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Omics-based approaches have become increasingly influential in identifying disease mechanisms and drug responses. Considering
that diseases and drug responses are co-expressed and regulated in the relevant omics data interactions, the traditional way of
grabbing omics data from single isolated layers cannot always obtain valuable inference. Also, drugs have adverse effects that may
impair patients, and launching new medicines for diseases is costly. To resolve the above difficulties, systems biology is applied to
predict potential molecular interactions by integrating omics data from genomic, proteomic, transcriptional, and metabolic layers.
Combined with known drug reactions, the resulting models improve medicines’ therapeutical performance by re-purposing the
existing drugs and combining drug molecules without off-target effects. Based on the identified computational models, drug
administration control laws are designed to balance toxicity and efficacy. This review introduces biomedical applications and
analyses of interactions among gene, protein and drug molecules for modeling disease mechanisms and drug responses. The
therapeutical performance can be improved by combining the predictive and computational models with drug administration
designed by control laws. The challenges are also discussed for its clinical uses in this work.
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INTRODUCTION
The high mortality of many diseases prohibits human longevity,
and therapies need to be designed to suppress disease
progression and aid organisms to recover from abnormal states1.
However, the cost of launching new drugs is expensive and
increasing, due to the long-term safety procedures in clinical
trials2 caused by drug overdose toxicity and off-target side
effects3,4. The unknown drug targets in individuals may also cause
problems. For example, the drug Torcetrapib has been designed
for cardiovascular disease5, but it may cause severe side effects of
hypertension6. Analyses of omics, including genomics, proteomics,
metabolomics and transcriptomics, contribute to the studies of
disease mechanisms and drug responses. While a single omics
layer focuses on a specific aspect with less complexity but limited
information7,8. For instance, using only the conventional marker or
the haplotype association cannot reveal the combined effects of
Single Nucleotide Polymorphisms (SNPs), which potentially
induces stroke9. The systemic view on dynamic gene regulation
shows that genes work as part of complex networks instead of
acting alone to perform cellular processes10. The integrative multi-
layer omics data, such as transcriptional factors, genes and their
expression products, provides a comprehensive map of metabo-
lism and molecular regulation when analyzing and predicting
based on complex cellular networks11–15. This leads to the
prediction of potential molecular interactions through latent
information of omics data. A general figure of omics data
interactions is shown in Fig. 1.
In pharmacology, drug molecules act by binding to specific

proteins, thereby changing their biochemical and biophysical
activities16. Traditional treatment design based on physical
parameters and external modalities17,18 or simple ligand-protein
interactions4 are not sufficient for meeting clinical drug safety
criteria or specifying variability among individuals. Modeling of the
integrated clinical data and multi-layer molecular interactions
makes the drug responses predictable3,19.

With multi-layer omics data, a single disease can be studied
across different clinical modalities simultaneously (i.e., the
horizontal direction in Fig. 2), and different diseases can be
explored from a single modality (i.e., the vertical direction in
Fig. 2). Systems approach makes chemical molecules and
biomolecules more likely to be linked to phenotypes for analyzing
diseases and drugs and identifying their potential connections.
Modeling of disease pathways and drug responses through
different layers of regulation contributes to drug repurposing
and drug combination based on known molecular interactions.
This review classifies the models for interactions among gene,
protein and drug molecules into two main classes: static network
and dynamic modeling. Both frameworks integrate biological
information. The modeling is served for studying disease
mechanisms and drug responses. The two main tasks include (1)
deriving potential molecular interactions from disease mechanism
and drug response, and (2) designing drug dosages.

NETWORK STRUCTURE IN SYSTEMS BIOLOGY
A network structure visualizes a wide range of components such
as genes or proteins and their interconnections. Network-based
modeling can be established for systematic analysis based on
omics data from various scales20, which expands the use of
bioinformatics beyond its original meaning by mining structural
motifs for novel interaction prediction21. This agrees with the
ideas that the networks with hierarchical bio-information consist
of the metabolic, signal transduction, and gene regulation
pathways all contribute to the analyses of interactions between
protein inhibitors22. Diseases with overlapping network modules
show significant co-expression patterns, symptom similarity and
comorbidity23, whereas diseases residing in separated network
neighborhoods are phenotypically distinct24.
A basic network is made up of nodes and edges. For molecular

