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Leveraging network structure in nonlinear control
Jordan Rozum1✉ and Réka Albert 1,2

Over the last twenty years, dynamic modeling of biomolecular networks has exploded in popularity. Many of the classical tools for
understanding dynamical systems are unwieldy in the highly nonlinear, poorly constrained, high-dimensional systems that often
arise from these modeling efforts. Understanding complex biological systems is greatly facilitated by purpose-built methods that
leverage common features of such models, such as local monotonicity, interaction graph sparsity, and sigmoidal kinetics. Here, we
review methods for controlling the systems of ordinary differential equations used to model biomolecular networks. We focus on
methods that make use of the structure of the network of interactions to help inform, which variables to target for control, and
highlight the computational and experimental advantages of such approaches. We also discuss the importance of nonperturbative
methods in biomedical and experimental molecular biology applications, where finely tuned interventions can be difficult to
implement. It is well known that feedback loops, and positive feedback loops in particular, play a major determining role in the
dynamics of biomolecular networks. In many of the methods we cover here, control over system trajectories is realized by
overriding the behavior of key feedback loops.
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INTRODUCTION
Modeling the dynamics of complex biological systems has
important implications for the understanding of fundamental
biological processes, for exploring the effects of mutations, and for
the development of new drugs. Aside from applications to
practical problems in biology and medicine, studying the
dynamics of large, complex networks (systems with many and
varied types of interactions) raises unique and interesting
mathematical challenges that separate it from the study of
traditional dynamical problems in typically lower dimensions.
Perhaps the most impactful of these challenges is one of scale.

These dynamical systems typically exist in state spaces with
dozens or even hundreds of variables. Not only does this create
computational hurdles, it also creates conceptual ones. Many
qualitative techniques, such as phase portrait analysis, become
impractical or even impossible at this scale. At a more
mathematically fundamental level, the complex networks in
biology typically come equipped with a privileged set of
coordinates, i.e., the coordinates that are specified by the
underlying network structure. This is in contrast to many physical
systems, where coordinates are simply designators for points in
phase space, and one is often free to choose coordinates for
analytical or computational convenience. In biomolecular net-
works, however, the coordinates correspond to specific genes and
proteins, and they therefore have inherent meaning. This
distinction is important in designing control interventions because
interventions that affect a smaller number of variables are more
practical, and thus more desirable than those that affect many
variables.
The dynamics of biological networks are almost always highly

nonlinear. Classical results that apply exactly to linear systems can
only be applied locally and require perturbative extensions. In the
case of designing a control intervention, a perturbative extension
entails applying a control to a linearization of the system at its
current state to make a small perturbation in the desired direction
in the state space. A new state is achieved, and the system is

linearized at this new location; the process repeats, often with no a
priori guarantee that the desired target state is actually reachable.
This perturbative approach is mathematically elegant, but its
application is limited to cases in which a control variable can be
finely controlled. In contrast, nonperturbative methods can
account for the nonlinearity of the system and can be applied
when signals cannot be fine-tuned. These approaches are not
without their own limitations; typically, they focus only on
attractor control, wherein the goal is to drive a system into one
of its attractors, rather than to an arbitrary state. There are
relatively few nonperturbative methods available. There are even
fewer nonperturbative approaches to dynamical control that can
account for the nonlinearity of the system and also remain
practical in high-dimensional state spaces. Those that do exist rely
heavily on the relationship between the dynamics and the
underlying interaction network. This interaction network may be
viewed as the edge-signed directed graph whose adjacency
matrix is constructed from the signs of entries in the Jacobian
matrix. A value of +1 in the i, j entry indicates that the ith variable
(e.g., gene or protein) has an activating effect on the jth variable
(e.g., gene). Similarly, a value of −1 indicates an inhibitory effect.
For general systems, the signs of the Jacobian matrix’ entries do
not have fixed signs, but in biological systems, individual
regulatory effects are almost universally monotonic, or else the
state space can be appropriately partitioned into regions in which
each entry of the Jacobian matrix is of constant sign1. In other
words, an edge in a network almost always corresponds to a
strictly inhibitory effect or a strictly activating effect for all points
in configuration space. This constraint underlies several powerful
and elegant results about the dynamics on such networks.
In addition to the above mathematical considerations, there are

important practical considerations to keep in mind. First, biological
data are often characterized by a large degree of noise and
uncertainty in parameter values or even in functional forms2. This
increases the desirability of control methods that are agnostic to
the fine details of the regulatory effects. Such methods are often
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called “structural” because they rely primarily (or even entirely) on
the structure of the underlying network; we discuss several such
methods in this review. In addition, many biological systems are
such that fine control over interventions is not practical or,
sometimes, not possible at all. Experimentally, it is often only
possible to knock out or knock in (overexpress) a gene. In contrast,
classical control theory has been historically applied to systems in
which the investigator can exert precise control over the
components of a low-dimensional system. As such, much effort
has been dedicated to the question of how to finely engineer
these inputs to efficiently achieve a desired goal. In the context of
biological network control the question rather is how to select
controllable elements that can steer the system to a desired state
using the “blunt instruments” of complete knockout and extreme
overexpression. Furthermore, interventions in biological systems
often occur on time scales that are much longer than the
dynamics they are intended to affect. This especially complicates
the application of perturbative control methods.
This review focuses on methods of dynamically controlling

complex biological networks with an emphasis on nonperturba-
tive, nonlinear methods that explicitly leverage network structure.
We highlight the successes of bespoke methods that specifically
ameliorate the unique challenges these systems pose while
leveraging their unique properties. We discuss how regulatory
feedback plays a crucial role in determining the attractor
repertoire of these systems, and how this can be exploited by
control methods. We emphasize that these control methods must
be considered in the context of the network-specified coordinates
when evaluating the viability of their outputs as real-world
interventions.

