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Network inference from perturbation time course data
Deepraj Sarmah 1,7, Gregory R. Smith 2,7, Mehdi Bouhaddou3,4, Alan D. Stern5, James Erskine1 and Marc R. Birtwistle 1,6✉

Networks underlie much of biology from subcellular to ecological scales. Yet, understanding what experimental data are needed
and how to use them for unambiguously identifying the structure of even small networks remains a broad challenge. Here, we
integrate a dynamic least squares framework into established modular response analysis (DL-MRA), that specifies sufficient
experimental perturbation time course data to robustly infer arbitrary two and three node networks. DL-MRA considers important
network properties that current methods often struggle to capture: (i) edge sign and directionality; (ii) cycles with feedback or
feedforward loops including self-regulation; (iii) dynamic network behavior; (iv) edges external to the network; and (v) robust
performance with experimental noise. We evaluate the performance of and the extent to which the approach applies to cell state
transition networks, intracellular signaling networks, and gene regulatory networks. Although signaling networks are often an
application of network reconstruction methods, the results suggest that only under quite restricted conditions can they be robustly
inferred. For gene regulatory networks, the results suggest that incomplete knockdown is often more informative than full
knockout perturbation, which may change experimental strategies for gene regulatory network reconstruction. Overall, the results
give a rational basis to experimental data requirements for network reconstruction and can be applied to any such problem where
perturbation time course experiments are possible.
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INTRODUCTION
Networks underlie much cellular and biological behavior, includ-
ing transcriptional, protein-protein interaction, signaling, meta-
bolic, cell-cell, endocrine, ecological, and social networks, among
many others. As such, identifying and then representing their
structure has been a focus of many for decades now. This is not
just from experimental perspectives alone, but predominantly
computational with a variety of statistical methodologies that
integrate prior knowledge from interaction databases with new
experimental data sets1–24. Alternatively, a variety of methods
have investigated general ways to infer detailed reaction
mechanisms—often a foundation of networks—from experimen-
tal data25–29. Such tasks may be considered a subset of network
inference.
Network structure is usually represented as either an undirected

or a directed graph, with edges between nodes specifying the
system. There are five main areas where current approaches to
reconstructing networks struggle to capture important features of
biological networks. The first is directionality of edges6,8,30,31.
Commonly employed correlational methods predominantly gen-
erate undirected edges, which impedes causal and other
mechanistic analyses. Second is cycles. Cycles such as feedback
or feedforward loops are nearly ubiquitous in biological systems
and central to their function32,33. This also includes an important
type of cycle: self-regulation of a node, that is, an edge onto itself,
which is rarely considered34. Third is that biological networks are
often dynamic. Two notable examples are circadian and p53
oscillators35,36, where dynamics are key to biological function.
Directionality and edge signs (i.e. positive or negative) dictate
dynamics. Fourth is pinpointing how external variables impinge
on network nodes. For example, is the effect of a growth factor on
a network node direct, or though other nodes in the network?

Fifth, the design and method employed should be robust to
typical experimental noise levels. The experimental design and
data requirements to uniquely identify the dynamic, directed and
signed edge structures in biological networks containing all types
of cycles and external stimuli remains a largely open but
significant problem. Any such design should ideally be feasible
to implement with current experimental technologies.
Modular Response Analysis (MRA) approaches, first pioneered

by Kholodenko and colleagues in 200237,38 inherently deal with
cycles and directionality by prescribing systematic perturbation
experiments followed by steady-state measurements. The premise
for data requirements is to measure the entire system response to
at least one perturbation for each node. Thus, an n node system
requires n experiments, if the system response can be measured in
a global fashion (i.e. all nodes measured at once). The original
instantiations struggled with the impact of experimental noise,
but total least squares MRA and Monte Carlo sampling helped to
improve performance39–41. Incomplete and prior knowledge can
be handled as well using both maximum likelihood and Bayesian
approaches42–45. However, these approaches are based on steady-
state data, or fixed time point data, limiting abilities to deal with
dynamic systems. There is a formal requirement for small
perturbations, which are experimentally problematic and intro-
duce issues for estimation with noisy data. Subsequent
approaches have recommended the use of large perturbations
as a trade off in dealing with noisy data, but the theory still
formally requires small perturbations41. Lastly, there are two
classes of biologically relevant edges that MRA does not
comprehensively address. First is self-regulation of a node, which
is often normalized (to -1) causing it to not be uniquely
identifiable. The other are the effects of stimuli external to the
network (basally present or administered) on the modeled nodes.
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In addition to perturbations, another experimental design
feature that can inform directionality is a time-series, which have
also been integrated into MRA. This work37,46 uses time-series
perturbation data to uniquely infer a signed, directed network that
can predict dynamic network behavior. In an n node open system
(e.g. protein levels are not constant), multiple nodes would either
be distinctly perturbed more than once, such as both production
and degradation of a transcript, or phosphorylation and depho-
sphorylation of a protein, or the system monitored before and
after the perturbation (with one perturbation per node). This can
be experimentally challenging both in terms of scale and finding
suitable distinct perturbations for a node. Moreover, as is often the
case, noise in the experimental data severely limits inference
accuracy (due to required estimation of 2nd derivatives). Subse-
quent work47 recommends smaller perturbations and difference in
timepoints but also does not address noisy data. Further work has
demonstrated that larger perturbations produce better results due
to inevitable experimental noise41. Thus, there remains a need for
methods that can infer signed, directed networks from feasible
perturbation time course experiments that capture dynamics, can
uniquely estimate edge properties related to self-regulation and
external stimuli, and finally that function in the presence of typical
experimental noise levels.
Here we describe a novel, MRA-inspired approach called

Dynamic Least-squares MRA (DL-MRA). For an n-node system, n
perturbation time courses are required, and thus experimental
requirements scale linearly as the network size increases. The
approach uses an underlying network model that captures
dynamic, directional, and signed networks that include cycles,
self-regulation, and external stimulus effects. We test DL-MRA
using simulated time-series perturbation data with known net-
work topology under increasing levels of simulated noise. The
approach has good accuracy and precision for identifying network
structure in randomly generated two and three node networks
that contain a wide variety of cycles. For the investigated cases,
we find between 7 to 11 evenly distributed time points yielded
reasonable results, although we expect this will strongly depend
on time point placement. We apply the approach to models
describing a cell state switching network48, a signal transduction
network49, and a gene regulatory network32. Although signaling
networks are often a focus in network biology, our analysis
suggests they have unique properties that render them generally
recalcitrant to reconstruction. Results from the gene regulatory
network application suggest that incomplete perturbation (e.g.
partial knockdown vs. knockout) is more informative than
complete inhibition. While challenges remain for expanding to
other and larger systems, the proposed algorithm robustly infers a
wide range of networks with good specificity and sensitivity using
feasible time course experiments, all while making progress on
limitations of current inference approaches.

RESULTS
Formulation of sufficient experimental data requirements for
network reconstruction
Consider a 2-node network with four directed, weighted edges
(Fig. 1a). An external stimulus may affect each of the two nodes
differently and its effect is quantified by S1,ex and S2,ex, respectively
(e.g. Methods, Eq. (15)). We also allow for basal/constitutive
production in each node (Si,b). Let xi(k) be the activity of node i at
time point tk. The network dynamics can be cast as a system of
ordinary differential equations (ODEs) as follows

dx1
dt

� f1ðx1ðkÞ; x2ðkÞ; S1;ex ; S1;bÞ � f1ðkÞ;
dx2
dt

� f2ðx1ðkÞ; x2ðkÞ; S2;ex ; S2;bÞ � f2ðkÞ:
(1)

The network edges can be connected to the system dynamics
through the Jacobian matrix J37,38,46,

J � F11 F12
F21 F22

� �
�

∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

 !
(2)

