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Regulome-based characterization of drug activity across the
human diseasome
Michio Iwata 1, Keisuke Kosai2, Yuya Ono2, Shinya Oki 3,4, Koshi Mimori2 and Yoshihiro Yamanishi 1✉

Drugs are expected to recover the cell system away from the impaired state to normalcy through disease treatment. However, the
understanding of gene regulatory machinery underlying drug activity or disease pathogenesis is far from complete. Here, we
perform large-scale regulome analysis for various diseases in terms of gene regulatory machinery. Transcriptome signatures were
converted into regulome signatures of transcription factors by integrating publicly available ChIP-seq data. Regulome-based
correlations between diseases and their approved drugs were much clearer than the transcriptome-based correlations. For
example, an inverse correlation was observed for cancers, whereas a positive correlation was observed for immune system diseases.
After demonstrating the usefulness of the regulome-based drug discovery method in terms of accuracy and applicability, we
predicted new drugs for nonsmall cell lung cancer and validated the anticancer activity in vitro. The proposed method is useful for
understanding disease–disease relationships and drug discovery.
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INTRODUCTION
Diseases are caused by dysfunctions in human biological systems
consisting of genes, proteins, and pathways. Disease pathogenesis
is generally considered as disease-specific; however, characteristic
molecular features are often similar among different diseases,
suggesting a commonality in underlying molecular mechan-
isms1–3. Disease states are characterized by impaired expression
of genes; thus, the commonalities shared among diseases could
be explained by certain gene expression patterns. Drugs are
expected to recover the gene expression system away from the
impaired state to normalcy through disease treatment, with the
implication that appropriate drugs should cancel disease-specific
gene expression patterns.
Drug repositioning, namely, the identification of new therapeu-

tic indications (i.e., applicable diseases) of existing drugs, is an
efficient drug discovery strategy4–7. A popular computational
approach for drug repositioning is the usage of chemically-
induced gene expression profiles stored in the Connectivity Map
(CMap)8 and the Library of Integrated Network-based Cellular
Signatures (LINCS)9. The prediction assumes that gene expression
patterns perturbed by treatment with a drug are inversely
correlated with those of a disease of interest if the drug applies
to the disease10–12. This assumption was established based on the
observation of significant inverse correlations between gene
expression patterns of Alzheimer’s disease and those upon the
administration of drugs for treating Alzheimer’s disease8. Several
algorithms have been developed for the inverse correlation-based
drug repositioning approach13,14 to associate chemically-induced
transcriptome data with diseases. However, the understanding of
gene regulatory machinery underlying drug activity or disease
pathogenesis is far from complete.
Gene expression is regulated by transcription factors in a

coordinated manner15; therefore, each transcription factor could
be a drug(s) target for treating various diseases16. To evaluate the

intracellular activity of drugs, the activity of transcription factors
was previously assessed using a multiplex reporter system17.
Recent sequencing technologies (e.g., ChIP-seq) have enabled
comprehensive characterization of associations between genes
and transcription factors. Thus, a comprehensive analysis of ChIP-
seq data is expected to be used for deciphering gene regulatory
machinery. Alternatively, the method of predicting gene regula-
tory network comprising of genes and their regulators (i.e.,
transcription factors) by focusing on the binding motif sequences
has been proposed (SCINIC18). A data-mining platform, ChIP-
Atlas19,20, has been developed by fully integrating public ChIP-seq
data with an established protocol. ChIP-Atlas enables the analysis
of given genomic intervals using global protein–DNA binding
data. For example, for disease-specific differentially expressed
genes, highly-enriched transcription factors can be considered as
regulators of disease-specific gene expression. Thus, gene
expression can be explained at the regulome level, which provides
a new perspective on disease states.
In this study, we perform large-scale regulome analysis for