CHALLENGES OF NETWORK CONTROL
High dimension, observability, and visualization
Dynamical models of biological systems typically exist in state
spaces with dozens or even hundreds of variables. For example,
Wittmann et al.3 present a 29-dimensional Hill kinetics ODE model
of T-cell signaling; von Dassow and collaborators4,5 present a
model of Drosophila segment polarity with 50 free parameters and
8 genes and proteins per cell in an arbitrarily sized 2-dimensional
hexagonal grid; and Chen et al.6 present a model of the cell cycle in
budding yeast that involves 39 independent state variables and 97
free parameters. Many qualitative techniques, such as phase
portrait analysis, become impractical or even impossible for such a
high number of variables. Furthermore, it is usually the case that
the dimension of the parameter space scales alongside the
dimension of the state space. This has encouraged a great deal
of effort in developing parsimonious models that use as few
variables as possible to describe a certain set of behaviors. It is
partly for this reason that ODE and PDE models of biological
systems often have many fewer variables than discrete models of
the same systems. For example, a pioneering ODE model of TGF-
β-induced epithelial to mesenchymal transition7, published in
2014, has eight variables and 15 interactions. A Boolean model of
the same process, published in the same year, has 70 variables and
135 interactions8 and predicts that autocrine and paracrine
signaling leads to crosstalk between pathways that were previously
thought to be independent. Several years later, the importance of
much of the crosstalk between pathways in TGFβ-induced
mesenchymal transitions was verified experimentally9.
Interpreting the results of numerical simulations also becomes

fraught, as one must judiciously select which variables are most
important for validating the model and predicting the system
state from observations. Often, success requires the artful
application of domain expertise. Typically, variables that corre-
spond to known biological markers are selected for consideration
in these models. This is done partly because these are already

known to be important in the system of interest, but it is also done
because data about key markers are more readily available. As a
practical matter, most biological data is taken in or near a system’s
attractors; it is often the case that the majority of the variables are
fixed in the attractors of biological models, which allows one to
characterize most or all of the variables precisely. Sometimes,
however, transient behaviors are of interest. In these cases, it is
desirable to identify a set of observables that fully characterizes
any unique system trajectory. See, e.g., refs. 10–12 for further
discussion of the so-called “observability” problem and ref. 13 for
discussion of the related problem of “structural identifiability”
which considers identifying the values of static parameters. One
must be careful to identify which variables must be observed in
order to determine the state of the system; this is necessary both
for validating a model and also for applying a model to uncover
new biological insights. There have also been cases when focusing
only on previously known key markers might have missed
important dynamical properties of the system. For example, the
crosstalk between various pathways during the epithelial to
mesenchymal transition predicted by Steinway et al.8 and
confirmed by Deshmukh et al. 9 is not observable from the core
regulatory circuitry alone.

Uncertainty in dynamic specification
The challenges of high dimension are compounded by the related
challenge of uncertainty in the specification of the dynamics. In
many protein-protein and protein-DNA interactions, kinetic
parameters are poorly constrained by the available data, with
parameter regions often spanning multiple orders of magnitude4.
Even more extremely, often the functional form of the regulatory
dynamics is unknown2. Despite the fact that biomolecular network
models are typically robust to some degree of uncertainty, these
uncertainties can nevertheless be large enough to have profound
effects on the dynamics2,14. High dimension makes many
traditional approaches to studying bifurcation impractical. For
example, the straightforward approach is to analyze the number
of roots in the Jacobian characteristic polynomial and the number
of steady states as functions of parameters. Unfortunately, there is
no sufficiently fast method to solve the large systems of nonlinear
equations that result when these methods are applied to high-
dimensional ODEs with many parameters.
A common approach in such systems is to fix a functional form

and to specify a reasonable set of parameters to vary. The
parameter values are often fit heuristically (e.g., through the use of
a genetic algorithm15). This is often followed by parameter
robustness tests. Fortunately, robustness to changes in the values
of parameters is a common feature of biomolecular systems,
making this approach much more feasible than one might
expect4,16,17.

The nonlinear and nonperturbative nature of experimental
probes
Classical control theory was initially developed for applications
outside molecular biology and genetics (see Macki and Strauss18

for an introduction to classical methods). In many of these
applications, the researcher has a great deal of freedom to modify
and tune feedback loops and external signals. The traditional
mathematical theory and techniques reflect this–many control
methods for network dynamics consider the effects of arbitrary
time-varying control inputs that linearly modulate the dynamics,
i.e., equations of the form

dx
dt

¼ f xð Þ þ G xð Þu tð Þ (1)

where x is the N-dimensional state vector, f is the regulatory
function, and u(t) is a vector of Mcontrol inputs modulated by the
N ×M matrix function G(x). In general, the regulatory and control-
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mediation functions f and Gmay be nonlinear in x, but often some
sort of linearization is considered, and the effects of u(t) are
treated perturbatively. The linearization may be explicit, such as
when dynamics near a specified trajectory or equilibrium are
considered, or they may be implicit, such as when various Lie
algebraic approaches are applied (in which case it is the action of
the control that is implicitly linearized). We will briefly highlight
several of these approaches; for a more detailed discussion, see
the review by Liu and Barabasi11 or the textbook by Sontag19.
Many of the foundations and key early results in the study of

perturbative control in nonlinear systems were put forth by
Kalman in the 1960s. In particular, Kalman20 defines various
necessary conditions for the controllability of nonlinear systems
and presents the Kalman rank criterion, which describes condi-
tions for the controllability of the system of Eq. (1) for f xð Þ ¼ Ax
linear and G constant. Specifically, such a system is controllable if
and only if the N × NM matrix C= [G, AG, A2 G,...,AN−1 G] has full
rank. This result serves as the basis for so-called “structural
controllability”, which extends the results of Kalman by consider-
ing only the structure of A and G as graph adjacency matrices and
ignoring the precise values of their entries21,22.
Several Lie algebraic methods11,19,23,24 apply to Eq. (1) generally,