interactions, nodes can be genes25, proteins26, and drugs. Node
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annotations can be connective properties, including binding
affinities27, interactive directions28, and the importance and con-
fidence of the connections29. Edges link the nodes, and edge
annotations can be functional interactions between nodes, including
protein physical interactions, gene regulatory relations30, mechanism
of activation and inhibition31,32, and disease associations33. Besides,
network complexities reflect in its size. Large networks with high
complexity can be iteratively divided into measurable subunits to
reduce the complexity of analysis34, and each subnetwork can be a
set of functionally grouped nodes28. The patterns in the known
annotations can be used to predict new annotation35, and structural
patterns can be obtained by network motif. Motif encodes regulatory
behaviors and decreases internal cell noise28, and it also helps

identify drug molecules with common reactions, discover unknown
drug responses, and predict potential therapeutics36. The regulatory
motifs in the gene regulatory network contribute to modeling the
cell fate dynamics in the immune system37. The pathway motifs
within gene regulatory networks help interpret genetic and
epigenetic variation38. The topological motifs in the interaction
network of drugs and targets help select target protein candidates
for drug synergy39.

STATIC NETWORK OF DISEASES AND DRUGS
A static network models the statically functional interactions from
omics data. Network structure provides topological properties

Fig. 1 A systemic view of disease. Interactions among genomic, proteomic and transcriptomic levels reveal the regulatory process within
organisms. Drug molecules intervene in this process by binding with specific target ligands. These omics data and chemical molecules are
required to be analyzed simultaneously to study the entire disease mechanisms and drug reaction.

Fig. 2 Analyses of disease and drug effect through single and multiple layers of omics data. Systemic view enables scientists to establish
disease models from a higher hierarchic level by multi-layer data integration. Through vertical analysis within single layers, the disease-related
molecules are identified by abnormal gene expression values. Through horizontal analysis with different layers, the interactive information are
used to track diseases or drug effects throughout the entire biological process.
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from the presented interactions. It integrates intra- and extra-
cellular information for identifying the modules’ functional
response by multiple network alignment. The overlapped multi-
omics data integration is informative for reveal new molecular
interactions12,15.
The purpose of constructing a static network is to predict the

potential interactions among drug molecules and target proteins
through the shared components, as they can be the intermedi-
aries to convey information to different network layers4,40. For
example, the diseases can be associated based on the shared
genetic associations, the gene-disease interactions, and the
disease mechanism23,26,30, such that disease connections can be
built through the shared genes for drug repurposing. In a host-
pathogen interaction network, the shared enzymes and regulatory
components connect the metabolic reactions for predicting drugs
for fungal infection7. Compared to a multiplex network, which
only contains the same type of nodes and integrates the
subnetworks from different layers, a heterogeneous network has
the capability to include different types of nodes and edges. The
multi-layer connections for the same nodes will result in a
multiplex-heterogeneous network. More details about the differ-
ent network structures can be found in reference41. Additionally,
the new interacting pairs may account for variability in disease
progression or drug response among individuals. To conclude, the
shared components across layers may reveal new findings
through multi-layer omics data modeled by a heterogeneous (or
multiplex-heterogeneous) network structure.
The absent interactions don’t guarantee the negative interact-

ing relations, since the available binding profiles are limited. One
obstacle preventing expanding the database is that the clinical
experiments are costly. To avoid the expensive clinic experiments,
based on the static network models, machine learning-based
methods are used to predict possible interactions using known
interaction data.

Interactions from omics data
Due to the expression relations, genes and proteins are always
analyzed together for genetic analysis of complex diseases. For
genome-wide association, proteins and gene interactions can
identify densely connected modules in the human protein
interactome9. The protein-protein interaction (PPI) networks
encode the information of proteins (nodes) and their interactions
(edges) into the network structure. PPI networks help predict the
potential disease-related proteins, based on the assumption that
shared components in disease-related PPI networks may cause
similar disease phenotypes7,33,42,43. For example, PPIs can be used
with gene co-expression networks to assess the host-pathogen
response for clinical treatment of Covid infections44. To be specific,
the HCoV-host interactome was used to predict SARS-CoV-2
pathogenesis and provide a theoretical host-pathogen interaction
model for HCoV infections.
The aim of modeling static molecular interactions is to use the