various diseases in terms of gene regulatory machinery. Tran-
scriptome signatures were converted into regulome signatures of
transcription factors by fully integrating all possible ChIP-seq data.
Our comprehensive examination shows that regulome-based
correlations between diseases and their approved drugs are
much clearer than the transcriptome-based correlations. We
proposed a regulome-based method for drug discovery and
demonstrated the usefulness of the proposed method in terms of
accuracy and applicability. We predicted new drugs for nonsmall
cell lung cancer using the regulome data only and validated the
anticancer activity in vitro. The proposed method enabled
clarification of cell systems in terms of gene regulatory machinery,
which could lead to understanding disease−disease relationships
and drug discovery.
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RESULTS
Overview of the proposed method
In this study, we evaluate drug−disease correlations at the
regulome level for predicting drug candidates for various diseases.
Gene regulations in cell systems are reflected by transcriptome
and regulome data (Fig. 1a). Transcriptome data contains
information on genes and regulome data contains information
on their regulators (i.e., transcription factors). In previous methods,
drug−disease correlations have been evaluated at the transcrip-
tome level10,12,21–23, whereas, in the proposed method, the
correlations are evaluated at the regulome level. Thus, it can be
expected that the new correlations between drugs and diseases
are clarified.
We converted transcriptome signatures into regulome signa-

tures by evaluating the enrichment of transcription factors on
regulated genes (Fig. 1b). First, transcriptome signatures were

curated from public repositories. Drug-induced transcriptome
signatures were obtained from the LINCS program9. Disease-
specific transcriptome signatures were obtained from the CRowd
Extracted Expression of Differential Signatures (CREEDS) data-
base24 and The Cancer Genome Atlas (TCGA) program (https://
www.cancer.gov/tcga). Second, for drugs, up- and downregulated
genes in each drug-induced transcriptome signature were
extracted. The enrichment of each transcription factor on a set
of regulated genes was statistically evaluated using Fisher’s exact
probability test. Finally, regulome signatures were constructed
using FDR-corrected p-value given for each transcription factor;
where transcription factors enriched around up- and down-
regulated genes were scored by positive and negative values,
respectively. Similarly for diseases, transcription factors enriched
around over expressed and repressed genes in disease-specific
transcriptome signatures were scored by positive and negative
values, respectively.

Fig. 1 Overview of the proposed method. a Evaluation of drug−disease correlations at the different omics level. Circles in the transcriptome
layer denote genes and pentagons in the regulome layer denotes transcription factors. b Conversion of transcriptome signatures into
regulome signatures. Drug-induced and disease-specific transcriptome signatures are converted into regulome signatures. Up- and
downregulated genes in drug-induced transcriptome signatures and over expressed and repressed genes in disease-specific transcriptome
signatures are manually extracted (left). Enrichment of transcription factors on the regulated genes are statistically evaluated on the ChIP-Atlas
platform (center). The resulting FDR-corrected p-values are used for constructing regulome signatures (right).
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Regulome-based characterization of diseases
To identify the commonality of different diseases, we applied
Uniform Manifold Approximation and Projection25 on a set of
disease signatures. When using disease-specific transcriptome
signatures, diseases that have similar gene expression patterns
were closely located (Fig. 2a and Supplementary Fig. 1a). For
example, “atopic dermatitis” and “allergic contact dermatitis” were
closely located, as they belong to chapter 14 (diseases of the skin)
that is defined in the 11th revision of the International
Classification of Diseases (ICD-11)26, implying that diseases of
the same organ tend to be similar in terms of gene expression
patterns and the transcription signatures from similar cell types
could be closely associated. However, there are many exceptional
cases of closely clustered diseases in different ICD chapters and
those within the same ICD chapter were clustered separately.
Therefore, transcriptome-based disease classification was different
from organ-based disease classification in traditional medicine.
When using regulome signatures, diseases that are regulated by
similar transcription factors were closely located (Fig. 2b and
Supplementary Fig. 1b). For example, almost all cancers were
closely located, as they belong to chapter 02 (neoplasms). These
diseases were separately located in the case of transcriptome
signatures, suggesting that regulome-based disease classification
differs from transcriptome-based disease classification.