and typically involve considering f xð Þ and the columns of G xð Þ as
generators of a Lie algebra L x0ð Þ at a point x0. This correspon-
dence between the columns of G xð Þ and the generators of a Lie
algebra can be obtained by assigning to each column vector the
differential operator that computes the directional derivative in
the direction of the column vector at each point x. The
infinitesimal group action of L x0ð Þ (or, equivalently, of the set of
the directional derivatives in the direction of the columns of G xð Þ)
on the state space at a point x0 describes the set of locally
accessible states in some neighborhood of x0. Therefore, if the
action of L x0ð Þ does not span the full tangent space at x0, there are
states in a neighborhood of x0 that are not locally accessible by
the control inputs u tð Þ. Note that this is not equivalent to the
statement that these states are not reachable eventually under
any sequence of controls; perhaps it is possible to reach such
states by moving far from x0 to a point x1, where the system is
more easily manipulated, making a control adjustment, and
returning to a point near x0 that was not locally accessible.
Furthermore, even if L x0ð Þ is full rank, it does not always guarantee
controllability; for example, the action of a control may be
unidirectional. A classic example, which we adapt from Liu and
Barabasi11, is the system _x; _yð Þ ¼ y2; uð Þ. At x0; y0ð Þ ¼ 0; 0ð Þ, the
Lie algebra generated by the control is spanned by (0,u) and (1,0)
and is thus full rank; however, states with negative values in the
first component cannot be reached by this control. In general,
determining whether a system is controllable is considerably more
difficult than conducting local accessibility tests; the disparity in
computational complexity is discussed in detail by Sontag24.
These perturbative methods, when applied to nonlinear systems,

are generally concerned with identifying necessary conditions for
full system control, i.e., for the ability to drive the system into an
arbitrary state in finite time. This stands in contrast to many of the
methods we will discuss here, in which the primary focus is
attractor control: the ability to drive the system into a target
attractor. This more limited focus allows one to circumvent some of
the computational and experimental difficulties associated with
more general questions of controllability24 while also making
coarser (i.e., nonperturbative) control functions more viable.
Furthermore, in many biological applications, the precise

control assumed by many traditional mathematical methods is
not reasonably attainable. In many clinical settings, for example,
drug dosage can only be manipulated on timescales on the order
of hours – it is not feasible to instruct a patient to take drugs
according to a complicated and frequent schedule. In experiments
probing gene function, genes are often completely knocked out or
forcibly overexpressed. The timing of these interventions can be

controlled to some degree, e.g., using various genetic switches,
but the magnitude of the effect is generally difficult to control.
This is in part due to fundamental biological limitations stemming
from the inherent nonlinearity of the systems. For example,
activation of an auto-activating gene can be irreversible and its
transcription rate is not easily modulated by external controls. In
practice, this can limit the utility of powerful classical nonlinear
control methods that identify inputs that can globally or locally
control a system, such as control Lyapunov methods19,25, but
which assume the ability to carefully engineer input signals.
Despite the biotechnological challenge of implementing finely
tuned control strategies, there have been notable successes in
applying optogenetic methods to study and control cardiac
processes26, neurological signaling27, molecular signaling path-
ways28, and gene expression29.

LEVERAGING NETWORK STRUCTURE
In this section, we will lay out a few common goals for analyses of
complex network dynamics and discuss several ways in which
researchers have leveraged network structure to accomplish them.
Foremost among these aims is to fully characterize the attractor
repertoire of the model so that individual attractors can be
mapped to observed phenotypes. Attractors that do not
correspond to any known phenotype may be spurious and
suggest that further refinement of the model is needed. This
refinement may take the form of structural changes to the
underlying network, changes to the form of regulatory functions,
or adjustments to parameter values. This last refinement is itself a
key goal of many ODE models: to identify a reasonable set of
parameters such that model outputs can be predictive. Translating
model predictions into biologically meaningful experimental
predictions is also nontrivial and requires careful identification of
relevant biological markers – a task that often requires both
domain expertise and can be aided by mathematical familiarity
with the model itself. The final goal we will discuss is the
identification of interventions that can drive the system toward a
desired attractor or attractors.
A common theme in the analysis of complex network dynamics

is identifying how a network’s structure constrains its
dynamics1,30–33. In particular, it has been noted that feedback
loops (paths of positive length that have the same starting and
ending node) are responsible for much of the dynamic richness of
biomolecular models. Sometimes feedback loops are analyzed
within the context of auxiliary networks (e.g., in the graph
structure of stoichiometric matrices; see Clarke34 for an overview),
but often the analyses can be carried out directly using the
interaction topology. The latter case is the focus of this section.
In a signed interaction network, any path or feedback loop

(cycle) can be assigned a sign equal to the product of its edges’
signs. Positive and negative feedback loops have implications for
the possible dynamical behaviors a system can exhibit. Many
structural methods rely on a simple premise: in the absence of
feedback loops, each variable’s behavior is determined entirely by
the behaviors of its regulators. In this sense, the only nontrivial
behaviors in the system must arise from feedback. This result can
be made more specific or strengthened in various ways: in
systems governed by sigmoidal kinetics, positive feedback is
necessary for multistability and negative feedback is necessary for
stable periodicity35,36 (see also work by Thomas and Kaufman1,32

for a discussion of implications and extensions); certain types of
self-regulation do not induce nontrivial behaviors, an observation
that gives rise to powerful techniques for attractor control10,37;
and special feedback loops, called stable motifs, give rise to
forward-invariant trap sets in the dynamics38,39.
This feedback-centric paradigm stands in contrast to some well-

known results in the analysis of linear dynamics of complex
networks. In particular, the structural controllability framework21,
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which is a graph-theoretic extension of the Kalman rank
condition20, involves studying the branch points of the interaction
topology while neglecting many of the feedback loops. While
structural controllability and other linear methods have important
consequences for perturbative, local control of nonlinear dynami-
cal systems (or full control of linear systems) they can be ill-suited
for studying how systems can be made to transition from one
attractor to another. This primarily stems from the fact that
feedback loops can give rise to dynamical trap sets that cannot be
escaped using the methods of linear control alone11,22.