interaction profiles to find out the potential interacting pairs. The
modeling starts from identifying disease-related regulators using
omics data. Consider that the RNA-sequencing data on a disease-
related microarray is available. The disease-related genes can be
selected from the differentially expressed genes (DEGs) based on
the moderated t-statistics analyses and empirical Bayes using
Limma in R45. The genes with large variations in expression data
can be chosen based on fold-change and p-value, and a PPI
network can be mapped. Limma focuses on the statistical
meaning of the gene expression level, and its performance is
affected by the number of samples.
For gene co-expression analyses based on microarray data,

Pearson Correlation Coefficient (PCC) is frequently used. For
example, a gene co-expression network for the Z. mays and A.
flavus genes can be mapped directly from pairwise PCC masked

by a customized cutoff46. WGCNA47 constructs an approxi-
mately scale-free network for detecting functional gene clusters
based on PCC of gene co-expressions, under the assumption
that proteins work together to perform metabolic functions.
The disease-related hub genes/proteins with high connectivity
are selected from the clusters. However, R2 value and
connectivity of the identified gene network are sensitive to
gene quantity, and different parameter settings (i.e., soft
threshold) will result in different co-expression modules. In
the frequent gene co-expression network48, gene pairs with
high PCC, which are collected from different cancer and normal
microarray dataset, are selected to build subnetworks of tightly
co-expressed gene clusters using an iterative greedy algorithm
“Quasi-Clique Merger”. The edges in subnetworks are weighted
by the frequency of these genes, and similar subnetworks are
merged into larger networks that are identified for specific
diseases. The researchers noted that compared to differential
expression analysis, where normal samples are necessary for
comparison, this approach integrates multiple microarray
datasets that even make the use of data without normal
samples, which makes the constructed network more informa-
tive. However, the size of the datasets has to be large enough to
ensure a high level of significance for PCC. A decision tree-
based method Randomforest GENIE349 can be used to infer
gene co-expression network by solving p (i.e., the number of
genes) regression subproblems of identifying gene expression
patterns and then grouping the genes. It can fast detect gene
networks from large gene datasets that have multifactorial
expression data. However, this method assumes knowing the
transcription factors in the gene dataset of the experimentally
confirmed gene interactions. Note that PCC assumes the gene
expressions are linearly correlated, which may not be true for
biology systems48. In a gene co-expression network for
identifying cross-species interactions, mutual information and
Z-scores of gene pairs are calculated using Context Likelihood
of Relatedness algorithm50, which are used to infer edges in the
network. As described by the authors, this algorithm can cope
with nonlinear changes of gene expression, and it shows higher
accuracy compared to PCC. However, PCC is still needed to
discriminate the (positive or negative) directions of correlations
of gene pairs. See Table 1 for comparison.
Eventually, the target proteins are obtained based on the

gene clusters in the gene co-expression networks. Drugs that
potentially intervene in disease progression can then be
predicted based on these proteins. The question that remains
is how to detect the disease mechanism relevant to small gene
expression variations, since small changes in some genes may
have more essential contributions to the overall process. Note
that gene expression level study excludes the non-
transcriptional interactions48, which can be a potential limita-
tion for predicting molecular interactions.

Drugs and targets interaction
Similarly, a static network can model the interactions among
drugs and targets. Drug-target interaction (DTI) networks have
been applied to study the prediction of drug response51,
interaction profiles of new drug-target pairs16,26,27,52, and side
effects of unknown drug combination22,53,54. A DTI-based target
inhibition model has been proposed to identify the disease-
specific target set with possible drug-target combinations by
mapping drug inhibition profiles with the use of protein
candidates, which were relevant to cancer survival with known
drug binding profiles52. Notably, the drug target proteins in a DTI
network may have larger degrees (i.e., more interactive molecules)
than those proteins in a PPI network16.
Nodes in DTI networks include drugs, drug targets, and off-

target proteins. For predicting drug side effects, the off-targets
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can be linked based on drug clinical relevance54. For drug
combinations, different drugs may have interactions that
induce side effects in patients or reduce the drug efficacy55,56.
This requires us to identify potential drug-drug interactions
(DDI), which can be explored by expanding DDIs through the
shared targets of the drugs. The enriched DDIs identify
potential targets and find new therapeutic uses (that the drugs
do not initially aim at) and combination with surprising
efficacy4. Figure 3 delineates a general view of the abridged
drug and target interactions. Besides, the text mining-based
predictions of molecular interactions rely heavily on the
existing reports and references57, and insufficient clues would
result in inaccurate predictions. Some of the frequently used
databases for gene and protein interaction analyses are listed in
Table 2.