Regulome signatures reveal distinct correlations between
diseases and their approved drugs
Generally, a drug-induced transcriptome signature is considered
to be inversely correlated with a disease-specific transcriptome
signature if the drug is effective for treatment of the

disease10,12,21–23. Thus, we investigated whether disease-specific
transcriptome signatures exhibited clear inverse correlations with
drug-induced transcriptome signatures of known drugs approved
for the corresponding diseases.
We analyzed known drug–disease associations involving 48

diseases where at least one drug was approved for the
corresponding disease. When comparing transcriptome signa-
tures, inverse correlations were not always observed (Fig. 3a),
suggesting that the inverse correlation-based method might not
always work in practice. In contrast, when comparing regulome
signatures, clear correlations were observed for many diseases
(Fig. 3b). An inverse correlation between the two signatures was
observed for cancers such as “nasopharyngeal cancer”, “acute
myeloid leukemia”, and “gastric cancer”, whereas a positive
correlation was observed for immune system diseases such as
“Crohn’s disease”, “inflammatory bowel disease”, and “rheumatoid
arthritis”. The strongest inverse correlation was observed for
“nasopharyngeal cancer”, where MYC (MYC proto-oncogene, bHLH
transcription factor), MAX (MYC associated factor X), and MXI1
(MAX interactor 1, dimerization protein) have positive enrichment
scores in the disease-specific regulome signature (Fig. 3c and
Supplementary Fig. 2) and these transcription factors have
negative enrichment scores in the regulome signatures of
approved drugs for the disease (Fig. 3d and Supplementary Fig.
3). The Pearson’s correlation coefficient scores were from −0.935
to −0.502 for each category of transcription factors, except for the
transcription factors in the “Other basic domain” category, the
correlations were significant (P < 0.05; Supplementary Fig. 4). In
contrast, the strongest positive correlation was observed for
“primary open angle glaucoma”, where these transcription factors
have negative enrichment scores in both the disease-specific

Fig. 2 Disease–disease relationships in terms of transcriptome and regulome signatures. a Scatter plots of diseases obtained after applying
Uniform Manifold Approximation and Projection (UMAP) to transcriptome-based disease signatures. b Scatter plots of diseases obtained after
applying UMAP to regulome-based disease signatures. Disease symbols are colored according to the ICD-11 disease chapters.
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regulome signature (Fig. 3e and Supplementary Fig. 5) and the
regulome signatures of approved drugs for the disease (Fig. 3f and
Supplementary Fig. 6). The Pearson’s correlation coefficient scores
were from 0.467 to 0.873 for each category of transcription factors,
and except for the “Other basic domain” and “Other transcription
factors” categories, the correlations were significant (P < 0.05;
Supplementary Fig. 7). These results suggest that regulome
signatures contribute to clear correlations between drugs and
diseases and the correlations are different among the types of
diseases.

Performance evaluation
In this study, we applied the proposed method to the prediction
of candidate drugs for various diseases. The diseases and their

approved drugs may not always have inverse correlations; thus,
we predicted candidate drugs for each disease by considering the
positive and negative correlations separately. If the disease was
positively correlated with its approved drugs, drugs that have
positive correlations were predicted with high prediction scores as
candidate drugs for the disease. In contrast, if the disease was
inversely correlated with its approved drugs, drugs that have
negative correlations were predicted with high prediction scores
as candidate drugs for the disease.
We compared the prediction scores between approved drugs

for each disease and other drugs in transcriptome-based and
regulome-based predictions. For example, in the transcriptome-
based prediction, approved drugs for “adrenoleukodystrophy”
have higher prediction scores than other drugs (Fig. 4a), implying
that the transcriptome-based method can predict drug candidates

Fig. 3 Relationships between diseases and their approved drugs. a Distribution of correlation scores between transcriptome-based drug
and disease signatures. b Distribution of correlation scores between regulome-based drug and disease signatures. Each boxplot represents
correlation scores of the drugs approved for the corresponding disease. The horizontal axis indicates the list of diseases and the vertical axis
indicates cosine correlation coefficient. Diseases are listed in order of increasing median correlation scores. In the box plots: center line,
median; box, interquartile range; whiskers, 1.5× interquartile range; dots, outliers. c Radial plot of enrichment scores for transcription factors in
the regulome signature of nasopharyngeal cancer. d Radial plot of enrichment scores for transcription factors in the regulome signature of
approved drugs for nasopharyngeal cancer. e Radial plot of enrichment scores for transcription factors in the regulome signature of primary
open angle glaucoma. f Radial plot of enrichment scores for transcription factors in the regulome signature of approved drugs for primary
open angle glaucoma.
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for the disease. However, it is not always the case that the
approved drugs have higher scores than other drugs. Overall,
there is no significant difference in prediction scores between
approved and other drugs (Fig. 4b; P= 0.696, Wilcoxon signed-
rank test). In contrast, in the regulome-based prediction, approved
drugs for almost all diseases have higher prediction scores (Fig.
4c). Also, there are several diseases; e.g., “multiple myeloma”,
“Type I diabetes mellitus”, and “rheumatoid arthritis”, for which the
regulome-based method can predict approved drugs with higher
prediction scores. Overall, there is a significant difference in
prediction scores between approved and other drugs (Fig. 4d;
P < 0.001). These results suggest that the use of regulome data for
predicting drug indications has a potential to enhance the
performance of the existing transcriptome-based prediction (see
Supplementary notes and Supplementary Figs. 8 and 9).

