice of the LCC of the gene set corresponding
to the local maximum of the high perturbation region of UCurve as
the core. In particular, if the core genes of the methylated aspect
do not tend to influence each other, will they regulate other
omics-perturbed genes? The deep-seated relationship needs
further exploration. Our pattern also raises questions about the
next generation of prediction studies. The role of the omics-
specific omnigenic pattern of cancer in predicting driver muta-
tions, pathways, and gene sets (or core modules) that contribute
to cancer formation, progression, and precise treatment remains
an essential task for fully understanding cancer biology.
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We performed data-driven pattern discovery in multi-omics
data of cancer according to omnigenic model. The observed
pattern is linked to the specific type of data, its distribution and
noise. Indeed orthogonal verification experiments are needed to
support Cline to go forward to a system property of the cancer. For
specific disease and independent datasets, developing computa-
tional tools based on omnigenic neighbourhood to improve
sample classification and drug repurposing will be an open
problem in future work.

METHODS
Material for building model
Human interactome. The human interactome was established
from the underlying network using experimentally-documented
molecular interactions in human cells from the interactome
platform1. Protein interactions were combined from four sources:
(1) binary interactions from two available high-quality yeast-two-
hybrid datasets; (2) literature-curated interactions obtained by
low-throughput experiments; (3) kinase–substrate pairs; and (4)
signalling interactions. The data contained 16,461 genes and
239,305 physical interactions (details in Supplementary Table 4).

Multi-omics cancer data. The Cancer Genome Atlas (TCGA) has
analysed large cohorts of over 30 human cancers through large-
scale genome sequencing and integrated multi-dimensional
analyses, covering publicly-available data sets including transcrip-
tome differential expression, DNA differential methylation, somatic
mutation, and copy number variation44. UCSC Xena was devel-
oped as a high-performance visualisation and analysis tool for
both large public repositories and private datasets53. It organises
and redevelops TCGA data, and provides interactive online
visualisation of TCGA public data sets, which can help researchers
to download multi-omics data of TCGA. We downloaded and used
cancer multi-omics data from UCSC Xena, collating publicly-
available sample datasets for transcriptome differential expres-
sion, DNA differential methylation, somatic mutation, and copy
number variation of 15 cancers from TCGA (see Supplementary
Materials for data preprocessing, Supplementary Table 3).

Methods
Identification of the omnigenic neighbourhood of cancers
Omics-specific omnigenic pattern of cancers: We used the
connectivity line (CLine) to describe the omnigenic pattern of
each cancer omics aspect individually. First, for each cancer,
according to the degree of perturbation in a given omics dataset,
a set of equally divided cutoffs fl of perturbation degree was
considered. According to different perturbation degree cutoffs fi

(fi ∈ fl), we selected the cancer gene set Si (8j 2 Si ;wj > fi) whose
perturbation degree wj of any gene was greater than fi. As fi

progressively increases, the stronger the cancer association of the
derived gene set Si. We gradually narrowed down the scope from
the weakly-perturbed peripheral genes to the highly-perturbed
core genes. The perturbation degree values of all genes in an
omics dataset were collected into a set w, which was ranked and
divided into t equal bins (t= 50) from minimum to maximum,
forming the cutoff list fl. Each ordered element fi is a perturbation
degree cutoff and defined as

fi ¼ minðwÞ þmaxðwÞ �minðwÞ
t

´ ði þ 1Þ; i ¼ 0; 1; 2; :::; t � 1;

(1)

where 8fi 2 flði ¼ 0; 1; 2:::; t � 1Þ. We calculated the LCC z-score
of gene set Si (8j 2 Si ;wj > fi), where wj 2 w reflects the perturba-
tion of gene j.
Then, size (SLCC) of the largest connected component (LCC) of Si

was used to quantify the connectivity of these cancer genes in the

human interactome. By comparing with the sizes (SrLCC) of the
LCCs from 1000 random experiments, the statistical z-score was
obtained to indicate the significance of connectivity of Si. The LCC
z-score is given by:

LCC z � score ¼ SLCC � μðSrLCCÞ
σðSrLCCÞ ; (2)

where μ(SrLCC) and σ(SrLCC) represent the mean and standard
deviation of the LCC size obtained from 1000 random experi-
ments, respectively.
Finally, CLine was plotted with the vertical as the LCC z-score of

Si, the abscissa as the cutoff fi, and a line out of 50 points (t= 50)
(Fig. 1a). CLine reflects the wave mode of the connectivity
between the perturbed genes corresponding to the change of the
perturbation degree cutoffs (results of 15 cancers shown in
Supplementary Table 5).
Universality of pattern: We defined different criteria for each

omics aspect to measure whether the CLine agreed with a specific
pattern. We divided the cutoffs into three perturbation parts: low
(cutoffs of the first quarter), medium (cutoffs of the second and
third quarters) and high (cutoffs of the last quarter), and used
three sets, L, M, and H, to store LCC z-scores corresponding to
these different cutoffs, respectively. The standards that we defined
for the connectivity omnigenic patterns of the four omics aspects
were as follows:

(1) The bimodal pattern of transcriptome aspect: dratioðL;MÞ> α
and dratioðH;MÞ> α;

(2) The fragment pattern of methylation aspect: all z-score <
1.64 (z-score = 1.64, corresponding statistical significance p-
value = 0.05, under the standard normal distribution);

(3) The unimodal pattern of somatic mutation aspect:
dratioðM; LÞ> α and dratioðM;HÞ> α;

(4) The steepest descent pattern of CNV aspect: dratioðL;HÞ> 2α;

where the key indicator dratio quantifies the amplitude ratio of the
curve as:

dratioðX; YÞ ¼ maxðXÞ �minðYÞ
maxðALLÞ �minðALLÞ ; (3)

where X, Y and ALL are sets of LCC z-scores. ALL fixedly stores the
LCC z-scores corresponding to all cutoffs. X and Y are used to
substitute the parts L, M and H. WhendratioðX; YÞ> α, it means that
the amplitude ratio between parts X and Y is relative to the overall
amplitude of CLine, indicating that the maximum value in the X set
is significantly higher than the minimum value in the Y set. The
higher parameter α, the more stringent the omnigenic pattern. We
set the parameter α= 0.4 as the threshold of the amplitude ratio
in our tests. To highlight the pattern, we used the least square
method77 to perform polynomial fitting on the CLines that met the
criteria to obtain a Uniformed Curve (UCurve, Fig. 1b). Before
fitting, in each omics aspect, we normalised the cutoff fi as
fi �min flð Þð Þ= max flð Þ �min flð Þð Þ. Then multiple cancers could be
displayed in a uniform coordinate.
In the follow-up, for any CLine that did not meet the

corresponding criteria, we used cwDTW54 to map it to the
corresponding UCurve. The cwDTW uses CWT (continuous wavelet
transforms) to perform continuous wavelet transformation on
CLine and perform z-score standardisation to obtain a curve similar
to the fluctuation law of UCurve. At the same time, dynamic time
warping (DTW) was used to find the mapping effect, which
minimises the sum of the distances of all corresponding points in
the two curves to map the CLine onto the UCurve. We sampled the
mapping results to obtain the key points corresponding to the
two curves (Supplementary Fig. 5).

Network proximity between peripheries and cores. We performed
network proximity analysis between the core and peripheral
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regions of the four omics aspects. We calculated the Jaccard
coefficients, the p-value of overlap, and the network distance
between them.
Jaccard coefficient: For sets A and B, the Jaccard coefficient is

the ratio of the size of the same element of A and B to the size of
all elements of A and B. The Jaccard coefficient is in the range of
0–1. When JðA; BÞ ¼ 0, A and B do not have the same element.
When JðA; BÞ ¼ 1, A and B are exactly the same. The larger the
Jaccard coefficient value, the more identical elements, and the
more similar sets A and B are.