The network edge weights (Fij’s) describe how the activity of one
node affects the dynamics of another node in a causal and direct
sense, given the explicitly considered nodes (though not necessarily
in a physical sense). In practice, however, causality can only be
approached if every component of the system is included in the
model, which is not typical (and even more so, there must be no
model mismatch, which is almost impossible to guarantee)6,30,31,50,51.
In MRA, these nodes may be individual species or “modules”. In order
to simplify a complex network it may often be separated into
“modules” comprising smaller networks of inter-connected species
with the assumption that each module is generally insulated from
other modules except for information transfer through so-called
communicating species37. Cases where such modules may not be
completely isolated are explored elsewhere52.
What experimental data are sufficient to uniquely estimate the

signed directionality of the network edges and thus infer the
causal relationships within the system? Fundamentally, we know
that perturbations and/or dynamics are important for inferring
causality6,37,46,51,52. Consider a simple setup of three time-course
experiments that each measure x1 and x2 dynamics in response to
a stimulus (Fig. 1b–g). One time course is in the presence of no
perturbation (vehicle), one has a perturbation of Node 1, and one
has a perturbation of Node 2. Consider further that the
perturbations are reasonably specific, such that the perturbation
of x1 has negligible direct effects on x2, and vice versa, and that
these perturbations may be large. Experimentally, this could be an
shRNA or gRNA that is specific to a particular node, or that a small
molecule inhibitor is used at low enough dose to predominantly
inhibit the targeted node. A well-posed estimation problem can
be formulated (see Methods) that, in principle, allows for unique
estimation of the Jacobian elements as a function of time with the
following set of linear algebra relations:

y1ðtkþ1Þ
y1;2ðtkÞ

" #
¼ Δtx1ðtkþ1Þ Δtx2ðtkþ1Þ

Δp;2x1ðtkÞ Δp;2x2ðtkÞ

" #
F11ðtkÞ
F12ðtkÞ

� �
(3)

y2ðtkþ1Þ
y2;1ðtkÞ

" #
¼ Δtx1ðtkþ1Þ Δtx2ðtkþ1Þ

Δp;1x1ðtkÞ Δp;1x2ðtkÞ

" #
F21ðtkÞ
F22ðtkÞ
� �

(4)

Here, yi,j refers to a measured first-time derivative of node i in
the presence of node j perturbation (if used), and Δ to a difference
with respect to perturbation (subscript p) or time (subscript t) (see
Methods). Since we do not use data from the perturbation of node
i for estimation of node i edges, we do not have to impose
assumptions on how the perturbation functionally acts on the
system dynamics (see Methods). Moreover, constraints on the
perturbation strength can be relaxed, following recent recom-
mendations41 (although accuracy of the underlying Taylor series
approximation can affect estimation—see Methods). If these
measurements with and without perturbations were each taken in
their steady state as is done in MRA, the solution for Fij would be
trivial. MRA gets around this by normalizing self-regulatory
parameters Fii to -1. Using dynamic data allows unique estimation
of self-regulatory parameters without such normalization. Estima-
tion of the node-specific stimulus strengths or basal production
rates (S’s) requires evaluation after specific functional assumptions,
but in general these effects are knowable from the data to be
generated (see Methods and below results).
Note that this formulation is generalizable to an n dimensional

network. With n2 unknown parameters in the Jacobian matrix,
n equations originate from the vehicle perturbation and n−1
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equations originate from each of the n perturbations (discarding
equations from Node i with Perturbation i). This results in nþ
n�ðn� 1Þ ¼ nþ n2 � n ¼ n2 independent equations.

S1;b ¼ � F11x1;ss þ F12x2;ss
� �

S2;b ¼ � F21x1;ss þ F22x2;ss
� �

Using sufficient simulated data to reconstruct a network
As an initial test of the above formulation, we used a simple 2
node, single activator network where Node 1 activates Node 2,
one node has first-order degradation (-1 diagonal elements), and
the other has negative self-regulation (-0.8 diagonal) (Fig. 1a—see

Methods for equations). A stimulus at t= 0 (time-invariant;
S,ex= 1) increases the activity of each node, which we sample
with an evenly spaced 11-point time course. This simulation was
done for no perturbation (i.e. vehicle) and for each perturbation
(Node 1 and Node 2) to generate the necessary simulation data
per the theoretical considerations above (Fig. 1c, e, g, left panel).
Here, we modeled perturbations as complete inhibition; for
example, a perturbation of Node 1 makes its value 0 at all times.
Solving Eqs. (3) and (4) to infer the Jacobian elements at each time
point yielded good agreement between the median estimates and
the ground truth values (Fig. 1h, “Analytic Solution”, No Noise).
Using the node activity data corresponding to the last time point
in the time course and the median estimates of Jacobian
elements, the external stimuli S1,ex and S2,ex were also determined
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Fig. 1 Overall DL-MRA approach. a Two-node network with Jacobian elements labeled. Green arrows are stimuli and basal production terms.
Time course experimental design with perturbations: vehicle (b), Node 1 (d), Node 2 (f). The vehicle may be the solvent like DMSO for
inhibition with a drug, or a nontargeting si/shRNA for inhibition with si/shRNA. Simulated time course data for Vehicle perturbation (c), Node 1
perturbation (e), Node 2 perturbation (g) from the network in a. Left Column: no added noise; Right Column 10:1 signal-to-noise added. Actual
versus inferred model parameters (S1,b, S1,ex, F11, F12, S2,b, S2,ex, F21, F22) for direct solution of Eqs. 3–4 in the absence (h) or presence (i) of noise,
or with noise and the least-squares approach (j). In h and i, error bars are standard deviation across time points.
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(Eqs. (18) and (19)) and reasonably agree with the ground truth
values.
How does this approach fare when data are noisy? We

performed the estimation with the same data but with a
relatively small amount of simulated noise added (10:1 signal-
to-noise—Fig. 1c, e, g). The resulting estimates are neither
accurate nor precise, varying on a scale more than ten times
greater than each parameter’s magnitude with median predic-
tions both positive and negative regardless of the ground truth
value (Fig. 1i). The stimulus strengths S1,ex and S2,ex are estimated
to be negative, while the ground truth is positive.
Although the analytic equations suggest the sufficiency of the

perturbation time course datasets to uniquely estimate the edge
weights, in practice even small measurement noise corrupts
estimates obtained from direct solution of these equations.
Therefore, we considered an alternative representation by
employing a least squares estimation approach rather than
solving the linear equations directly. For a given set of guesses
for edge weight and stimulus parameters, one can integrate to
obtain a solution for the dynamic behavior of the resulting model,
which can be directly compared to data in a least-squares sense.
Least squares methods were shown to improve traditional MRA-
based approaches39,40, but had never been formulated for such
dynamic problems. Two hurdles were how to model the effect of a
perturbation without (i) adding additional parameters to estimate
or (ii) requiring strong functional assumptions regarding perturba-
tion action. We solved these here by using the already-available
experimental measurements within the context of the least-
squares estimation (see Methods). We applied this approach to
the single activator model, 10:1 signal-noise ratio case above
where the analytic approach failed. This new estimation approach
was able to infer the network structure accurately and precisely
(Fig. 1j). We conclude that analytic formulations can be useful for
suggesting experimental designs that should be sufficient for
obtaining unique estimates for a network reconstruction exercise,
but in practice directly applying those equations may not yield
precise nor accurate estimates. Alternatively, using a least-squares
formulation seems to work well for this application.

Reconstruction of random 2 and 3 node networks
To investigate the robustness of the least-squares estimation
approach, we applied it to increasingly complex networks with
larger amounts of measurement noise and smaller numbers of
time points (Fig. 2). We focused on 2 and 3 node networks. We
generated 50 randomized 2 and 3 node models, where each edge
weight is randomly sampled from a uniform distribution over the
interval [−2, 2], and the basal and external strength from [0, 2]
(Fig. 2a, Supplementary Figs. S1a and S2a). Each random network
was screened for stability. Many networks (29/50 for 2 node and 3
node) displayed potential for oscillatory behavior (non-zero
imaginary parts of the eigenvalues of the Jacobian matrix).
However, since the real parts of the eigenvalues are non-zero and
negative, these oscillations should dampen over time, and no
sustained oscillatory behavior was analyzed. For each random
model, we generated a simulated dataset based on the prescribed
experimental design, using complete inhibition as the perturba-
tion. We considered evenly-spaced sampling within the time
interval of 0-10 AU (approximate time to reach steady-state—
Supplementary Figs. S1b and S2b) with different numbers of time
points (3, 7, 11 and 21), and added 10:1 signal-to-noise, 5:1 signal-
to-noise, and 2:1 signal-to-noise to the data. Non-uniform time
point spacing may change inference results but that was not
explored at these first investigations.
For each random network model, number of time points, and

noise level, we evaluated the fidelity of the proposed reconstruc-
tion approach in terms of signed directionality (Fig. 2c–f). We
overall found reasonable agreement between inferred and ground