Feedback vertex sets
A key result demonstrating the general importance of feedback in
nonlinear systems is feedback vertex set (FVS) control10,37 and its
generalization to account for external inputs40. A feedback vertex
set is any set of nodes in a network whose removal would render
the network acyclic. In general, there is not a unique smallest FVS.
Typically, the number of minimal FVSs increases with the size and
density of the network in question, and identifying a minimal FVS
is an NP-complete problem. In practice, the computational burden
of identifying a minimal FVS is negligible compared to the
problem of numerically integrating the system, and for the
methods discussed here, it is not strictly necessary that the FVS
identified be minimal (though it is usually desirable). Observation
of an FVS provides complete information about a trajectory. An
FVS also has important applications in the control of these
networks. In particular, by overriding the values of variables in an
FVS to match with the values obtained in a specific attractor, one
can guarantee convergence into that attractor. Notably, subject to
mild boundedness criteria, this holds for any ODE that is
consistent with the underlying interaction network, removing
the need to fully specify the parameter values and functional
forms in the regulatory functions. This flexibility has enabled
successful applications to real biological systems41,42.
It is important to recognize that changes of variables alter the

topology of the interaction network, which has important
implications for the interpretation of an FVS. Complex networks
in biology typically come equipped with a privileged set of
coordinates that correspond to specific genes and proteins; they
have inherent meaning and experimental implications. This
distinction is important to keep in mind when identifying
observable sets: it is the number of original coordinate variables
upon which the observables depend that is experimentally

important, not the total number of observables. To illustrate this
distinction, consider the following example ODE, which is
analyzed in further detail in the Supplemental Notebook:

dX
dt ¼ H YþZ

3

� �� X
dY
dt ¼ 3H Xð ÞH Z � Xð Þ � Y
dZ
dt ¼ 2H YþZ

3

� �� Z;

(2)

where H �ð Þ ¼ �ð Þ4= �ð Þ4þ1=16
� �

is a Hill function. The wiring
diagram of Eq. 2 is depicted in Fig. 1. Due to the small dimension
of this example, it is straightforward to show that there are two
stable steady states: X ¼ Y ¼ Z ¼ 0, and X � 1; Y � 4; Z � 2
(there is also a single unstable steady state with
X � 0:06; Y � 0:07; Z � 0:12). Here, the interaction graph is the
complete digraph on three vertices minus one edge (X to Z) and
with additional self-loops on Y and Z due to their autoactivation.
Therefore, Y and Z constitute a minimal FVS (in this case the
minimal FVS is unique). This implies that full attractor control of
this system in a laboratory setting is guaranteed by controlling Y
and Z together. In fact, this control set is minimal; setting any
individual variable to zero fails to eliminate non-zero stable steady
states in the evolution of the two free variables. This has
experimental and clinical implications: if the desired behavior is
to have all three variables inactive, any drug or knockout therapy
must target both Y and Z directly – a task that in practice is more
than twice as difficult than targeting only a single variable.
A change of variables, however, greatly simplifies the problem.

Let x ¼ X , y ¼ Y þ Zð Þ=3, and z ¼ Z � X to obtain

dx
dt

¼ H yð Þ � x;
dy
dt

¼ H xð ÞH zð Þ � y;
dz
dt

¼ H yð Þ � z; (3)

where H is defined as before. Here, the interaction graph has two
cycles (see Fig. 1), x $ y, and z $ y, so y alone forms a minimal
FVS (again, this is unique in this example). This implies that the
control of y is sufficient to drive the system between its two steady
states. Unfortunately, this elegant perspective on the controll-
ability of the system ignores the fact that biological ODEs are more
than the geometry of their vector fields – the real-world control
problem remains difficult. That is not to say that such perspectives
are never useful. In this particular example, the change of variables
allows for an efficient way to find the system’s attractors because
one need only vary y to search the state space for attractors. This
observation underlies the methods of the next section.

Monotone systems and subsystems
Interaction graphs are often equipped with signed edges, which
indicate whether a particular entity encourages or inhibits the
activity of another. Mathematically, these signed networks can be
viewed as being constructed from the signs of entries in the
Jacobian matrix (the matrix of first-order partial derivatives of the
regulatory function), though as a practical matter, these structures
are known with much more certainty than the mathematical forms
that would give rise to any particular Jacobian. It is also customary
to disregard constant negative terms along the diagonal of the
Jacobian such that the interaction graph does not treat
exponential degradation as autoinhibition. In some applications,
strictly negative diagonal entries are disregarded entirely43–45.
In a sign-consistent network, all paths between each pair of

nodes have the same sign. Such networks (disregarding any
potential negative self-loops) yield monotone dynamics43,44. For a
review of monotone dynamics, see Smith46. A key property of
these systems is described in Kamke’s theorem, which states that
in a sign-consistent network, perturbatively increasing a variable’s
value always increases or decreases the values of other variables
according to the sign of the paths between the perturbed and
observed variable; furthermore, the propagation of this perturba-
tion persists for all future times45,46. The analysis of so-called