An example of constructing a static network
Here is an example of constructing a heterogeneous network that
integrates interactomics data from different subnetworks. The task
is to predict potential drugs for a disease using RNA-sequencing
data. Data can be obtained from online databases such as Gene
Expression Omnibus database58. DEGs can be identified through
statistical analyses (e.g., empirical Bayes using “Limma” in R45) on
these gene expression data. The resulting genes are mapped into
the signaling pathways database (e.g., KEGG database59) such that
the highly perturbed disease-related pathways are selected.
Target proteins are selected from the pathways, since we aim at
intervening in the disease’s progress by blocking the relevant
pathways using drugs. Interactions of target proteins are parsed
from database (e.g., STRING database60) for constructing PPI
networks and embedding the internal connecting information. DTI

Fig. 3 Interactions among drugs and target proteins offer chances for drug combination, co-administration, and repurposing. Drug
molecules may bind with off-target proteins that induce side effects (labeled by red arrows), which should be avoided. Though, the
therapeutic drug molecules should be reserved, as they function as desired to cure diseases (labeled in green arrows). Interactions between
drugs provide an opportunity for enhanced therapeutic performance through drug co-administration and combination (labeled by cyan
arrow). Drug similarity conveyed by drug-target interactions provides a chance for drug repurposing (labeled by orange arrows). Drug targets
may be expanded to similar proteins using protein-protein interactions for drug repurposing (labeled in purple arrows). Drug molecules in this
figure include epinephrine (for “Drug 1”) and benzene (for “Drug 2”) as examples, using the icons from Biorender.

Table 1. Methods for constructing gene co-expression networks.

Algorithms and applications Advantages Potential limitations

Quasi-Clique Merger algorithm for finding
co-expressed gene clusters48.

Integrates multiple microarray datasets, even
including the data without normal samples48.

Requires large datasets to ensure a high
level of significance for correlations of gene
expressions.

Context Likelihood of Relatedness algorithm for
inferring edges in the network to identify cross-
species gene interactions50.

Captures nonlinear changes in gene
expressions50.

Can’t discriminate the direction of
correlations of gene pairs without Pearson
Correlation Coefficient.

GENIE3 for inferring gene co-expression network49. Fast detects gene networks from large
multifactorial gene expression data.

Requires prior knowledge of the
transcription factors.

WGCNA for detecting functional gene clusters47. The approximately scale-free network structure
reserves connectivity when randomly
removing nodes.

Sensitive to the number of genes and the
choices of parameters (i.e., soft threshold).
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data is parsed from the drug database (e.g., DrugBank database61)
by inputting the name of target proteins. Drugs that bind with at
least one target protein are obtained to construct the DTI network.
The DDI subnetwork is constructed by expanding the drugs from
DTIs to their interactive partners, using interaction data from the
drug database. And the internal connecting information among
the expanded drug set is embedded into the subnetwork. The
molecules from the three types of subnetworks are then

integrated using a heterogeneous network, whose nodes are the
drugs and target proteins, and edges are the interactions among
proteins and targets. More recent works have focused on graph-
based representation of molecular interaction network G(V, E),
where V is the set of molecules and E is the set of molecular
interactions62–64. And information is propagated from nodes to
nodes through graph edges. The overview of the delineated
process is visualized in Fig. 4.

Table 2. Databases for gene and protein interaction analyses.

Application Database Description Reference

DTI, PPI Comparative Toxicogenomics Database Information of chemicals, pathways, disease, organisms, genes,
drug-gene interactions. Data are mainly collected from references.

39,53

Gene regulation and
interaction

GEO (Gene Expression Omnibus) One of NCBI databases. Gene expression data (eg. RNA, genome
methylation and proteins) that comes from data submissions such
as microarray or other researches.