truth values, even at the higher noise levels and low number of
timepoints. Expectedly, the overall classification accuracy
increases with more time points and decreases with higher noise
levels. But, surprisingly, even in the worst case investigated of 3
timepoints and 2:1 signal-to-noise ratio, classification accuracy was
above 85% for 2 node models and 70% for 3 node models.
Increasing the number of nodes decreases performance, with
3-node reconstruction being slightly worse than 2-node recon-
struction, other factors held constant.
We wondered whether the magnitude of an edge weight

influenced its classification accuracy, since small edge weights
may be more difficult to discriminate from noise. We found that
edge weights with greater absolute values, which are expected to
have a greater influence on the networks, were more likely to be
classified correctly (Supplementary Figs. S1c–f and S2c–f). Also, for
models with damped oscillatory behavior, the classification
accuracy is very similar to that of all 50 random models
(Supplementary Fig. S3a, b).
How does this method compare to similar network reconstruc-

tion methods? There are limited methods to compare to which
also use dynamic data and sequential perturbations. MRA37, from
which this method was inspired, uses steady-state data. However,
we could use MRA methods requiring dynamic perturbation data
as is used in our method46,53.To compare, we further generated
another set of perturbation data with 50% perturbation (as
opposed to 100%). We then used the two sets of perturbation
data to estimate the network node edges with dynamic modular
response analysis (Fig. 2g). Even in absence of noise, for low to
medium numbers of timepoints (3-11) the network is not always
accurately inferred (Fig. 2g). In the presence of noise, DL-MRA
performs better, although the difference between the two
methods becomes lower at high number of timepoints. Thus,
DL-MRA not only outperforms with half the data, but it also
estimates 6 additional parameters-basal production and external
stimulus for each node. Although Cho’s approach47 builds upon
MRA methods by recommending smaller time point intervals and
smaller perturbations, for our purposes, the time intervals and
perturbations are fixed and this would not affect the results
obtained here. Moreover, further work has actually recommended
larger perturbations while dealing with noisy data41.
To explore a scenario where data from a node might be

unavailable, we removed the data from one of the nodes in the 50
random 3 node models and used the remaining data to
reconstruct a 2-node system (Supplementary Fig. S4). Comparing
with corresponding model parameters in the 3 node system, we
find a good but expectedly reduced classification accuracy (No
Noise-94.75%, 10:1 Signal: Noise-93.75%, 5:1 Signal: Noise-91.25%,
2:1 Signal: Noise-87).
A part of the inference process is performing parameter

estimation using multiple starting guesses (i.e. multi-start), and
we wanted to determine how robust the estimated parameters
were across the multi-start processes. We looked at the distribu-
tion of coefficient of variation (CV) among the parameters in the
multi-start results in the 50 random 3 node models where either
the data generated from the estimated parameters had low sum
of squared errors (SSE) compared to the original data (<10−4) or
with SSE less than twice the minimum SSE. We find that the CVs
peak around zero and generally have a small spread, especially for
low noise scenarios (Supplementary Fig. S5). This implies a good
convergence of the parameter sets obtained through multi-start.
We conclude that the network parameters of 2 and 3 node

systems can be robustly and uniquely estimated using DL-MRA.
However, these were ideal conditions where there was no model
mismatch that is expected in specific biological applications. How
does DL-MRA perform when applied to data reflective of different
biological use cases?
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Application to cell state networks
Cell state transitions are central to multi-cellular organism biology.
They are commonly transcriptomic in nature and underlie
development and tissue homeostasis and can also play roles in
disease, such as drug resistance in cancer48,54–61. Could DL-MRA
reconstruct cell state transition networks? As the application, we
use previous data on SUM159 cells that transition between
luminal, basal and stem-like cells48. Pure populations of luminal,
basal and stem-like cells eventually grow to a stable final ratio
amongst the three. The authors used a discrete time Markov
transition probability model to describe the data and estimate a

cell state transition network (Fig. 3a). Thus, we seek to compare
DL-MRA to such a Markov model in this case.
We hypothesized that perturbations to the system in this case,

in contrast to above, did not have to change node activity (i.e.
edges). Rather, we thought that perturbing the equilibrium cell
state distribution could serve an equivalent purpose. Thus, the
data for reconstruction consisted of observing the cell state
proportions evolve over time from “pure” populations (Fig. 3b), in
addition to equal proportions. DL-MRA is capable of explaining the
data (Fig. 3b). Interpretation of the estimated network parameters
to DL-MRA depends on the transformation of the original discrete
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classified in 50 randomly generated 3 node networks with dynamic MRA using two sets of perturbation data.
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time Markov probabilities to a continuous time formulation (see
Methods—there are constraints on self-regulatory parameters),
but DL-MRA correctly infers the cell state transition network as
well (Fig. 3c). Conveniently, DL-MRA is not constrained to 1-day
time point spacing as is the original discrete time Markov model.
How does noise and the number of timepoints affect the

reconstruction? As above, we generated data for 50 random cell
state transition models with 3, 7, 11 and 21 timepoints within 5 days,
as the models generally seemed to reach close to equilibrium within
5 days. Noise levels of 10:1, 5:1 and 2:1 were used. All parameters
were classified accurately (Fig. 3d) (although additional constraints in

the estimation—see Methods—facilitates this classification perfor-
mance). With 3 timepoints, there was deviation from perfect fit even
with no noise in the data. At 7 and higher number of timepoints, the
estimates matched ground truth well, and noise expectedly reduced
the accuracy (Fig. 3d). We conclude that DL-MRA can robustly infer
cell state networks given perturbation data in the form of non-
equilibrium proportions as initial conditions.

Application to intracellular signaling networks
How does the method perform for intracellular signaling net-
works? The Huang–Ferrell model49 (Fig. 4a) is a well-known
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intracellular signaling pathway model and has been investigated
by different reconstruction methods, including previous versions
of MRA37,39,41,46,62. It captures signal flux through a three-tiered
MAPK cascade where the 2nd and 3rd tier contain two
phosphorylation sites. An important aspect of the Huang–Ferrell
model is that although the reaction scheme is a cascade and

without obvious feedbacks, there may be hidden feedbacks due
to sequestration effects and depending on how the perturbations
were performed.
In order to reconstruct the Huang–Ferrell MAPK network

through DL-MRA, we first simplified it to a three-node model
with p-MAPKKK, pp-MAPKK and pp-MAPK as observable nodes, as
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is typical for reconstruction efforts (Fig. 4b)37,39,41,46,52,62. Second,
to model perturbations, we sequentially perturbed the activation
parameters of each of the observable species (k3, k15 and k27
respectively). Such perturbations, although hard to achieve
experimentally, are important because modules must be “insu-
lated” from one another and perturbations must be specific to the
observables37,52. Even specific inhibitors do not have such kinetic
specificity. Third, in the simplification of the reaction scheme, the
observables are shown to influence each other but in the actual
scheme, they conduct their effects through the unphosphorylated
and semi-phosphorylated species. We sought to keep the levels of
these two species relatively constant between different perturba-
tions, so that they wouldn’t add to non-linearities in the
estimation. Therefore, we used a stimulus which only activated
the observables to a maximum of about 5% of the total forms of
the protein52.
Estimation with DL-MRA under the above conditions fits the

data (Fig. 4c) and predicts positive node edges down the reaction
cascade (F21, F32), negligible direct relation between p-MAPKKK
and pp-MAPK (F13, F31), negative self-regulation of each of the
observables (F11, F22, F33) negative feedbacks from pp-MAPKK to
p-MAPKKK (F12) and from pp-MAPK to pp-MAPKK (F23), and
negligible external stimuli on pp-MAPK to pp-MAPKK (F13, F31). All
these effects are consistent with the reaction scheme. The
negative feedback effects, although not immediately obvious,
are consistent with ground truth sequestration effects. For
instance, pp-MAPK has an overall negative effect on pp-MAPKK
as the existence of pp-MAPK lowers the amount of species MAPK
and p-MAPK which sequester pp-MAPKK and makes it avoid
deactivation by its phosphatase.
How do the estimation results for the Huang–Ferrell model in

our method compare with those obtained from other methods?
Previous work using MRA also reported negative feedbacks from
successive modules to the preceding ones37,46,52. Similarly, self-
regulation parameters in most preceding MRA based methods are
also estimated to be negative but are fixed at -137,39,52.
Besides MRA inspired methods, SELDOM is another network