Fig. 1 Network structure and minimal feedback vertex sets of Eqs.
2 and 3. In this example, Eq. 2 is written in a privileged, or natural set
of coordinates that correspond to the activities of individual
biomolecules. The minimal feedback vertex set of Eq. 2 is unique,
and consists of variables Y and Z, highlighted in blue in the network
on the left (panel a); in addition, all feedback vertex sets contain this
as a subset due to the self-regulation of these two variables. This
implies that overriding Y and Z is sufficient to attain either of the
system’s two attractors. Furthermore, in this example, this control set
is minimal. A change of variables (depicted in panel b) gives rise to a
system with a smaller feedback vertex set, consisting only of a single
variable, y ¼ Y þ Zð Þ=3, highlighted in green. However, in order to
achieve the necessary override of y in the laboratory, Y and Z must
both be manipulated. This example illustrates the importance of the
natural coordinates of the system when designing control
interventions.
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Monotone Input-Output Systems (MIOS) is facilitated by the
construction of a characteristic input-output function. The
construction of such a function relies on identifying an FVS of
the sign-consistent network and creating a map between fixed
constant values of the FVS variables and the values that their
regulatory functions take in attractors of the controlled system. A
precise definition is given by Angeli and Sontag44. To illustrate the
key features of this map, we consider an example of a simple
mutual activation feedback loop:

dx
dt

¼ H yð Þ � x;
dy
dt

¼ H xð Þ � y; (4)

where H is a Hill function (in fact, for our purposes, H can be any
strictly monotonic function). Here, either variable is a size-one FVS,
but we will consider x as the input/output variable:

dxout
dt

¼ H yð Þ � xout;
dy
dt

¼ H xinð Þ � y;
dxin
dt

¼ 0; (5)

The characteristic feedback function κ xð Þ is given by lim
t!1 xout for

xin 0ð Þ ¼ x. Explicitly, κ xð Þ ¼ H H xð Þð Þ. The zeros of κ xð Þ � x yield
steady state values of x in the original equation. The slope of
κ xð Þ � x at these zeros describes the stability of the corresponding
steady state; if the slope is negative, then the state is stable. The
well-definition of κ in this example and in general relies on the fact
that x forms an FVS. The stability properties rely on the sign-
consistency of the underlying network.
This characteristic map method has been applied in the analysis

of several biological systems, including the Lac Operon47, the
Circadian Oscillator48,49, the MAPK Cascade Feedback43, and a
classical model of testosterone concentration in the blood50; see
Sontag45 for an in-depth discussion of these applications.
Crucially, the feedback characteristic map can be experimentally
measured more easily than individual interaction parameters43.
Of course, many biomolecular networks are not sign-consistent.

It is usually a simple matter, however, to find subnetworks that are
sign-consistent. As we have previously shown in38,39, it is possible
to use these sign-consistent subnetworks to place bounds on the
coordinate values of system trajectories that begin within
specified subsets of the state space. These bounds can be used
to identify trap sets in the dynamics, called stable motifs, that are
robust to the effects of overriding unconstrained variables. This
method has been successfully applied to several biological
networks, including a T cell signaling network model, a Drosophila

segment polarity model, and a cell cycle restriction switch model
to identify robustly self-sustaining subcircuits38,39,51.
To illustrate how stable motifs, MIOS, and FVS methods build off

one another, we consider a simple example modified from ref. 39

_x ¼ 1� H yð Þ � x;

_y ¼ H zð Þ 1� H xð Þð Þ � y;

_z ¼ 1� 1� ϵð ÞH u tð Þð Þ � z;

H �ð Þ ¼ �½ �2
�½ �2þ1=16

: (6)

Here, the mutual inhibition feedback loop between x and y is
modulated by z, which is inhibited by y and controlled externally
by u with strength 1� ϵð Þ 2 0; 1ð Þ. In this example, we consider
the behavior of the system in response to u. First, we note that u
only affects z directly, and z depends only on u, so it is equivalent
to consider the response of x and y in response to varying z
between ϵ and 1. Therefore, we set z ¼ 1� 1� ϵð ÞH u tð Þð Þ and
consider

_y ¼ H 1� 1� ϵð ÞH u tð Þð Þð Þ 1� H xð Þð Þ � y (7)

immediately, neglecting time delays that do not affect the
ultimate behavior of x and y. The FVS formalism tells us that
controlling y completely is enough to fully determine the behavior
of x. It does not, however, tell us whether the particular control
implementation here is sufficiently complete. The stable motifs
method identifies that x and y form a monotone feedback loop
subsystem for any fixed value of z. Because z is between ϵ and 1,
this implies H ϵð Þ 1� H xð Þð Þ � y < _y < 1� H xð Þð Þ � y. Because the
x, y subsystem is monotonic, xM tð Þ � x tð Þ � xm tð Þ and ym tð Þ �
y tð Þ � yM tð Þ hold, where

_xm ¼ 1� H ymð Þ � xm; _ym ¼ H ϵð Þ 1� H xmð Þð Þ � ym; (8)

_xM ¼ 1� H yMð Þ � xM; _yM ¼ 1� H xMð Þð Þ � yM; (9)

for any initial conditions and any control input u tð Þ, provided
that the inequalities xM t0ð Þ � x t0ð Þ � xm t0ð Þ and ym t0ð Þ � y t0ð Þ �
yM t0ð Þ hold39, as can be proved by building on results presented
by Angeli and Sontag41–43. The implication is that any steady
states xm; ym and xM; yM of the xm; ym and yM; yM systems,