13

Genomics of cancer Cancer Genome Atlas (TCGA) Cancer molecular data including genome, epigenome,
transcriptome and proteome.

38

Biological pathway GeneGo MetaBase Bioinformatics including signaling and metabolic pathways,
interactions among drugs and proteins as well as kinetic
information of drugs.

54,65

PPI, DTI, signaling
pathway

KEGG (Kyoto Encyclopedia of Genes and
Genomes)

Information of pathways, genome, chemicals and diseases based
on diagrams of interaction and reaction. It is complementary to
the majority of the existing molecular biology databases that
contain information on individual molecules or individual genes.

12,40,44,72

PPI STRING (Search Tool for the Retrieval of
Interacting Genes)

Functional links in PPI based on experimental data. Interactions
are predicted by comparative genomics and text mining based on
the scoring system.

9,44,85

Gene regulation and
interaction

CCLE (the Cancer Cell Line Encyclopedia) Gene expression data for human cancer analysis, including
information of mutation, Gene Methylation and the associations
between cell line and genomics.

51,52,170

DTI, DDI PubChem (NCBI) Characteristics of chemical molecules and activities from
experimental results or literature. For drug analysis, it provides
information on the chemical structure for each drug and the
validated chemical depiction information.

51,85,95

Gene regulation and
interaction

GO (Gene Ontology) Biological annotations including structure, function and dynamics
in pathways, molecules and organism level for a variety of species.

19,35,44

DTI STITCH (search tool for interactions of
chemicals)

Profiles of chemicals and proteins interactions. The data source
includes experimental results and text mining. More than 9 million
proteins come from almost 2,000 organisms in this database.

39

DTI ChEMBL Biological activities and characteristics of molecules such as
chemicals and proteins that contribute to the study of drug target
and drug discovery.

54,54,86

Gene regualtion and
transcription

UniGene (NCBI) Gene sequences from animals and plants. The well-characterized
sequences are driven from algorithm-based classification which
helps to identify uniqueness among genes. The Source of intact
gene sequences is GenBank.

13,74

DTI, DDI Drug Bank Drug-target and drug-drug interacting information such as
chemical sequence, three-dimensional structure and
pharmacological pathway involvement.

16,40,71,76

Genomics of
breast cancer

METABRIC (Molecular Taxonomy of Breast
Cancer International Consortium)

Clinical and expression data for breast tumors. The collected
breast cancer specimens are grouped for discovery and validation.
It helps to assess the survival prediction of cancer patients.

173

PPI HPRD (Human Protein Reference Database) Bioinformatics of human protein-protein interactions from
literature and data are manually curated.

33,42

Signaling pathway Reactome Bioinformatics information including pathway, proteins and drugs
for model visualization and analysis.

9,29,44

DDI Online Mendelian Inheritance in
Man (OMIM)

Disease data including disease loci, known disease genes and the
known disorder-gene associations such as the molecular
relationship between genetic variation and phenotypic
expression.

16,28

PPI Human Protein Reference Database (HPRD) Protein information based on interactions described in published
reports. The interaction set is expected to be biased toward
known disease genes.

15,33,42
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Limitation of static network modeling
The dynamic metabolic behaviors in patients result in changing
expressions of genes. The interactomics in static modeling may
become invalid, since molecule expression levels deviate a lot
from the points that the model is built based on, thus leading to
the failure of static modeling. This makes the dynamic modeling in
Section V necessary. The major purpose of dynamic modeling is to
map the regulatory relations among molecules, such that drugs
can be used to intervene in disease progression by binding with
target proteins, which drive the expression levels of genes to the
normal range. Once gene expressions are corrected, the predictive
static models will be valid again.

ANALYSIS OF STATIC MODELING
Although the models of diseases or drugs have been studied for
decades, the actual biosystems are far more complicated than
complete modeling65, which indicates the potential of exploring
more comprehensively models. This section reviews recent
techniques that have been used to predict more information
based on static models.