reconstruction method which can also deal with dynamic data62.
SELDOM is a data-driven method which uses ensembles of logic
based dynamic models followed by training and model reduction
steps to predict state trajectories under untested conditions.
However, when dealing with the Huang–Ferrell network, the true
value model of SELDOM does not map the effects of self-
regulation, nor feedback effects between nodes (Fig. 4e). This may
be explained by the fact that although SELDOM uses an extensive
number of models to test the data obtained from multiple
different stimuli, perturbation data was not included to test the
Huang–Ferrell Model. This implies that systematic perturbation of
each of the nodes, as prescribed by MRA-based methods, are
necessary in order to unearth feedbacks and self-regulation
effects.
Although application of DL-MRA to the Huang–Ferrell model

was able to unearth latent network structure, the simulation
conditions were restrictive. First, the perturbation scheme chosen
in this paper, although specifically targeted at the observable
species, is hard to produce experimentally. In practice, knock-
down/out, overexpression, or specific inhibitors could be used as
suitable perturbations, but do not have the preciseness needed to
be compatible with MRA-imposed constraints. The feedback effect
observed could depend on the perturbation scheme chosen-for
instance knockdown of an entire module as a perturbation would
likely have manifested as positive feedback to the preceding
module. That is because such a knockdown would have reduced
the effect of sequestration of the module on the preceding
observable and would have made it more available for depho-
sphorylation. Second, we assumed a low stimulus to avoid effects
from the unphosphorylated version of the proteins. A higher
activation may increase non-linearities adding to the complexity

of the model, whereas a lower stimulus may not activate enough
proteins to be well detected in experiments. The degree of
activation needed for an experiment may be hard to predict
beforehand. Such specific perturbations and stimulus had to be
done to reduce the effects arising from the non-observable
species behavior. Hence application of DL-MRA to intracellular
signaling networks with multiple physical interactions needs to be
carefully considered before modeling or experiments.

Application to gene regulatory networks: partial
perturbations are more informative than full perturbations
Here, we applied DL-MRA further to a series of well-studied non-
linear feed forward loop (FFL) gene regulatory network models
that have time-varying Jacobian elements (Fig. 5a, Table 1)32,33.
Such FFL motifs are strongly enriched in multiple organisms and
are important for signaling functions such as integrative control,
persistence detection, and fold-change responsiveness63–65.
The FFL network has three nodes (x1, x2, and x3), and the

external stimulus acts on x1 (S1,ex). There is no external stimulus on
x2 and x3; however, there may be basal production of x2 (S2,b) and
x3 (S3,b),. Each node exhibits first-order decay (Fii=−1). The
parameters F12, F13, and F23 represent connections that do not
exist in the model; we call these null edges, but we allow them to
be estimated. The relationship between x1 and x2 (F21), between x1
and x3 (F31), or between x2 and x3 (F32) can be either activating or
inhibitory. Furthermore, x1 and x2 can regulate x3 through an
“AND” gate (both needed) or an “OR” gate (either sufficient)
(Fig. 5a). These permutations give rise to 16 different FFL
structures (Table 1).
To generate simulated experimental data from these models,

we first integrated the system of ODEs starting from a zero initial
condition to find the steady state in the absence of stimulus. We
then introduced the external stimulus and integrated the system
of ODEs (see Methods) to generate time series perturbation data
consistent with the proposed reconstruction algorithm, using full
inhibitory perturbations. We used 11 evenly spaced timepoints for
all 16 non-linear models, based on the random 3-node model
analysis above, and also added noise as above.
We first noticed that even in the absence of added noise, a

surprising number of inferences were incorrect (Fig. 5b, f). Model
#1 (Table 1, Fig. 5b, c) is used as an example, where F21, F31 and F32
are activators with an AND gate, and F31 is incorrectly predicted as
null (Fig. 5b—compare ground truth to 100% inhibition). To
understand the reason for the incorrect estimation, we looked at
the node activity dynamics across the perturbation time courses
(Fig. 5d). All three nodes start from an initial steady state of zero,
but Node 3 is zero for all three perturbation cases. This is because
of the following. Since x1 is required for the activation of x2 and x3,
complete inhibition of x1 completely blocks both x2 and x3
activation. But, because both x1 and x2 are required for the
activation of x3, completely inhibiting x2 activity also completely
inhibits x3. Thus, given this experimental setup, it is impossible to
discern if x1 directly influences x3 or if it acts solely through x2.
We thus reasoned that full inhibitory perturbation may suppress

the information necessary to correctly reconstruct the network,
but that a partial perturbation experiment may contain enough
information available to make a correct estimate. If this were true,
then upon applying partial perturbations (we chose 50% here),
Node 3 dynamics should show differences across the perturbation
time courses. Simulations showed that this is the case (Fig. 5e).
Subsequently, we found that for partial perturbation data, F31 is
correctly identified as an activator. More broadly, we obtain
perfect classification from noise-free data across all 16 FFL
networks when partial perturbation data are used, as opposed
to 5/16 networks having discrepancy with full perturbation data
(Fig. 5f). The fits to simulated data from the reconstructed model
align very closely, despite model mismatch (Supplementary Fig.
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S6). We conclude that in these cases of non-linear networks, a
partial inhibition is necessary to estimate all the network
parameters accurately. Thus, moving forward, we instead applied
50% perturbation to all simulation data and proceeded with least
squares estimation.

Application to gene regulatory networks: performance
The above analysis prompted us to use a partial (50%)
perturbation strategy, since it classified each edge for each model
in the absence of noise correctly. What classification performance
do we obtain in the presence of varying levels of experimental
noise? We first devised the following strategy to assess classifica-
tion performance. We generated 50 bootstrapped datasets for
each network structure/signal-to-noise pair, and thus obtained

50 sets of network parameter estimates. To classify the network
parameters, we used a symmetric cutoff of a percentile window
around the median of these 50 estimates (Fig. 6a). We illustrate
this approach with three different example edges and associated
estimates, one being positive (Edge 1), one being negative (Edge
2), and one being null (Edge 3). Given the window of values
defined by the percentile cutoff being chosen, if the estimates in
this window are all positive, then the network parameter would be
classified as positive. Similarly, if the estimates in this window are
all negative, then the parameter would be classified as negative.
Finally, if the estimates in the window cross zero (i.e. span both
positive and negative terms), then it would be classified as null.
First, consider the case that the percentile window is just set at the
median with no percentile span. Then, the classifications for true
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positives and negatives are likely to be accurate while the null
parameters are likely to be incorrectly categorized as either
positive or negative (Fig. 6a). If we increase the percentile window
span slightly (e.g. between the 40th and 60th percentile, middle
panel), we can categorize null edges better, while maintaining
good classification accuracy of both true positive and negative
edges. However, if we relax the percentile window too much, (e.g.
between the 10th and 90th percentile, far right panel) we may
categorize most parameters as null, including the true positive
and negatives. Thus, it is clear there will be an optimal percentile
cutoff that maximizes true positives and minimizes false positives
as the threshold is shifted from the median to the entire range.
Now, we applied this classification strategy to the 16 FFL model

estimates from data with different noise levels. We varied the
percentile window from the median only (50) to the entire range
of estimated values (100) and calculated the true and false
positive rates for all edges across all 16 FFL models, which allowed
generation of receiver operator characteristic (ROC) curves
(Fig. 6b). For each noise level, we chose the percentile window
that yielded a 5% false positive rate (13-87 percentile for 10:1
Signal:Noise, 19-81 percentile for 5:1 Signal:Noise, and 21-79
percentile for 2:1 Signal:Noise). Using this simple cutoff classifier,
we observed good classification performance across all noise
levels according to traditional area under the ROC curve metrics
(10:1 AUC= 0.99, 5:1 AUC= 0.9, 2:1 AUC= 0.92).
How does classification accuracy break down by FFL model and

edge type? To evaluate the performance for each of the 16 FFL
cases, we calculated the fraction of the 12 links in each FFL model
that was classified correctly as a function of signal-to-noise, given
the percentile windows determined above (Fig. 6c). We also
looked at the fraction of the 16 models where each of the 12 links
were correctly classified (Fig. 6d). Perfect classification is a value of
one, which is the case for no noise, and for many cases with 10:1
signal-to-noise.
In general, as noise level increases, prediction accuracy

decreases, as expected. Although for some models and para-
meters, performance at 2:1 signal-to-noise is poor, in some cases it
is surprisingly good. This suggests that the proposed method can
yield information even in high noise cases; this information is
particularly impactful for null, self-regulatory, and stimulus edges.
High noise has strong effects on inference of edges that are either
distinct across models, time variant or reliant on other node
activities (F21, F31, F32) (Fig. 6c, d, Supplementary Fig. S7). F21, which