JðA; BÞ ¼ A \ Bj j
A∪ Bj j : (4)

Overlap p-value: The hypergeometric distribution is used to
calculate the overlap significance of the two sets.

pðx ¼ kÞ ¼
M
k

� �
N�M
n�k

� �

N
n

� � ; (5)

p� valueðkÞ ¼
X

i�k

pðx ¼ iÞ; (6)

where x is a random variable and obeys the hypergeometric
distribution. N is the number of all genes in the network, and n
and M are the number of genes in the two gene sets, respectively.
The cumulative function is used to calculate the overlap significant
p-value of the two gene sets. A p-value < 0.05 indicates that the
overlap of the two gene sets is significant.
Network distance: The average shortest distance dAB of gene

sets A and B on the network is calculated as follows:

dABh i ¼ 1
Aj j þ Bj j

X

a2A
min
b2B

dða; bÞ þ
X

b2B
min
a2A

dða; bÞ
 !

; (7)

where d(a, b) represents the shortest distance between the two
genes a and b in the network. When a and b are the same, d(a, b)
= 0. |A| and |B| are the sizes of gene sets A and B, respectively.
The network distance, sAB, can describe the positional relation-

ship of two sets of nodes in the network. The smaller the sAB, the
closer the distance of the gene set in the network.

sAB ¼ dABh i � dAAh i þ dBBh i
2

: (8)

We found that the core genes of the four omics aspects were
independent of each other, had little overlap, and were far apart in
the network, while the peripheral genes of the four omics aspects
were mixed with each other, overlapped more, and were close in
the network. In the end, we modelled the observed results as a
button-like structure, describing the omnigenic neighbourhood of
cancer (Fig. 2i).

Biological characteristics of multi-omics periphery and core
Verification of biological data sets: We used ten biological

datasets (Table 3, details in Supplementary Table 7) to show the
enrichment performance of cancer in different biological profiles
based on the multi-omics neighbourhood. These ten datasets
included essential genes that play a decisive role in human life,
disease-related pathogenic genes from OMIM, GWAS78, and
ClinVar79, transcription factors from TF80, drug targets37, viral
hosts, kinases, promoters81 and cancer genes from CGC82 (see
table). These ten datasets reflect a wide range of indicators to
measure the importance and biological significance of genes.
We used an excessive overlap10 to measure whether there was

significant overlap between two gene sets. In a network with N

genes, for gene sets A and B, excess overlap is defined as:

excess overlap ¼
A\B
B

�� ��
A\N
N

�� �� : (9)

The gene set A represents one of the ten biological datasets,
and B represents the core region or the peripheral region in the
multi-omics neighbourhood of cancer. When excess overlap >1, it
means there is greater overlap than expected randomly,
otherwise not.
Functional enrichment analysis: We used the over-

representation analysis (ORA) method in the online Consensus-
PathDB website (http://consensuspathdb.org/) to analyse the
functional enrichment of the multi-omics periphery and core in
pathways.
eQTL regulatory relationship: We used the eQTL data of cancer

provided in the PancanQTL database64, including significant cis-
eQTL and trans-eQTL regulatory effects (p-value < 0.01, estimated
by Hardy–Weinberg R package83). eQTL provides pair relations set
P, each relation s; gð Þ 2 P describes the significant regulatory
influence of a single nucleotide polymorphisms (SNP) site s on
Transcriptome expression of gene g, among which the set of sites
is called esite and the set of significantly regulated gene is called
egene. Five representative cancers were selected in our tests,
namely BLCA, COAD, HNSC, READ and UCEC (the CLines of these
cancers in the four omics aspects all conform to specific patterns).
First, we mapped the SNP sites to genes according to their genome