Importance quantification
The importance of interactions in the network requires measuring
and ranking for reducing network complexity and generating the
weights, such that the simplified networks include only the most
disease-related molecules65, which improves the efficacy of the
learning process. The topological descriptors, such as degree,
betweenness, and closeness, are frequently used to quantify the
node importance in the network and embed spacial information
into the modeling16,66,67. Node degree D, which is the number of
connected edges30, measures the connectivity of nodes. In
molecular interaction networks, the highly connected nodes (i.e.,
the hub nodes) usually provide more biological insights, compare
to nodes with low degrees45,47. However, when identify disease-
specific regulators, the importance will be penalized on hubs,
since they don’t have much information66. The unconnected
nodes will be discarded, since there is no path available to convey
messages. Betweenness that describes the centrality of the given
nodes is measured by the shortest path68, and it has more change
when removing intermodular hubs compared to the intramodu-
lar19. Importance quantification can also be done based on

statistics. For example, Z-score (i.e., the harmonic mean of
precision and recall) measures the variability of the observations,
and it has been used to quantify the importance of shortest paths
between drug targets and the cardiovascular disease-related
proteins53. The eigenvalues can be used to quantify the
importance of data projection basis. In WGCNA47, the significance
of gene co-expression clusters is quantified using the “eigen-
genes” to reserve the most important genes and modules when
modeling.

Similarity analysis
Similarity characterizes how elements are similar to each other in a
static network. The assumption is that similar nodes have similar
interaction profiles. For example, similar chemical structures of
drugs show similar therapeutic effects for diseases33,40,51. Different
types of similarities can be used based on the type of molecules.
Protein similarity can be obtained based on protein sequence
using the Smith-Waterman alignment algorithm27,69. Similarities
between small molecules drugs are often calculated based on
Jaccard coefficient of chemical structure notated by Simplified
Molecular Input Line Entry System (SMILES)70. Similarity between
cell lines can be obtained using similarity of gene expression
profiles51. Other types of similarities can be the drug phenotypic
side-effect similarity71, pathological similarities33, and so on.

Learning-based methods for clustering and classification
The evolution in learning-based networks has shown its ability to
efficiently learn from massive datasets4. The learning-based
methods can be supervised (with labels for training data),
unsupervised (without labels) or semi-supervised (with partially
labeled data).
A supervised learning approach enables the model to predict

unknown parts (links) of the network based on the known
interacting molecules72–74. Support Vector Machine (SVM), as a
supervised learning model for classification, can refine topological
information from network structure. SVM has been used for
predicting DTIs based on DDIs, drug chemical structures, and side-
effect information75. And the result shows that AUC values reach
0.76 in predicting the interaction between 261 drugs and 2,140
proteins. The multi-class SVM has been used to predict the
therapeutic class of FDA-approved compounds using drug
similarities, and it shows 78% classification accuracy of level 2

Fig. 4 Statistic analyses on gene expression Values from RNA-sequencing data identify DEGs. The signaling pathways that contain the
highest ratio of DEGs are regarded as disease-related. All or part of proteins in these pathways are selected to form the target protein set. By
parsing PPI and DTI data from databases, the PPI network and the DTI network are constructed. The drug molecules in the DTI network are
also used to parse and construct the DDI network. Finally, the DDI and the PPI are connected by the DTI, and thus the heterogeneous network
is constructed. The task of predicting the potential drugs for a given disease is now transferred to the prediction of the interactions between
the proteins and the drug molecules. Abbreviation: DEGs Differentially Expressed Genes, PPI Protein-Protein Interaction, DDI Drug-Drug
Interaction, DTI Drug-Target Interaction.
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ATC codes among 410 drugs76. Kernels in SVM measure the
features between gene pairs to train the classifier77, and the
classifier makes the binary prediction for the interactions between
the existing molecules and the incoming components72. Random
Forest (RF), as an ensemble learning algorithm, can be used to
performance classification based on decision trees78, such as the
prediction of the contact probability between protein coevolved
residues79. RF is robust to noise and it is capable to handle small
sample size80. However, RF is less interpretable, and the
computational load of RF will increase exponentially as the size
of data increases81. The convolutional neural network (CNN),
which uses the convolutional kernels and refines molecular
features from arbitrary network frames of different sizes and
shapes82, has been applied to refine DDI features using text
mining on the biomedical information56. In the study, the
prediction performance reached a F-score of 70% when evaluating
about 900 drug documents. While a single-layer neural network
may not have good predicting performance, a deep neural
network can be deployed and obtain better results. Deep learning
(DL) methods, which are built by multiple layers of neural
networks, are gaining more and more attention because of the
structural flexibility83 and their capability of extracting molecular
patterns by mining latent information from the network
structures82,84–86. For example, a deep CNN learning architecture87