is reliant on activity of x1, is inferred better than F31 and F32. This
may be caused by the fact that x3 dynamics depend on both x1
and x2, whereas x2 dynamics only depend on x1.
Comparing across models, we find that Models 1-8 are

reconstructed slightly better than Models 9-16 (Fig. 6c) when
noise is high. This performance gap is predominantly caused by
S3,b misclassification—basal production of Node 3 (Supplementary
Fig. S7). What is the reason for the possible misclassification of S3,b
in Models 9-16? We know that S3,b depends on the initial values of
x1, x2 and x3 and the estimated values of F31, F32 and F33 (See
Methods, Eq. (19)). For Models 1-8, x1(t= 0) and x2(t= 0) are both
zero and therefore S3,b is effectively only dependent on estimated
value of F33 and x3(t= 0) (Supplementary Fig. S6 and Methods).
But for Models 9-16, x2(t= 0) is non-zero and S3,b is dependent on
the estimated values of both F32 and F33, in addition to x2(t= 0)
and x3(t= 0), which increases the variability of S3,b estimates.
Therefore with high levels of noise, S3,b is more likely to be mis-
classified in Models 9-16, whereas this does not happen in Models
1-8 (Fig. 6c, d, Supplementary Fig. S7). In the future, including
stimulus and basal production parameters in the least squares
estimations themselves, rather than further deriving algebraic
relations to estimate them, will likely help improve reliability.
We conclude that (i) when dealing with non-linear gene

regulatory networks, complete perturbations such as genetic
knockouts may fundamentally impede one’s ability to deduce
network architecture and (ii) this class of non-linear networks can
be reconstructed with reasonable performance using the pro-
posed strategy employing partial perturbations.

DISCUSSION
Despite intensive research focus on network reconstruction, there
is still room to improve discrimination between direct and indirect
edges (towards causality), particularly when biologically-
ubiquitous feedback and feedforward cycles are present that
stymie many statistical or correlation-based methods, and given
that experimental noise is inevitable. The presented DL-MRA
method prescribes a realistic experimental design for inference of
signed, directed edges when typical levels of noise are present. It
allows estimation of self-regulation edges as well as those for
basal production and external stimuli. For 2 and 3 node networks,
the method can successfully handle random linear networks, cell
state transition networks, and gene regulatory networks, and,
under certain limiting conditions, signaling networks. Prediction
accuracy improved with more timepoints, which in our case
accounted for more relevant dynamic data. However, we would
like to stress that here we did not explore time point placement,
which likely underlies the performance increase rather than simply
number of timepoints. Prediction accuracy was strong in many
cases even with simulated noise that exceeds typical experimental
variability (2:1 signal-to-noise). The method presented here is
quite general and could be applied not only to cell and molecular
biology, but also vastly different fields where perturbation time
course experiments are possible, and where network structures
are important to determine.
One type of non-linear model that we did not investigate is one

with sustained oscillations, such as those found in the cell cycle66,
or sometimes even MAPK signaling pathways67–69. We found that
in our application to general two and three node linear models,
DL-MRA could reconstruct multiple networks that have damped
oscillatory behavior (Fig. 1b). However, we expect time point
measurement selection and frequency to be much more
important for inferring networks that give rise to sustained
oscillations, with time points comprehensively covering peaks and
troughs, and the frequency high enough to do so. We do expect
that the method could infer the structure of such networks given
appropriate sampling, but this requires a much deeper
investigation.

Table 1. Structure of each of the 16 non-linear models.

Model# F21 Gate F31 F32

1 Activator AND Activator Activator

2 Activator AND Activator Repressor

3 Activator AND Repressor Activator

4 Activator AND Repressor Repressor

5 Activator OR Activator Activator

6 Activator OR Activator Repressor

7 Activator OR Repressor Activator

8 Activator OR Repressor Repressor

9 Repressor AND Activator Activator

10 Repressor AND Activator Repressor

11 Repressor AND Repressor Activator

12 Repressor AND Repressor Repressor

13 Repressor OR Activator Activator

14 Repressor OR Activator Repressor

15 Repressor OR Repressor Activator

16 Repressor OR Repressor Repressor
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MRA and its subsequent methods allow for inference of direct
edges by prescribing systematic perturbation of each
node37,39,41,43,45 and the idea of directionality has been followed
through in DL-MRA. Often, such edge directness is equated to
causality, but this is not necessarily the case, especially when the
entire system is not explicitly represented. In practice, the causality
and strength of an edge may be dependent on how well the
model represents the underlying phenomenon and might be
affected by simplification of larger networks, non-linearities in the

actual model and even by noise in the data. Secondly, in discussions
about causal system inferences, consideration of the counterfactuals
is important30,31,50,51. For a network of nodes going through
dynamics, the counterfactuals to intrinsic network edges causing
the dynamics would be the environmental factors extrinsic to the
network edges. In DL-MRA, by evaluating external stimuli and basal
production as well as the network edges, we have mapped some
counterfactuals to node dynamics, thus presenting a more complete
map of the causal factors to the network dynamics compared to

Fig. 6 Application to 16 non-linear gene regulatory networks: including noise. a Classification scheme for a distribution of parameter
estimates. Going from left to right panels, the same parameter distribution with an actual (ground truth) value of positive (+), negative (−), or
null (0), respectively, is estimated using different percentile windows centered on the median. The percentile “window” is the median value for
the leftmost panel (rigorous classification), between 40th and 60th percentile in the second panel, and between 10th and 90th percentile in the
third panel (conservative classification). Going from rigorous to conservative (left to right), an intermediate between the two gives a good
classification performance. b ROC curves across all parameters for all 16 FFL models. Different color lines are different noise levels. c Fraction of
correctly classified model parameters for different noise levels broken down by FFL model type. d Fraction of each model parameter correctly
classified for different noise levels broken down by parameter type.
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methods which only show network edges. This also allows for a
concise mapping of the environmental contexts in which the
network edges are reconstructed.
Application of DL-MRA could reconstruct cell state transition

networks based on discrete time Markov transition models, with the
added benefit of not being constrained to specific time intervals. It
can also successfully handle noisy data. The additional constraints in
DL-MRA in the context of cell state transitions (summations of
transition rates—see Methods) implies that the underlying network
may be estimated even with less data requirements than in other
cases. This method can be a useful tool to model cell state
transitions and predict cell state. Perturbations were modeled as a
difference in initial states, and that worked well in this case,
suggesting that such modeling of perturbations may work in other
cell state transition or biological networks.
Although application of DL-MRA to an intracellular signaling

network (Huang–Ferrell MAPK) was able to explain its ground
truth, including feedback due to sequestration, the method was
constrained to specific, difficult-to-implement perturbations and a
low stimulus which may not always be feasible experimentally.
Specific inhibitors could be a source of perturbation, but even
they influence more kinetic parameters than was required here for
a clean solution. In MRA, a larger reaction scheme is often
simplified into modules with one species in the module
representing the activity of the module. But often, the activity of
the other species in the module is implicit and becomes
significant in dictating how perturbations and stimulus affect
the network dynamics. Moreover, the type of perturbation chosen,
such as specific inhibitors versus knock-down, also may yield
different network inference results. Therefore, the use of MRA
methods on simplified large intracellular signaling networks,
especially while dealing with experiments, have significant caveats
that should be carefully considered41,70.
Although complete inhibition is often used for perturbation

studies of gene regulatory networks (e.g. CRISPR-mediated gene
knockout), we found that partial inhibition is important to fully
reconstruct the considered non-linear gene regulatory networks. It
is important to distinguish here, however, small perturbations vs.
partial perturbations. Small perturbations are formally recom-
mended for both MRA and other techniques70 where the effects
of noise are not extensively explored. In practice however, there is
a tradeoff between perturbation strength and feasibility, since the
effects of small perturbations are masked by noise41. Partial
perturbations, as considered in this work (~50%) are much larger
than what are typically considered small perturbations. The
theoretical formulation of DL-MRA reduces the impact of not
having small perturbations, because perturbation data from a
particular node is not used for inference of edges connected to
that node. Yet, DL-MRA still uses linearizations of the Jacobian
which are are always subject to greater inaccuracy the further
away from reference points such perturbations take the system.
Since many biological networks share the same types of non-
linear features contained within the considered FFL models, this is
not likely to be the only case when partial inhibition will be
important. We are thus inclined to speculate that large partial
perturbations may be a generally important experimental design
criterion moving forward. Partial inhibition is often “built-in” to
certain assay types, such as si/shRNA or pharmacological
inhibition that are titratable to a certain extent.
One major remaining challenge is scaling to larger networks.