Anticancer activity of Danazol was validated using in vitro
experiments
To experimentally validate the efficacy of predicted drugs, we
tested the anticancer activity of some drugs on nonsmall cell lung
cancer. From the high-scoring drugs, we selected commercially
available drugs. Taking into consideration budget constraints, we
chose the 4 nonanticancer drugs: Norethindrone (contraceptive),

Danazol (anti-endometriosis), flucytosine (antifungal), and spir-
onolactone (antihypertensive) for experimental validation (Fig. 5a).
Except for flucytosine, known targets of these test drugs are
transcription factors. PGR (progesterone receptor) is the target for
norethindrone. The targets of danazol are AR (androgen receptor),
PGR, and ESR1 (estrogen receptor 1). The target of flucytosine is
TYMS (thymidylate synthetase). Spironolactone targets NR3C2
(nuclear receptor subfamily 3 group C member 2). It is worth
noting that high scores were not achieved using transcriptome
signatures.
We tested for anticancer activity regarding cell viability and

apoptosis. To evaluate the effect of the selected drugs, we used
human nonsmall cell lung cancer cell lines: H1975, PC9, H3122,
and HC827. Among the tested drugs, we could observe the
anticancer activity of danazol. In the cell viability assay, Danazol
induced a dose-dependent decrease in the viability of PC9 and
H1975 (Fig. 5b). Also, in the apoptosis assay, Danazol showed a
dose-dependent upregulation of apoptosis (Fig. 5c). Two of three
known targets, AR and ESR1, had positive enrichment scores
(0.002 and 0.001, respectively), implying that these transcription
factors were enriched around danazol-induced regulated genes. In
fact, it is reported that steroid hormones, including androgen and
estrogen, have a crucial role in the progression of non-small cell

Fig. 4 Performance evaluation for drug indication prediction. a Difference between the prediction scores for approved drugs and those for
other drugs by the transcriptome-based prediction. b Distribution of prediction scores for approved and other drugs by the transcriptome-
based prediction. c Difference between the prediction scores for approved drugs and those for other drugs by the regulome-based
prediction. d Distribution of prediction scores for approved and other drugs by the regulome-based prediction. The positive difference means
the prediction scores for approved drugs are larger than those for other drugs. Bars are colored according to the ICD-11 disease chapters. All
P-values were determined by the Wilcoxon signed-rank test. In the box plots: center line, median; box, interquartile range; whiskers, 1.5×
interquartile range; dots, outliers.
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lung cancer27,28. Therefore, danazol could have anticancer activity
by regulating steroid hormones. Danazol has recently been
reported to have anticancer activity29. In multidrug-resistant
cancer cells, Danazol has been shown to induce cytotoxicity, cell
cycle arrest, and apoptosis30. Danazol also can dysregulate the cell
cycle and induce apoptosis in breast cancer cells31. Thus, the
predicted drug may be a promising candidate for treating
nonsmall cell lung cancer (see Supplementary notes and
Supplementary Fig. 10).

DISCUSSION
In this study, we present a computational method to predict drug
candidates for various diseases by focusing on gene regulatory
machinery. The originality of the proposed method lies in the
construction of regulome signatures representing the enrichment
of transcription factors involved in the differential gene expres-
sions. Our analysis revealed that the regulome-based classification
of diseases uncovers new disease associations not apparent with
transcriptome-based analysis. Also, we identified that diseases and
their approved drugs have clear correlations in regulome
signatures, and the correlation is useful for predicting drug
candidates of diseases. We predicted new drugs for nonsmall cell
lung cancer using the regulome data only and validated the
anticancer activity in vitro. The proposed method enables us to
clarify cell systems in terms of gene regulatory machinery for drug
discovery.
There are several frameworks to drug discovery. The target-