shows its high concordance index (large value is better) in
predicting drug-target binding affinity. While using more layers of
neural networks results in more parametric settings, which could
be potentially time-consuming. One efficient method to search
these network parameters can be Particle swarm optimization88. A
scheme of a convolutional neural network is shown in Fig. 5.
However, supervised learning heavily relies on the size of

labeled samples during the training. Consider nd drugs and nt
targets that include nd ⋅ nt drug-target pairs, then the number of
available DTIs na < < nd ⋅ nt. Moreover, when predicting DDIs base
on drug side effect, the positive samples (i.e., drug pairs with
known interactions) can be obtained from database, but the
negative samples (i.e., drug pairs with with clinically validated safe
co-prescriptions) are almost unavailable89. The lack of labeled data
will decrease the predicting performance when using supervised
learning methods. Though data preprocessing partly copes with
the missing data problem, it causes certain information loss90.
Unsupervised learning aims at clustering data based on

features, without the use of data labels. Examples are given as
follows. When identifying relevance of disease phenotype and
treatment response between patients, the number of patient
clusters is unknown, and a hierarchical clustering (HC) algorithm
with multiple linkage methods has been used for clustering
patients based on genome-wise similarity and variability91. The

Fig. 5 A convolutional neural network. This neural network is comprised of an input layer, convolutional layers (that extract features from
hyperplanes of input data by projection/convolution), pooling layers (that reduce the spatial size and mitigate the locational sensitivity),
flatten layer (that flattens the features and feeds them into the artificial neural network), fully connected layer (that learns nonlinear function
of the extracted features) and an output layer. The input is the raw features such as molecules sequence patterns, gene regulation annotations
and patterns, molecular interaction network motifs, molecular structures and structural associations, drug chemical structures, drug side-effect
reports, and so on. The output can be the predicted classification (e.g., molecular binding profiles) and regression (e.g., quantified molecular
binding affinities) when obtaining new samples.
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benchmark test on 191 Multiple Sclerosis patient samples reaches
Rand index moer than 0.85, and it also shows the capability of
reducing feature dimension of Single Nucleotide Polymorphisms
of 191 patients from more than 25,000 to about 1500. Advantages
of HC includes that it is visualizable and user can customize the
granularity by cutting the clustering at the desired level92. As a
widely used unsupervised learning method, the autoencoder (AE)
learns and refines the low-dimensional features from data to
reconstruct the input, so that a minimalistic description can be
derived for differentiability among samples84. This encoding-
decoding frame can be used to denoise a single-cell RNA-
sequencing model93, transform molecules directly into a numer-
ical representation86, and compress computational dimensional-
ity4 when detecting the cell type-specific clusters in an ensemble
clustering way94. The stacked AE has been used to extract highly
representative features from drug molecular structure and protein
sequences, which help identify the potential DTIs95. Instead of
capturing the deterministic latent features, the Variational
Autoencoder (VAE) aims at capturing the distribution of the latent
variables, with the help of variational inference96,97. Though VAE is
capable of generating artificial samples for sparsely labeled
molecules data, its heavy computational load due to the
optimization of hyperparameters may limit the usage92. Note that
AE and VAE are not classifiers.
Transductive learning learns to predict labels of unlabeled data

in the existing network by training on entire dataset, while
inductive learning learns a classifier that make prediction on
testing data out of the current network. We focus on transductive
learning, because the static network structure is deterministic for
predicting potential interactions among existing nodes.
Semi-supervised learning (SSL) combines supervised and

unsupervised learning. SSL is widely used for predicting molecular
interactions using a small number of known interactions and
many unknown interactions. Label propagation is a classical
transductive SSL method that utilizes a small labeled dataset and
predicts the label of the unlabeled data iteratively98. This method
has been used to predict DDIs based on side effect similarity
among 569 drugs with 52,416 DDI pairs89. The result showed that
when the size of the training dataset is small, instead of the
training data, the output of the proposed predictive model mainly
relies on the geometric structure of the entire dataset. Also, the
Area Under the Precision-Recall Curve value ranged from 0.650 to