Here, we limited our analysis to 2 and 3 node networks.
Conveniently, the number of necessary perturbation time courses
needed grows linearly (as opposed to exponentially) with the
number of considered nodes. Furthermore, as long as system-wide
or omics-scale assays are available, the experimental workload also
grows linearly. This is routine for transcriptome analyses71, and is
becoming even more commonplace for proteomic assays (e.g. mass
cytometry72, cyclic immunofluorescence, mass spectrometry73,

RPPA74. Thus, the method is arguably experimentally scalable to
larger networks.
However, the computational scaling past 2 and 3 node models

remains to be determined and is likely to require different
approaches for parameter estimation. Increasing the network size
will quadratically increase the number of unknown parameters,
which will significantly increase the computational requirements
for obtaining robust solutions. Yet, recent work has shown that
large estimation problems in ODE models may be broken into
several smaller problems75, which may be applicable here, and is
likely to yield large computational speed up by allowing
parallelization of much smaller tasks. However, theory on how
to merge potentially discrepant results between independently
estimated overlapping subnetworks would need to be derived.
Importantly, we saw in the linear 2 and 3 node model examples
that the impact of experimental noise was larger for 3 node
models, implying that increasing the number of nodes past 3 will
further increase the impact of experimental noise. Another
synergistic avenue could be imposing prior knowledge to improve
initial parameter guesses and even reduce the parametric space,
such as in Bayesian Modular Response Analysis45, or with
functional database information76. Such prior knowledge could
also help inform emergent network properties as network size
grows, such as degree distributions for scale-free networks2. Here,
we only investigated dense subnetworks, so sparseness patterns
and judicious allocation of non-zero Jacobian elements could also
have great impact on estimation for large networks. Overall,
application to larger networks is of great interest but these non-
trivial computational roadblocks must be solved first.
In conclusion, the proposed approach to network reconstruc-

tion is systematic and feasible, robustly operating in the presence
of experimental noise and accepting data from large perturba-
tions. It addresses important features of biological networks that
current methods struggle to account for: causality/directionality/
sign, cycles (including self-regulation), dynamic behavior and
environmental stimuli. It does so while leveraging dynamic data of
the network and only requires one perturbation per node for
completeness. We expect this approach to be broadly useful not
only for reconstruction of biological networks, but to enable using
such networks to build more predictive models of disease and
response to treatment, and more broadly, to other fields where
such networks are important for system behavior.

METHODS
Deriving sufficiency conditions for unique estimation of
Jacobian elements
The first-order partial derivatives comprising J (Eq. (2)) can be
approximated by a first-order Taylor series expansion of Eq. (1)
about a time point k

f1ðk þ 1Þ � f1ðkÞ þ ∂

∂x1
f1ðkÞð Þ: x1ðk þ 1Þ � x1ðkÞð Þ þ ∂

∂x2
f1ðkÞð Þ � x2ðk þ 1Þ � x2ðkÞð Þ

(5)

f2ðk þ 1Þ � f2ðkÞ þ ∂

∂x1
f2ðkÞð Þ � x1ðk þ 1Þ � x1ðkÞð Þ þ ∂

∂x2
f2ðkÞð Þ � x2ðk þ 1Þ � x2ðkÞð Þ

(6)

Equations (5) and (6) may be written more succinctly as

y1ðk þ 1Þ � F11ðkÞ � Δtx1ðk þ 1Þ þ F12ðkÞ � Δtx2ðk þ 1Þ
y2ðk þ 1Þ � F21ðkÞ � Δtx1ðk þ 1Þ þ F22ðkÞ � Δtx2ðk þ 1Þ (7)

where

yiðk þ 1Þ � fiðk þ 1Þ � fiðkÞ;Δtxiðk þ 1Þ � xiðk þ 1Þ � xiðkÞ: (8)

The approximation in Eq. (7) becomes more accurate as more
time points are measured. Also, the edge weights are potentially
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time-dependent, although this is rarely considered when describ-
ing biological networks.
How do we estimate the edge weights F in Eq. (7) and thus

reconstruct the network? Time series data can inform xi’s and fi’s
as a function of time, following application of a stimulus. Given
such stimulus-response data, however, for each time point there
are only two equations for four unknowns, an underdetermined
system for which more data are needed.
Consider now stimulus-response time course data in the

presence of single perturbations. Let pi be a variable that reflects
the strength and/or presence of different potential perturbations:
p1 represents perturbation of x1 and p2 represents perturbation of
x2. If pj is not explicitly written, its value is zero and/or it has no
effect. Now, the ODEs become a function of the perturbation
variables

fi;jðkÞ � fiðk; pjÞ ¼ fiðx1ðkÞ; x2ðkÞ; pjÞ (9)

The 1st order Taylor series expansions for cases with perturba-
tions become

y1;1ðkÞ � F11ðkÞ � Δp;1x1ðkÞ þ F12ðkÞ � Δp;1x2ðkÞ þ
∂

∂p1
f1ðkÞð Þ � p1

(10)

y1;2ðkÞ � F11ðkÞ � Δp;2x1ðkÞ þ F12ðkÞ � Δp;2x2ðkÞ þ
∂

∂p2
f1ðkÞð Þ � p2

(11)

y2;1ðkÞ � F21ðkÞ � Δp;1x1ðkÞ þ F22ðkÞ � Δp;1x2ðkÞ þ ∂

∂p1
f2ðkÞð Þ � p1

(12)

y2;2ðkÞ � F21ðkÞ � Δp;2x1ðkÞ þ F22ðkÞ � Δp;2x2ðkÞ þ ∂

∂p2
f2ðkÞð Þ � p2

(13)

where

yi;jðkÞ � fi;jðkÞ � fiðkÞ;Δp;jxiðkÞ � xiðk; pjÞ � xiðkÞ (14)

Here, we have expanded with respect to the perturbation,
rather than with respect to time as previously. However, since the
reference point is the same, the Jacobian elements remain
identical in these equations. It is also interesting to note that
the Jacobian elements, or network, may be affected by the
perturbation, but we do not necessarily have to know those
effects mathematically, since the reference point is the same. Now
we have six potential equations with which to estimate the four
Jacobian elements. However, we must make some determination
as to how the perturbations p1 and p2 directly affect Node 1 and
Node 2 dynamics f1 and f2 to account for the perturbation variable
partial derivatives.
By design, the Node 1 perturbation has significant direct effects

on Node 1 dynamics, and similarly for the Node 2 perturbation on
Node 2 dynamics. Using equations including ∂f1=∂p1 and ∂f2=∂p2
require precise definition of perturbation strength and their
effects on dynamics, which could be difficult to determine
experimentally and implement in simulations. Therefore, we do
not employ equations involving such terms. On the other hand, if
the Node 1 perturbation has negligible direct effect on Node 2
dynamics, that is, the effects on Node 2 dynamics are through the
network (i.e. p1) and not explicit in f2), and similarly the Node 2
perturbation has negligible direct effect on Node 1 dynamics, then
∂f2=∂p1 and ∂f1=∂p2 are approximately zero. This mild condition is
often the case experimentally. The only determining factors for
the suitability of the Taylor series truncation are the spacing of
time points and the accuracy of the expansion about the

perturbation difference. From this, the main set of linear equations
presented in Eqs. (3) and (4) are obtained.

General estimation model equations
We employ the following general model for a two-node network: -
dx1
dt ¼ f1ðx1; x2Þ ¼ S1 þ F11x1 þ F12x2
dx2
dt ¼ f2ðx1; x2Þ ¼ S2 þ F21x1 þ F22x2

(15)

Here, S1 and S2 are the stimuli strengths on Node 1 and Node 2
respectively, and F11, F12, F21 and F22 are the network edge weights
(Fig. 1a). In many systems, there may be a basal or constitutive
production driving the node activities, besides an external
stimulus. For these cases, the Stimulus term (Si), may be considered
as an addition of these two effects- the basal production term (Si,b)
and the external stimulus (Si,ex). Then the two-node model can be
represented by the following equations-
dx1
dt ¼ S1;b þ S1;ex þ F11x1 þ F12x2
dx2
dt ¼ S2;b þ S2;ex þ F21x1 þ F22x2

(16)

Or more generally,

dxi
dt

¼ Si;b þ Si;ex þ
Xn
j¼1

Fijxj; (17)

where n is the total number of nodes.
When a steady state exists, the dxi/dt terms become zero and it

becomes easy to represent the stimulus terms as a function of the
node activities (xi) and network edges (Fij).