based framework is popular, where the search for compounds
interacting with a specific target molecule or pathway (e.g.,
apoptosis) is performed. Another possibility is the system-based
framework. Following the compound−target interaction, many
genes/pathways in the cellular system are regulated in a

complicated manner; therefore, it is desirable to consider the
behavior of all genes/pathways in the cellular system to have a
better insight into the mode of action of compounds. In the
context of the system-based framework, the hypothesis that drugs
are to return the transcriptome/regulome to normalcy is expected
to be helpful. In fact, based on the assumption, many drug
candidate compounds were discovered for various diseases,
including Alzheimer’s disease8, prostate cancer11, and metastatic
colorectal cancer12.
One disadvantage of the transcriptome-based approach is that

individual gene expression patterns are very varied; therefore,
detectable disease–drug correlation is weak, as shown in the
analysis of disease−approved drug correlations (Fig. 3a). Thus,
finding common correlation patterns for various diseases belong-
ing to the same disease class is difficult. In contrast, in the
regulome-based approach, the expression patterns of different
genes can sometimes be explained by the same transcription
factor: therefore, detectable disease−drug correlation is relatively
strong (Fig. 3b). Thus, it is easier to find common correlation
patterns for different diseases belonging to the same disease class
(e.g., a negative correlation for cancer and a positive correlation
for immune system diseases). The regulome-based approach may
contribute to a better insight into the drug-induced gene
expression machinery for each disease class from the viewpoint
of transcription factors compared with the transcriptome-based
method. Therefore, the proposed regulome-based approach could
have an advantage over the transcriptome-based approach
regarding interpretability.
We constructed regulome signatures statistically from extensive

ChIP-seq data. The ChIP-seq data was manually curated from
several experiments and reposited in ChIP-Atlas database. Due to
the difference of tissues or cell types used in each experiment, for
constructing regulome-based disease signatures, we selected

Fig. 5 Experimental validation of predicted anticancer effects of drugs. a List of tested drugs and their chemical structures. b The effect of
an anti-endometriosis drug, danazol, on the viability of nonsmall cell lung cell lines. c The effect of danazol on the apoptosis induction. Cell
lines were treated with various concentrations of danazol. The horizontal axis represents the concentration on a logarithmic scale. The vertical
axis represents the relative viability and relative apoptosis induction (caspase activity). Plot shows means and standard deviations for triplicate
experiments.
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appropriate cell types (e.g., lung) for each disease (e.g., nonsmall
cell lung cancer). This operation is considered reasonable because
each cell type has a different gene regulatory system; however, it
is not always the case that sufficient ChIP-seq data is available
from each cell type. Thus, the constructed regulome-based
disease signatures could be limited by the amount of ChIP-seq
data. This limitation can be overcome in the future by a large-scale
ChIP-seq experiment for various cell types.
Drug signatures are assumed to be inversely correlated with

disease signatures if the drugs have therapeutic effects on the
corresponding diseases. However, a previous CMap-based study
reported that there were limited inverse correlations for most
diseases12. In fact, transcriptomic inverse correlations between
diseases and their approved drugs were not clearly observed in
this study. In contrast, regulomic correlations were clearly
observed in various diseases. For example, inverse and positive
correlations were clearly observed in cancers and immune system
diseases, respectively. A possible explanation for the positive
correlation is that disease-specific gene expression patterns might
reflect potential immunological responses in patients. The
immunological responses are necessary to recover impaired
biological systems, which suggests that the immune system
diseases and their approved drugs have similar gene regulatory
systems for treating diseases. This finding could provide a new
chemotherapeutic strategy for each disease.
Many diseases lack any treatment or for which a drug profile is

not available in practice. The regulome-based approach makes it
easier to identify common correlation patterns for different
diseases belonging to the same disease class (e.g., a negative
correlation for cancer, positive correlation of immune system
diseases) (Fig. 3b). Given a disease for which a drug profile is
unavailable, it is possible to make predictions using the prior
information on positive/negative correlations for the same disease
class to which the given disease belongs.
We validated the anticancer activity on nonsmall cell lung