Fig. 2 Schematic of stable motif procedure applied to the system of Eq. 6. The network structure of the system is depicted in panel a.
Circle-tipped arrows represent inhibition, while wedge-tipped arrows represent activation. In panel b, the bounding systems in Eqs. 8 and 9
are depicted alongside the original system. Note that these bounding systems are monotone input/output systems. Panel c illustrates the
characteristic feedback method of identifying steady states in monotone input/output systems, wherein the effect of overriding a feedback
vertex set (FVS), in this case, the set containing ym or yM, is considered, as described in the example of Eq. 4.
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respectively, describe forward time-invariant trap sets in the
dynamics that are independent of the control input. This
procedure is illustrated in Fig. 2. For example, with a control
strength of 1⁄4 (ϵ ¼ 0:75), it is straightforward to show (see
Supplementary code) that the xm; ym system has a steady state
with xm between 0.089 and 0.090 and; ym between 0.861 and
0.862. This means that trajectories whose initial conditions satisfy
x t0ð Þ � 0:090 and y t0ð Þ � 0:862 cannot be controlled to a state in
which x tfð Þ � 0:089 or y tfð Þ � 0:861; this trap space corresponds
to the robust feedback loop, or stable motif, between x and y, and
is highlighted in Fig. 3. The existence of such a trap space
demonstrates that the switch remains robustly bistable when
subjected to such a weak control. This is not the case in the high-
strength limit ϵ ! 0, because large u tð Þ causes y tð Þ to exponen-
tially approach zero. We can see from Fig. 3 that at ϵ ¼ 0:25, the
stable motif has been destroyed, allowing for the control signal to
steer the system to either of the two qualitative switch states.
In this example, we have calculated the relevant trap set

explicitly and quantitatively, though this is not always necessary.
In fact, the stable motif trap set approach is a generalization of
methods devised for the study of Boolean networks52–55. We have
shown in earlier work51 that this connection can be exploited to
evaluate the sensitivity of control strategies to changes in
parameter values. Additional connections between trap set

methods and Boolean analysis have been further discussed
elsewhere by us38,39 and by Schwieger et al. 56.
This example illustrates that limited control over a feedback

vertex set (in this case, y) is often not sufficient to guarantee
convergence to a desired attractor. Here, y is controlled via an
external signal, u tð Þ, which is mediated by a variable z. Whether
this mediator variable is viewed as a dynamical variable or an
algebraic quantity, the fact remains that the signal is not sufficient
to directly force y to take the values attained in the system’s
attractors. In some cases, full attractor control is nonetheless
possible, as we have seen when ϵ is low. In other cases, as
illustrated for ϵ ¼ 0:75, the limited control over the FVS is
insufficient to drive the system out of certain control-robust
trap sets.

DISCUSSION
Complex networks are a common tool in the modeling repertoire
of biologists, and describe the intricate webs of interactions that
underlie important processes of biological and medical interest.
ODEs are frequently employed to understand the dynamics these
networks describe. It is of key interest to understand how to drive
these dynamical systems to or away from target configurations.
This task has applications in the identification of drug targets,

Fig. 3 Phase portraits and nullclines of the bounding systems of Eqs. 8 and 9. The phase portrait of the bounding xM; yM system is depicted
in the top left. The trajectories of the x,y system are such that x tð Þ � xM tð Þ and y tð Þ � yM tð Þ. The phase portrait of the xm; ym system is depicted
in the top right and bottom left corners for two values of the parameter ϵ. For ϵ ¼ 0:75 (weak control strength), the system exhibits a steady
state with small x and large y. Because xm tð Þ � x tð Þ � xM tð Þ and ym tð Þ � y tð Þ � yM tð Þ both hold, this steady state implies the existence of a
subset of the state space that cannot be escaped by varying u tð Þ in Eq. 6; this region is highlighted in red in the bottom right figure. Note that
in the strong control case (ϵ ¼ 0:25), there is no such steady state in the bounding system, and thus the control is able to drive the system
from a low-x, high-y state to a high-x, low-y state.
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oncogenes, and signaling pathways, and helps provide insights
into the functional role of biomolecular subcircuits. Unfortunately,
this task is complicated by the high dimension in which these
dynamical systems typically reside, as well as by poor constraints
on model parameters. It is also important when seeking to apply
control insights in practice to consider that interventions
suggested by classical control theory often assume that the
system under analysis can be engineered to a greater degree than
may be practical in biomolecular systems. Indeed, experimental
probes and medical interventions (e.g., drugs) in biomolecular
networks often take the form of an “all or nothing” effect on an
individual mRNA or protein. Constructing intricate time-varying
controls has seen some success in carefully constructed experi-
ments, but this level of control is often impractical.
These challenges make desirable those methods that emphasize

nonperturbative control and identification of network structure (for
which data is more readily available than for rate parameters).
When compared to a state-space point of view, a network-centric
point of view scales very well with the dimension of a system. In this
review, we have highlighted several methods that exploit the role
network structure plays in constraining the dynamics of a system.
These methods help to illuminate those properties of a dynamical
biological system that are not sensitive to the particular choice of
functional form or parameter values. They exploit the robustness of
the conclusions one can draw from the network topology alone to
make mathematical conclusions that are more readily translated
into practice. They demonstrate a key mathematical insight that has
been uncovered through the study of biological systems: the
network of interactions between entities in a complex system is a
fundamental determinant of possible emergent behaviors. It is our
hope that continued exploration of the connections between
network structure and dynamics will bring ever deeper under-
standing of how complexity arises from the simple rules that
govern biomolecular interactions at the cellular level.

DATA AVAILABILITY
All data used in this review are included in this manuscript or are available as
supplementary material.

CODE AVAILABILITY
All software created for this review are available as supplementary material.

Received: 7 April 2022; Accepted: 16 September 2022;

REFERENCES
1. Thomas, R. & Kaufman, M. Multistationarity, the basis of cell differentiation and

memory. I. Structural conditions of multistationarity and other nontrivial beha-
vior. Chaos Interdiscip. J. Nonlinear Sci. 11, 170–179 (2001).

2. Tyson, J. J., Laomettachit, T. & Kraikivski, P. Modeling the Dynamic Behavior of
Biochemical Regulatory Networks. J. Theor. Biol. 462, 514–527 (2019).