positions. If a SNP s in esite is located in a gene g, denote as I s; gð Þ ¼ 1
otherwise 0. The number g I s; qð Þ ¼ 1; s; gð Þ 2 P; q 2 X; g 2 Yjf gj j is
used to quantify the regulated amount of gene set Y being affected
by gene set X. When there is a SNP site s located in the gene q of set
X I s; qð Þ ¼ 1, and site s has significant regulatory influence on a gene
g of set Y s; gð Þ 2 P, the regulated amount increases by one. Then we
observed the regulated amount of core by peripheral gene sets. For
the statistical significance, we randomly selected 1000 gene sets as
counterparts of periphery to calculate the z-score (Fig. 3c). We
designed three random strategies to obtain a random gene set: (1)
Randomly select set with the same size of the periphery; (2) Randomly
select connected component in the network with the same size of the
periphery; (3) Randomly select gene sets that are consistent with the
degree sequence and size of the periphery. Each group has 1000
random experiments. Furthermore, we quantified the regulated
amount of omics-specific core genes in eQTL, for each omics aspect,
we calculated the excess overlap between the core and egene, and
found that the somatic mutation core is mostly regulated in eQTL (Fig.
3d). Finally, the number q I s; qð Þ ¼ 1; s; gð Þ 2 P; q 2 X; g 2 Yjf gj j is
used to quantify the regulatory amount of gene set X having over
gene set Y. We calculated the regulatory amount proportion of
peripheral genes having over the core genes in the four omics
aspects, it is found that the variations that regulate core mainly occur
in copy number variant periphery (Fig. 3e).

Disease similarity analysis. In order to explore the relative
contribution of omnigenic neighbourhood to the commonalities
between cancers and also explain cancer–cancer relationships, the
known and convincing cancer similarity data are from DO
similarity65, symptom similarity66 and comorbidity RR67 are used
for for verification.
DO similarity: DO similarity data are calculated by the R package

DOSim65. DOSim provides a simple and direct method to study
disease similarity. It calculates the similarity of diseases by using
semantic similarity measures in Disease Ontology (DO) to deepen
our understanding of the complex pathogenesis of diseases and
the relationship between different diseases.
Symptom similarity: Symptom similarity data comes from the

Human Symptoms Disease Network (HSDN) based on symp-
toms66. The weight of the link between two diseases quantifies
the similarity of their symptoms. Symptoms are crucial in the
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clinical diagnosis and treatment of diseases. The HSDN is
constructed using a large biomedical literature database to study
the relationship between the clinical manifestations of the disease
and its potential molecular interactions.
Comorbidity RR: We used comorbidity data between genetically

related diseases67. The degree of comorbidity is quantified by
relative risk, which is calculated based on the Medicare database
of approximately 13 million patients. Studying the systemic
correlation between network interactions and comorbidity can
provide opportunities for understanding disease mechanisms and
developing treatment methods.
We first mapped 15 cancers to these three datasets, and

obtained 55 pairs of DO similarity values among 11 cancers, 54
pairs of symptom similarity values among 11 cancers and 29 pairs
of comorbidities among 10 cancers. Then, we used the mapping
data to verify the results of cancer–cancer relationship based on
omnigenic neighbourhood.
We used two methods to predict cancer similarity.

(1) Disease similarity simAB. The similarity simAB of two cancers
A and B is:

simAB ¼ 1� dABh i
dh imax

; (10)

where dABh i is the average shortest distance between cancers A
and B in the human interactome. The calculation method is shown
in formula (7). dh imax represents the largest average shortest
distance between all cancer pairs. The range of simAB is between 0
and 1. The larger the simAB, the higher the cancer similarity.
(2) Jaccard coefficient: in measuring the similarity between two

cancers, the Jaccard coefficient was used to calculate the
ratio of overlapping genes to all genes in the gene set of
two cancers, as shown in formula (4). The larger the Jaccard
coefficient value, the higher the cancer similarity.
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