cancer cell lines in vitro experiment. Out of four experimental
drugs, danazol (anti-endometriosis) showed anticancer activity in
PC9 and H1975 cell lines. The other experimental drugs,
norethindrone (contraceptive), flucytosine (antifungal), and spir-
onolactone (antihypertensive), are previously reported to have
anticancer properties32–34; however, we did not observe their
anticancer activities in nonsmall cell lung cancer cell lines. Also,
PC9 harboring an EGFR exon 19 deletion mutation and HCC827
expressing an EGFR exon 19 deletion mutation showed different
responses to drugs. In this study, we could not investigate the
regulome difference between the two cell lines due to the lack of
transcriptome profiles for the cell lines; thus, the regulome
profiling of various cancer cell lines could be interesting to
characterize the cell lines in more detail. Also, we constructed
disease-specific regulome signatures without considering gene
mutations in patients. Therefore, consideration of gene mutations
enables more reliable predictions of drug candidates.
In summary, we found that the proposed regulome-based

approach enables to identify new associations between drugs and
diseases. Although there might be a potential to improve
regulome signatures from a biological perspective, our proposed
method opens a door for understanding drug activities and
disease states in terms of gene regulatory machinery.

METHODS
Drug-induced transcriptome data
In the LINCS program9, gene expression profiles were obtained
based on the L1000 mRNA profiling assay (http://
www.lincsproject.org). The gene expression profiles, namely,
GSE70138 and GSE92742, were obtained from the GEO database.
This dataset is based on 93 human cell lines with various cellular

perturbations. The LINCS database provides drug-induced gene
expression data for 978 landmark genes known as the “L1000
genes” at five levels of the data processing pipeline. The “level 5”
dataset is wholly processed by collapsing replicates and comprises
differential gene expression signatures. In addition, the “level 5”
dataset is recommended to use in LINCS. Therefore, in this study,
we used “level 5” moderated Z-scores data.
The gene expression levels were measured at 3, 6, 24, 48, and

144 h after drug treatment. Each gene expression profile (591,855
in total) was represented by a “sig_id”. We used 312,596
compound-treatment profiles (denoted as “trt_cp”) in total. For
each compound, the corresponding International Chemical
Identifier code (InChIKey) was also obtained from GEO.

Disease-specific transcriptome data
Gene expression profiles with patients of various diseases were
obtained from the CREEDS24. This database was created based on
the results of a re-analysis of disease-specific gene expression data
from the Gene Expression Omnibus35. The gene expression
profiles consisted of the scores computed with the Characteristic
Direction method36 that compared the gene expression measured
in disease tissue with that measured in control tissue. The over
expressed and over repressed genes had gene expression scores
denoted as “up_genes” and “down_genes” fields, respectively.
We used 695 profiles annotated as “manual disease signatures”,

because the profiles were assigned disease ontology IDs
(DOIDs)37. The DOIDs were converted into their corresponding
KEGG DISEASE38 IDs via the medical subject headings terms or the
Online Mendelian Inheritance in Man (OMIM)39 database. We
extracted the profiles obtained from humans, which resulted in 79
diseases and 14,804 genes (Supplementary Table 1). Out of 79
diseases, 46 diseases had at least one approved drug.
Gene expression profiles with patients with nonsmall cell lung

cancers; i.e., lung adenocarcinoma and lung squamous cell
carcinoma, were obtained from TCGA program (https://
www.cancer.gov/tcga). We downloaded the transcriptome profil-
ing data normalized by the Fragments Per Kilobase of transcript
per Million mapped reads upper quartile (FPKM-UQ) method via
Genomic Data Commons Data Portal (https://
portal.gdc.cancer.gov) on February 22, 2021. The total number
of samples was 1145 from 1016 cases of 2 cancer studies
(Supplementary Table 2). To identify approved drugs for each
cancer, we manually assigned the corresponding KEGG DISEASE
IDs to each cancer. Note that the gene expression pattern in
recurrent tumors is clinically different from that in primary tumors
due to genetic variations, implying that primary and recurrent
tumors should be analyzed separately. However, in this study,
nearly all non-small cell lung cancer samples were obtained from
primary tumors (1035 out of 1145 samples; see Supplementary
Table 2 for more details). Therefore, we did not separate primary
and recurrent tumors.