Si;b þ Si;ex ¼ �ð
Xn
j¼1

Fijxi;ssÞ (18)

This is helpful to understand that the perturbation time course
data also generally constrains not only the edge weights, but also
the stimulus terms. For a system at a steady state without an
external stimulus, for example at t= 0:

Si;b ¼ �ð
Xn
j¼1

Fijxi;ssÞ (19)

The two-node single activator model
The two-node single activator model (Fig. 1a, Supplementary Fig.
S1a) is described by
dx1
dt ¼ f1ðx1; x2Þ ¼ 1� x1
dx2
dt ¼ f2ðx1; x2Þ ¼ 1þ 1:5x1 � 0:8x2

(20)

Here, S1,ex= 1, F11=−1, F12= 0, S2,ex= 1, F21= 1.5, F22=−0.8.
The basal production terms are both zero, for simplicity, and the
initial conditions for x1(t= 0) and x2(t= 0) are zero. The stimulus
terms Si,ex are calculated through Eq. (18), using the median values
of Fij and the xi(t= 10), when the system reaches near steady state.

Random two-node and three-node models
The random 2 node network is described by
dx1
dt ¼ f1ðx1; x2Þ ¼ S1;b þ S1;ex þ F11x1 þ F12x2
dx2
dt ¼ f2ðx1; x2Þ ¼ S2;b þ S2;ex þ F21x1 þ F22x2

(21)

Values for S1,b, S2,b, S1,ex and S2,ex are sampled from a uniform
distribution over the range [0,2] and values for F11, F12, F21, and F22
are sampled from a uniform distribution over the range [−2,2]
using the MATLAB function rand. To capture basal activity, we
use a two-step approach. First, starting from node activity values
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of zero, without the external stimulus on Node 1 and Node 2
(S1,ex= S2,ex= 0 in Eq. (22)) we simulate until the network reaches
steady-state with just basal production driving the network
behavior. Then, we introduce the external stimulus on Node 1
and Node 2, integrate the ODEs, and sample evenly spaced time-
points using ode15s in MATLAB with default settings. We sample
3,7, 11, and 21 evenly spaced time points across a time course,
from 0 to 10 arbitrary time units in all the cases.
The random 3 node networks use the same sampling rules as

the 2 node networks with the following equations.

dx1
dt ¼ f1ðx1; x2; x3Þ ¼ S1;b þ S1;ex þ F11x1 þ F12x2 þ F13x3
dx2
dt ¼ f2ðx1; x2; x3Þ ¼ S2;b þ S2;ex þ F21x1 þ F22x2 þ F23x3
dx3
dt ¼ f3ðx1; x2; x3Þ ¼ S3;b þ S3;ex þ F31x1 þ F32x2 þ F33x3

(22)

Intracellular signaling networks
In the simplification of the Huang–Ferrell network to three nodes,
p-MAPKKK, pp-MAPKK and pp-MAPK were taken as nodes. Since,
in absence of external stimuli, the basal values of the nodes are
zero, the basal production was estimated as zero beforehand and
not considered in the estimation of the rest of the network. Aside
from the basal production edges, a full 3 node network (Fig. 4b)
was estimated from the simulation data of each of the
observables. After estimation, parameters with values less than
1/100th of the largest parameter, were considered negligible.

Cell state transition models
The cell transition model48 is a discrete time Markov probability
model. Here, we show how this form is related to the ODE model
used in DL-MRA. Starting at any initial value, each next step
representing a time difference of one day follows from the
previous time point as follows-

x1;tþ1 ¼ M11x1;t þM12x2;t þM13x3;t
x2;tþ1 ¼ M21x1;t þM22x2;t þM23x3;t
x3;tþ1 ¼ M31x1;t þM32x2;t þM33x3;t

(23)

Where Mij denotes the Markov transition probabilities of species
j into species i. In matrix form it may be represented as follows-

x1;tþ1

x2;tþ1

x3;tþ1

2
64

3
75 ¼

M11M12M13

M21M22M23

M31M32M33

2
64

3
75

x1;t
x2;t
x3;t

2
64

3
75 (24)

Representing the Markov parameter matrix as M and the
species relative concentration variables as vector X, the equation
becomes

Xtþ1 ¼ MXt (25)

The Markov transition probabilities for a species must add up to
1. In experimental terms, a species can either transition to other
species or stay the same and the sum of all those probabilities is 1.

X
i¼1:3

Mij ¼ 1 (26)

As a first step in relating these equations to the ODE form
underlying DL-MRA, we put the variables in terms in terms of Δx

(with respect to time),

Xtþ1 � Xt ¼ MXt � Xt (27)

ΔXtþ1 ¼ ðM� IÞXt (28)

ΔXtþ1 ¼ M0Xt (29)

Where M’ is M-I, and I is the identity matrix. M’ is M, except that
1 is subtracted from all its diagonal elements. Hence Eq. (26) for M’
becomesX
i¼1:3

M0
ij ¼ 0 (30)

This also implies that the diagonal term for M’ is negative of the
sum of the other two terms in the same column. In experimental
terms, the amount of reduction of a species is equal to how much
it got converted to other species.
The above equations apply for the cases where Δt is 1. We can

incorporate arbitrary time steps as

ΔXtþΔt ¼ M0
ΔtXtΔt (31)

Where Δt is the scalar value of time difference and M’Δt is the
matrix of the set of parameters, specific to the time difference
chosen. For a case where Δt tends to 0, the equation becomes-

lim
Δt!0

ðΔXtþΔt=ΔtÞ ¼ M0
dtXt (32)

dX=dt ¼ M0
dtXt (33)

Where M’dt is the matrix of the set of parameters specific to the
case where Δt is infinitesimally small. Note that Eq. (33) is similar in
form to Eq. (22), only without the extra stimulus terms and where
M’dt is equivalent to the Jacobian matrix F with terms Fij. There
would be an added constraint that the sum of the terms in the
same column would add up to zero, or that the diagonal term is
the negative of the sum of the other two terms in the same
column.

dX
dt

¼ FXt (34)

Fii ¼ �
X3
j¼1;j≠i

Fij (35)

Non-linear models
The non-linear feedforward loop models32 are described by:

dx1
dt ¼ f1ðx1; x2; x3Þ ¼ 1� x1

dx2
dt ¼ f2ðx1; x2; x3Þ ¼ f ðx1; Kx1x2Þ � x2

dx3
dt ¼ f3ðx1; x2; x3Þ ¼ Gðx1; Kx1x3 ; x2; :Kx2x3Þ � x3

(36)

When an AND gate is present

Gðx1; Kx1x3 ; x2; Kx2x3Þ ¼ f ðx1; Kx1x3Þ�f ðx2; Kx2x3Þ (37)

When an OR gate is present

Gðx1; Kx1x3 ; x2; Kx2x3Þ ¼ fcðx1; Kx1x3 ; Kx2x3 ; x2Þ þ fcðx2; Kx2x3 ; Kx1x3 ; x1Þ
(38)

For a given u, v ϵ {x1, x2, x3} and K, Ku, Kv ϵ {Kx1x2 , Kx1x3 , Kx2x3 }:
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If u activates its target, then:

f ðu; KÞ ¼
u
K

� �2
1þ u

K

� �2 ; fcðu; Ku; Kv ; vÞ ¼
u
Ku

� 	2

1þ u
Ku

� 	2
þ v

Kv

� 	2 (39)

If u represses its target, then:

f ðu; KÞ ¼ 1

1þ u
K

� �2 ; fcðu; Ku; Kv ; vÞ ¼ 1

1þ u
Ku

� 	2
þ v

Kv

� 	2 (40)

Effectively, an external stimulus of ‘S1,ex= 1’, acts on Node 1 at
t= 0 and is propagated through the network. There is no external
stimulus acting on Node 2 and Node 3. However, in many cases
there is basal production in one or both of Node 2 and Node 3.
This leads to a non-zero steady-state of the network before the
external stimulus is introduced.
To capture basal activity, we use a two-step approach. First,

starting from node activity values of zero, without the external
stimulus on Node 1 (S1,ex= 0), we simulate until the network
reaches steady-state. Then, we introduce the external stimulus on
Node 1, integrate the ODEs, and sample 11 evenly spaced time-
points using ode15s in MATLAB with default settings and steady-
state node values without the external stimulus as the initial
conditions. We chose 11 timepoints because it yields good
classification accuracy for the above random 3 node model even
in presence of noisy data. For each of the 16 non-linear models,
the values of the parameters (K, Ku, Kv), were varied and chosen so
that the resulting node activity data are responsive to the stimulus
and perturbations (Supplementary Fig. S6, See Supplementary
Code for values).