3. Wittmann, D. M. et al. Transforming Boolean models to continuous models:
methodology and application to T-cell receptor signaling. BMC Syst. Biol. 3, 98
(2009).

4. von Dassow, G., Meir, E., Munro, E. M. & Odell, G. M. The segment polarity network
is a robust developmental module. Nature 406, 188–192 (2000).

5. von Dassow, G. & Odell, G. M. Design and constraints of theDrosophila segment
polarity module: Robust spatial patterning emerges from intertwined cell state
switches. J. Exp. Zool. 294, 179–215 (2002).

6. Chen, K. C. et al. Integrative Analysis of Cell Cycle Control in Budding Yeast. Mol.
Biol. Cell 15, 3841–3862 (2004).

7. Zhang, J. et al. TGF-β–induced epithelial-to-mesenchymal transition proceeds through
stepwise activation of multiple feedback loops. Sci. Signal. 7, ra91–ra91 (2014).

8. Steinway, S. N. et al. Network Modeling of TGFβ Signaling in Hepatocellular
Carcinoma Epithelial-to-Mesenchymal Transition Reveals Joint Sonic Hedgehog
and Wnt Pathway Activation. Cancer Res 74, 5963–5977 (2014).

9. Deshmukh, A. P. et al. Identification of EMT signaling cross-talk and gene reg-
ulatory networks by single-cell RNA sequencing. Proc. Natl Acad. Sci. 118,
e2102050118 (2021).

10. Fiedler, B., Mochizuki, A., Kurosawa, G. & Saito, D. Dynamics and Control at
Feedback Vertex Sets. I: Informative and Determining Nodes in Regulatory Net-
works. J. Dyn. Differ. Equ. 25, 563–604 (2013).

11. Liu, Y.-Y. & Barabási, A.-L. Control Principles of Complex Networks. Rev. Mod. Phys.
88, 035006 (2016).

12. Haber, A., Molnar, F. & Motter, A. E. State observation and sensor selection for
nonlinear networks. IEEE Trans. Control Netw. Syst. 5, 694–708 (2018).

13. Villaverde, A. F. Observability and Structural Identifiability of Nonlinear Biological
Systems. Complexity 2019, e8497093 (2019).

14. Kim, J. K. & Tyson, J. J. Misuse of the Michaelis–Menten rate law for protein
interaction networks and its remedy. PLOS Comput. Biol. 16, e1008258 (2020).

15. Cantone, I. et al. A Yeast Synthetic Network for In Vivo Assessment of Reverse-
Engineering and Modeling Approaches. Cell 137, 172–181 (2009).

16. Shinar, G. & Feinberg, M. Structural Sources of Robustness in Biochemical Reac-
tion Networks. Science 327, 1389–1391 (2010).

17. Balaskas, N. et al. Gene Regulatory Logic for Reading the Sonic Hedgehog Sig-
naling Gradient in the Vertebrate Neural Tube. Cell 148, 273–284 (2012).

18. Macki, J. & Strauss, A. Introduction to Optimal Control Theory. (Springer Science &
Business Media, 2012).

19. Sontag, E. D. Mathematical Control Theory: Deterministic Finite Dimensional Sys-
tems. (Springer Science & Business Media, 2013).

20. Kalman, R. E. Mathematical Description of Linear Dynamical Systems. J. Soc. Ind.
Appl. Math. Ser. Control 1, 152–192 (1963).

21. Lin, C.-T. Structural controllability. IEEE Trans. Autom. Control 19, 201–208 (1974).
22. Liu, Y.-Y., Slotine, J.-J. & Barabási, A.-L. Controllability of complex networks. Nature

473, 167–173 (2011).
23. Brockett, R. W. Lie Algebras and Lie Groups in Control Theory. in Geometric

Methods in System Theory (eds. Mayne, D. Q. & Brockett, R. W.) 43–82 (Springer
Netherlands, 1973). https://doi.org/10.1007/978-94-010-2675-8_2.

24. Sontag, E. D. Controllability is Harder to Decide than Accessibility. SIAM J. Control
Optim. 26, 1106–1118 (1988).

25. Freeman, R. & Kokotovic, P. V. Robust Nonlinear Control Design: State-Space and
Lyapunov Techniques. (Springer Science & Business Media, 2008).

26. Entcheva, E. & Kay, M. W. Cardiac optogenetics: a decade of enlightenment. Nat.
Rev. Cardiol. 18, 349–367 (2021).

27. Lee, C., Lavoie, A., Liu, J., Chen, S. X. & Liu, B. Light Up the Brain: The Application of
Optogenetics in Cell-Type Specific Dissection of Mouse Brain Circuits. Front.
Neural Circuits 14, 18 (2020).

28. Hongdusit, A., Liechty, E. T. & Fox, J. M. Optogenetic interrogation and control of
cell signaling. Curr. Opin. Biotechnol. 66, 195–206 (2020).

29. Yamada, M., Suzuki, Y., Nagasaki, S. C., Okuno, H. & Imayoshi, I. Light Control of
the Tet Gene Expression System in Mammalian Cells. Cell Rep. 25, 487–500.e6
(2018).

30. Glass, L. & Kauffman, S. A. The logical analysis of continuous, non-linear bio-
chemical control networks. J. Theor. Biol. 39, 103–129 (1973).

31. Thomas, R. Logical identification of all steady states: The concept of feedback
loop characteristic states. Bull. Math. Biol. 55, 973–991 (1993).

32. Thomas, R. & Kaufman, M. Multistationarity, the basis of cell differentiation and
memory. II. Logical analysis of regulatory networks in terms of feedback circuits.
Chaos Interdiscip. J. Nonlinear Sci. 11, 180–195 (2001).