Construction of transcriptome-based signatures
For drugs, we represented drug-induced transcriptome-based
signatures using a feature vector:

xtrans ¼ xtrans1 ; xtrans2 ; � � � ; xtransp

� �T
; (1)

where p is the number of genes (p is 978 in this study). Each
element in the signature was defined as the difference between
the gene expression value measured after drug treatment and
that measured in the corresponding controls (the plate back-
ground). In this study, to make a fair comparison of the
performance between the transcriptome-based method and the
regulome-based method, we used the gene expression ratios for
only the top 5% and bottom 5% genes, and those for the
remaining genes were assigned a value of zero. Note that the top-
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and bottom-ranked genes were used for analyzing the enrichment
of transcription factors as regulated genes. In addition, to handle
the problem of the noise contained in gene expression values, the
use of only regulated genes was proposed to remove the noise
effects in many previous studies14,40,41.
For the diseases, we represented each disease-specific tran-

scriptome signature using a feature vector as follows:

ytrans ¼ ytrans1 ; ytrans2 ; � � � ; ytransq

� �T
; (2)

where q is the number of genes (q is 14,639 in this study). For
CREEDS diseases, each element in the signature was the score
defined in the CREEDS database. We averaged multiple signatures
for the same disease and constructed a disease-specific tran-
scriptome signature for each of 79 diseases. Note that the positive
and negative scored genes were used for analyzing the
enrichment of transcription factors as over expressed or repressed
genes. For TCGA cancers, each element in the signature was log2
fold change in gene expression in tumor tissues (sample types are
“01: Primary Solid Tumor” and “02: Recurrent Solid Tumor”)
compared with that in normal tissues (sample type is “11: Solid
Tissue Normal”). We averaged multiple signatures for the same
cancer study and constructed a disease-specific transcriptome
signature for each of cancers. In this study, we used the log2 fold
changes only for the top 5% and bottom 5% genes, and those for
the remaining genes were assigned a value of zero. The top- and
bottom-ranked genes were used for analyzing the enrichment of
transcription factors as over expressed or repressed genes. 848 out
of 14,639 genes were in common with genes in drug-induced
transcriptome signature, xtrans.

Evaluation of enrichment of transcription factors on regulated
genes
We evaluated the enrichment of transcription factors on regulated
genes using the ChIP-Atlas database19. Top 5% genes in the drug-
induced transcriptome signature (i.e., xtrans) and bottom 5% genes
in the signature were assumed as up- and downregulated genes,
respectively. Positive and negative scored genes in the disease-
specific transcriptome signature (i.e., ytrans) were assumed as over
expressed and repressed genes, respectively. We statistically
evaluated the binding of transcription factors on the region
between ±5000 base pairs from the transcriptional start site of
each gene. Peak-caller MACS2 was used to calculate the statistical
significance of the binding (−10*Log10[MACS2 Q-value]). We set
the threshold for the statistical significance to 100. For drugs, to
evaluate the imbalances of enrichment on up- and downregulated
genes, we calculated the value of fold enrichment (FE). If the
enrichment is lean to the upregulated genes, the value of FE takes
more than 1, whereas if the enrichment is lean to the down-
regulated genes, the value takes smaller than 1. Also, in the
analyses for disease-specific transcriptome signatures, we selected
ChIP-seq data in appropriate cell types by considering the
pathogenesis of each disease (Supplementary Table 1).
In the case of analysis of drug-induced transcriptome signature,

xtrans, we defined the enrichment score, xregi , for transcription
factor (TF) i (i= 1, 2, …, n) as follows:

xregi ¼ þ log10 Pið Þj j; FE � 1ð Þ;
� log10 Pið Þj j; FE < 1ð Þ;

�
(3)

where n is the total number of TFs and Pi is the FDR-corrected
Pi-value that was calculated using Fisher’s exact test based on the
occurrence probability as follows:

ψi ¼
aþ bð Þ! c þ dð Þ! aþ cð Þ! bþ dð Þ!

m!a!b!c!d!
; (4)

where m is the total number of regulated genes, a is the number
of TFi that binds to upregulated genes, b is the number of TFi that

does not bind to upregulated genes, c is the number of TFi that
binds to downregulated genes, and d is the number of TFi that do
not bind to downregulated genes. Note that positive and negative
scored transcription factors were considered to be enriched
around up- and downregulated genes in the transcriptome
signature, respectively. For the disease-specific transcriptome
signatures, ytrans, we similarly defined the enrichment scores,
yregi , respectively (see Supplementary notes and Supplementary
Fig. 11).