Modeling perturbations
Precisely modeling perturbations can be a challenge, since
experimentally, there may be several ways of causing a perturba-
tion with different mechanisms such as siRNAs, competitive/non-
competitive/uncompetitive inhibition, etc. It may be hard to
quantify how much a perturbation is affecting a node, in terms of
its dynamics (i.e. right-hand sides of the ODEs). Therefore, we
employ the following approaches which circumvent the need to
model how each perturbation mechanistically manifests in the
ODEs during parameter estimation. There are two cases to
consider: (i) when we have a perturbation of node i and we need
to simulate node i dynamics; (ii) when we have a perturbation of
node i and we need to simulate other node j dynamics. To
illustrate the approach, we use the above-described 2 node model
with an example of a Node 1 perturbation. Recall that

dx1
dt ¼ S1;b þ S1;ex þ F11x1 þ F12x2
dx2
dt ¼ S2;b þ S1;ex þ F21x1 þ F22x2

(41)

For case (i), we have to obtain values for x1 under perturbation
of Node 1. We refer to the perturbed time-course as x1,1. In
experimental situations, x1,1 would be measured directly. To
obtain simulation data for x1,1 we use the following:

x1;1ðkÞ ¼ p1 ´ x1ðkÞ; (42)

where x1 is obtained from the simulations without perturbations,
and recall that k refers to time point k. For a 50% inhibition, p= 0.5
and for a complete inhibition, p= 0.
For case (ii), we have to obtain the values for x2 under

perturbation of Node 1, which we refer to as x2,1. To do this, we
have to integrate the ODE for dx2/dt, but using x1,1 values, as

follows

dx2;1
dt

¼ S2;b þ S2;ex þ F21x1;1 þ F22x2;1 (43)

Here, x2 has been replaced with x2,1 to represent x2 under
perturbation of Node 1, for clarity. To solve this equation, we
simply use the “measured” x1,1 time course directly in the ODE.
When data are generated by simulations, there is little practical

limit to temporal resolution, but with real data, to solve Eq. (43)
one may need values for x1,1 at multiple time points where
measurements are not available, depending on the solver being
used. We therefore fit x1,1 data to a polynomial using polyfit in
MATLAB, and use the polynomial to interpolate given a required
time point. In this work, we have used an order of 5 to fit the data
as well as avoid overfitting, but the functional form is quite
malleable so long as it captures the data trends.
For modeling perturbations of the cell transition model, the

initial value of the simulated data for the perturbed node was
taken as zero during simulation. The estimation was performed in
a similar way as a random 3 node network as described above.
For modeling perturbations for the Huang–Ferrell model, the

parameters k3, k15 and k27 were sequentially set as zero. The
estimation was performed in a similar way as a random 3 node
network as described above.

Simulated noise
Normally distributed white (zero mean) noise is added to
simulated time courses point-wise with

y ¼ x þ Nð0; d � xÞ (44)

where x is the simulation data point, y is the noisy data point,
and d represents the noise level. Signal-to-noise ratio of 10:1, 5:1
and 2:1 are, respectively d= 0.1, 0.2, and 0.5. Normally
distributed samples are obtained using randn in MATLAB.
While there are many different distributional options for
modeling noise, we chose this for simplicity and to capture
the effects generically of noisier data. We do not intend to
answer questions related to whether specific distributional
assumptions about the form of the noise have significant
impact of the methods performance.

Parameter estimation
For the two-node model, the entire network, with and without
perturbations, can be explained by the following system of
equations

dx1
dt ¼ S1;b þ S1;ex þ F11x1 þ F12x2
dx2
dt ¼ S2;b þ S2;ex þ F21x1 þ F22x2

dx2;1
dt ¼ S2;b þ S2;ex þ F21x1;1 þ F22x2;1

dx1;2
dt ¼ S1;b þ S1;ex þ F11x1;2 þ F12x2;2

(45)

where x1,1 and x2,2 are the perturbed node values, from either
simulated or experimental data. Eight parameters (S1,b, S1,ex, F11,
F12, S2,b, S2,ex, F21, F22) need to be estimated to fully reconstruct this
network. We seek a set of parameters that minimizes deviation
between simulated and measured dynamics.
For an initial guess, the node edge parameters (Fij) are randomly

sampled from a uniform distribution over the interval [−2,2] and
the stimulus parameters (Si,ex) are sampled from a uniform
distribution over the interval [0,2]. Using data at t= 0, which
corresponds to a steady-state without Si,ex, the Si,b can be
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estimated during each iteration of the estimation as follows-

Ŝ1;b ¼ �ðF̂11x1ðt ¼ 0Þ þ F̂12x2ðt ¼ 0ÞÞ
Ŝ2;b ¼ �ðF̂21x1ðt ¼ 0Þ þ F̂22x2ðt ¼ 0ÞÞ

(46)

For an n-node model, this equation can be scaled accordingly to
obtain each Ŝi,b.
For these initial guesses we compute the activity data using

Eq. (45). The perturbation data xk,k is used in the perturbation
equations as detailed above (Eq. (43)). Let x̂i, and x̂i,j denote the
predicted node activity values for non-perturbed and perturbed
cases respectively. For a total of n nodes and Nt timepoints, the
objective function is the sum of squared errors Φ

Φ ¼
XNt

k¼1

Xn
i¼1

xiðkÞ � x̂iðkÞð Þ2
 !

þ
Xn
i¼1

X
j≠i

xi;jðkÞ � x̂i;jðkÞ
� �2" #

(47)

Note here that we do not use data from node j, when
perturbation j was used (per the derivation). The MATLAB function
fmincon is used to minimize Φ by changing edge weights and
stimulus terms within the range [−10,10].
We employ “multi-start” by running the estimation 10 times,

starting from different randomly generated initial starting points77.
The estimated parameters and their respective final sum of
squared errors (Φ) are saved and the estimated parameter set
corresponding to the minimum Φ is chosen as the final parameter
set. Variability of parameter estimates across multi-start runs is
explored in Supplementary Fig. S5.

Parameter estimation for non-linear models
For estimating the Non-Linear models, we start with a prior
knowledge that S1,b is always zero and S2,ex and S3,ex are always
zero as well, which is directly evident from x1 initial conditions and
x2, x3 stimulus response in the presence of a complete Node 1
perturbation. The equations for the non-perturbation case
become as follows
dx1
dt ¼ S1;ex þ F11x1 þ F12x2 þ F13x3
dx2
dt ¼ S2;b þ F21x1 þ F22x2 þ F23x3
dx3
dt ¼ S3;b þ F31x1 þ F32x2 þ F33x3

(48)

Since the system is at steady-state before the external stimulus,
the basal production parameter can be estimated during each
iteration of the estimation as-

Ŝ2;b ¼ �ðF̂21x1ðt ¼ 0Þ þ F̂22x2ðt ¼ 0Þ þ F̂23x3ðt ¼ 0ÞÞ
Ŝ3;b ¼ �ðF̂31x1ðt ¼ 0Þ þ F̂32x2ðt ¼ 0Þ þ F̂33x3ðt ¼ 0ÞÞ

(49)

where F̂i,j are the current model parameter estimates and xi (t= 0)
are the x values at the initial system steady state before the
induction of external stimulus.

Bootstrapping simulated data for the FFL model cases
To generate multiple parameter set estimates to classify edge
weights for the FFL model cases, we employ a bootstrapping
approach. In an experimental scenario, each data point will have a
mean and a standard deviation, and upon a distributional
assumption (e.g. normal), one can then resample datasets to
obtain measures of estimation uncertainty. We use the simulated
data as the mean, and then vary the standard deviation as
described above to generate 50 bootstrapped datasets for each of
the 16 considered models. Estimation is carried out for each of the
50 datasets using multi-start, which yields 50 best-fitting
parameter sets for each model. Uncertainty analysis and
classification error is based on these sets.
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