33. Kaufman, M., Soulé, C. & Thomas, R. A new necessary condition on interaction
graphs for multistationarity. J. Theor. Biol. 248, 675–685 (2007).

34. Clarke, B. L. Stoichiometric network analysis. Cell Biophys. 12, 237–253 (1988).
35. Snoussi, E. H. Necessary Conditions for Multistationarity and Stable Periodicity. J.

Biol. Syst. 06, 3–9 (1998).
36. Snoussi, E. H. & Thomas, R. Logical identification of all steady states: The concept

of feedback loop characteristic states. Bull. Math. Biol. 55, 973–991 (1993).
37. Mochizuki, A., Fiedler, B., Kurosawa, G. & Saito, D. Dynamics and control at

feedback vertex sets. II: A faithful monitor to determine the diversity of molecular
activities in regulatory networks. J. Theor. Biol. 335, 130–146 (2013).

38. Rozum, J. C. & Albert, R. Self-sustaining positive feedback loops in discrete and
continuous systems. J. Theor. Biol. 459, 36–44 (2018).

39. Rozum, J. C. & Albert, R. Identifying (un)controllable dynamical behavior in
complex networks. PLOS Comput. Biol. 14, e1006630 (2018).

40. Zañudo, J. G. T., Yang, G. & Albert, R. Structure-based control of complex networks
with nonlinear dynamics. Proc. Natl Acad. Sci. 114, 7234–7239 (2017).

41. Kobayashi, K., Maeda, K., Tokuoka, M., Mochizuki, A. & Satou, Y. Controlling Cell
Fate Specification System by Key Genes Determined from Network Structure.
iScience 4, 281–293 (2018).

42. Kobayashi, K., Maeda, K., Tokuoka, M., Mochizuki, A. & Satou, Y. Using linkage
logic theory to control dynamics of a gene regulatory network of a chordate
embryo. Sci. Rep. 11, 4001 (2021).

J. Rozum and R. Albert

7

Published in partnership with the Systems Biology Institute npj Systems Biology and Applications (2022)    36 

https://doi.org/10.1007/978-94-010-2675-8_2


43. Angeli, D., Ferrell, J. E., Sontag, E. D. & Lebowitz, J. L. Detection of Multistability,
Bifurcations, and Hysteresis in a Large Class of Biological Positive-Feedback
Systems. Proc. Natl Acad. Sci. USA 101, 1822–1827 (2004).

44. Angeli, D. & Sontag, E. D. Multi-stability in monotone input/output systems. Syst.
Control Lett. 51, 185–202 (2004).

45. Sontag, E. D. Monotone and near-monotone biochemical networks. Syst. Synth.
Biol. 1, 59–87 (2007).

46. Smith, H. L. Monotone Dynamical Systems: An Introduction to the Theory of
Competitive and Cooperative Systems: An Introduction to the Theory of Competitive
and Cooperative Systems. (American Mathematical Soc., 2008).

47. Mahaffy, J. M. & Savev, E. S. Stability analysis for a mathematical model of the lac
operon. Q. Appl. Math. 57, 37–53 (1999).

48. Goldbeter, A. A model for circadian oscillations in the Drosophila period protein
(PER). Proc. R. Soc. Lond. B Biol. Sci. 261, 319–324 (1995).

49. Angeli, D. & Sontag, E. D. An analysis of a circadian model using the small-gain
approach to monotone systems. In 2004 43rd IEEE Conference on Decision and
Control (CDC) (IEEE Cat. No. 04CH37601) vol. 1 575–578 (2004).

50. Murray, J. D. Mathematical Biology I: An Introduction. (Springer, 2002).
51. Rozum, J. C. & Albert, R. Controlling the cell cycle restriction switch across the

information gradient. Adv. Complex Syst. 22, 1950020 (2019).
52. Zañudo, J. G. T. & Albert, R. An effective network reduction approach to find the

dynamical repertoire of discrete dynamic networks. Chaos Interdiscip. J. Nonlinear
Sci. 23, 025111 (2013).

53. Zañudo, J. G. T. & Albert, R. Cell Fate Reprogramming by Control of Intracellular
Network Dynamics. PLOS Comput. Biol. 11, e1004193 (2015).

54. Klarner, H., Streck, A. & Siebert, H. PyBoolNet: a python package for the gen-
eration, analysis and visualization of boolean networks. Bioinformatics 33,
770–772 https://doi.org/10.1093/bioinformatics/btw682 (2016).

55. Rozum, J. C., Zañudo, J. G. T., Gan, X., Deritei, D. & Albert, R. Parity and time-
reversal elucidate both decision-making in empirical models and attractor scaling
in critical Boolean networks. Sci. Adv. Accept. 7, eabf8124 (2021).

56. Schwieger, R., Siebert, H. & Röblitz, S. Correspondence of Trap Spaces in Different
Models of Bioregulatory Networks. SIAM J. Appl. Dyn. Syst. 17, 1742–1765 (2018).

AUTHOR CONTRIBUTIONS
J.R. led the writing of the manuscript with assistance and advisement from R.A. J.R.
designed the examples and conducted all analyses in the examples. J.R. and R.A.
codeveloped the outline of the review.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41540-022-00249-2.

Correspondence and requests for materials should be addressed to Jordan Rozum.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://
creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022

J. Rozum and R. Albert

8

npj Systems Biology and Applications (2022)    36 Published in partnership with the Systems Biology Institute

https://doi.org/10.1093/bioinformatics/btw682
https://doi.org/10.1038/s41540-022-00249-2
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Leveraging network structure in nonlinear control
	Introduction
	Challenges of network control
	High dimension, observability, and visualization
	Uncertainty in dynamic specification
	The nonlinear and nonperturbative nature of experimental probes

	Leveraging network structure
	Feedback vertex sets
	Monotone systems and subsystems

	Discussion
	DATA AVAILABILITY
	References
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