Construction of regulome-based signatures
For drugs, we represented each drug-induced regulome signature
using a feature vector as follows:

xreg ¼ xreg1 ; xreg2 ; � � � ; xregs

� �T
; (5)

where s is the number of transcription factors (s is 582 in this
study). For diseases, we represented each disease-specific
regulome signature using a feature vector as follows:

yreg ¼ yreg1 ; yreg2 ; � � � ; yregt

� �T
; (6)

where t is the number of transcription factors (t is 711 in this
study). 573 of 711 transcription factors were in common with
transcription factors in drug-induced regulome signature, xreg.
Each element of regulome signatures is the enrichment score for a
transcription factor.

Prediction of drug indications
In general, drug-induced transcriptome signatures are assumed to
be inversely correlated with disease-specific transcriptome signa-
tures if the drugs have therapeutic effects on the corresponding
diseases12. Therefore, the inverse correlation method is a popular
transcriptome-based drug repositioning approach to find new
drugs for diseases10,21–23. Accordingly, in the transcriptome-based
prediction of drug indications, we defined the prediction score for
diseases as follows:

Strans xtrans; ytransð Þ ¼ �cos xtrans; ytransð Þ; (7)

where cos �ð Þ is a function of cosine correlation. A drug that has a
high Strans was assumed to be a candidate for treating diseases.
In contrast, in the regulome-based prediction of drug indica-

tions, the inverse correlation method is expected not to work well
due to the observation of positive correlations between diseases
and their approved drugs (Fig. 3b). Therefore, we defined the
prediction score for diseases as follows:

Sreg xreg; yregð Þ ¼
cos xreg; yregð Þ; cos xregapproved; y

reg
� �

� 0:0

� �
;

�cos xreg; yregð Þ; cos xregapproved; y
reg

� �
< 0:0

� �
;

8>>><
>>>:

(8)

where cos �ð Þ is a function of cosine correlation, xregapproved is the
regulome signature of approved drugs for the disease, and cos �ð Þ
is the median of cosine correlations. A drug that has a high Sreg

was assumed to be a candidate for treating diseases.

Drugs for experimental validation
Norethindrone (N0449), flucytosine (F0321), spironolactone
(S0260), and Danazol (17230-88-5), were obtained from all Nacalai
Tesque (Kyoto, Japan). All chemicals were dissolved in dimethyl
sulfoxide (DMSO).

Cell culture
Human nonsmall cell lung cancer cell lines: H1975, PC9, H3122,
and HC827 were purchased from ATCC (Manassas, VA, USA), and
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cultured in RPMI-1640 containing 10% FBS (Thermo Fisher
Scientific, Waltham, MA, USA).

Viability and apoptosis assays
Cell viability and caspase-3/7 activities were evaluated using the
CellTiter-Glo® 2.0 Cell Viability Assay kit (Promega, Madison, WI,
USA) and Caspase-Glo® 3/7 3D Assay kit (Promega, Madison, WI,
USA), respectively, according to the manufacturer’s instructions.
H1975, PC9, H3122, and HC827 cells were plated at a density of
1.0 × 104 cells/well in 50 µL of complete culture medium into 96-
well plates. Then, 50 µL of each drug was added at the indicated
final concentration (i.e., 0.1, 1.0, 10, and 100 µM). After 6 h, 100 µL
of the Viability reagent were added to all wells. The samples were
then mixed with an orbital shaker for 2 minutes and incubated at
room temperature for 10 min. Luminescence was measured for
viability using a plate reader (Enspire; PerkinElmer, Waltham, MA,
USA). Next, H1975, PC9, H3122, and HC827 cells were plated at a
density of 5.0 × 103 cells/well in 10 µL of complete culture medium
into 384-well plates. Then, 10 µL of each of the drugs were added
at the specified final concentration. After 6 h, 20 µL of the Viability
reagent were added to all wells. The samples were then mixed
with an orbital shaker at 500 rpm for 30 s, and incubated at room
temperature for 30 min. The caspase activation was determined by
measuring the luminescence with an Enspire instrument.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
The datasets used and/or analyzed during the current study are available from the
corresponding author on reasonable request.
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