0.729 for different ratios of testing and training dataset, which
indicates the predictive model is stable. The autoencoder-based
semi-supervised learning has been applied for predicting DTI99,
DDI100 and PPI101. The unsupervised AEs/VAEs with a supervised
deep neural network form a semi-supervised neural network,
which shows higher AUC (over 0.8) compared to other learning
methods99–101. Though, SSL cannot work without proper assump-
tions, as it will loss generalization from a finite training set to other
test cases102,103. Besides, SSL is not always superior to supervised
learning. An example is that a supervised logistic regression
outperformed a semi-supervised label propagation when evaluat-
ing the prediction accuracy of gene functions, relevant disease
and gene traits of on the full network connectivity, since the
former algorithm efficiently extracts local network patterns, while
the latter focuses on network topology104. The comparison of
learning-based methods for predicting molecular interactions can
be found in Table 3.

Graph-based learning for predicting molecular interactions
Graph modeling is gaining increasing attention, since it encodes
the structural and spatial information of data into models. The
basic graph components include the sets of nodes, edges and an
adjacency matrix that stores node connection information. A
heterogeneous network of molecular interactions can be easily
represented by a graph model. Graph Embedding (GE) encodes
the spatial and topological information of graphs into low-
dimensional feature vectors using a parametric function105,106. GE
in transductive learning is deterministic because of a fixed graph.
While for inductive learning, GE is generated from graph input
features105.
Several graph learning methods have been proposed. Similar to

CNN, graph convolution extracts features from graphs. Graph
Convolutional Network (GCN), as a spatial convolution approach
and the first-order approximation of Chebyshev polynomials of
the graph spectral filter for semi-supervised classification tasks,
aggregates the weighted node features from neighborhoods to
the current node being visited using locally convolutional
computation107. However, GCN has a relatively shallow structure.
In a deep GCN, the oversmoothing property gives similar
embedding to nodes from different labels/classes, resulting in
mislabeling/misclassification issues108. The spectral graph con-
volution approaches partition/diffuse graph in Fourier domain

Table 3. Learning-based Methods for Predicting Molecular Interactions.

Type Advantages Disadvantages Applications

Supervised
learning

Use full label information of
omics data.

Rely heavily on size of labeled data. Data
preprocessing for noise and features may
be needed, but this causes
information loss.

Logistic regression for genome-wise
prediction on relevant functions, disease
and trait104; Multiple kernel learning for
predicting drug response of cancer cell
lines using omics profiles and pathways90;
Support vector machine for drug-target
interaction75; Convolutional neural network
for identifying drug-drug interaction from
document56; Random Forests for
predicting protein contact79.

Unsupervised
learning

No need for data labels. Suitable for the
case where the labeled data is few and
expensive to obrain.

Lose the informative features brought
by labels.

Autoencoder for denoising a single-cell
RNA-sequencing model93 and extracting
representative features from drug
molecular structure and protein
sequences95; Hierarchical clustering
algorithm for clustering patients based on
genome-wise similarity and variability91.

Semi-supervised
learning

Combine the benefits of feature
extraction brought by unsupervised
learning, and also make full use of the
informative label data.

Algorithms work under proper
assumptions. The trained model will
loss generalization on testing data
if assumptions don’t hold.

Autoencoder-based semi-supervised
learning for predicting DTI99, DDI100 and
PPI101; Label propagation for predicting
DDIs89.
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using Eigen-decomposition of the graph Laplacian109, which could
be computationally expensive when dealing with large graphs,
and the graph convolution relies on specific graph structures that
are not generalizable to other graphs with different structures110.
Graph Attention network (GAT) utilizes the self-attention mechan-
ism to obtain the normalized attention score (i.e., the relative
importance) of each node from its neighborhood110, instead of
the average aggregation functions in GCN. The attention
mechanism solves the oversmoothing problem108. Node level
attention is computed in parallel which is time-efficient. And it
alleviates the effect brought by the lack of knowledge of the entire
graph structure. However, GAT can’t tell the differences between
local and global structures well because the aggregators lack of
cardinality preservation mechanism111. Graph Autoencoder (GAE)
and Variational GAE (VGAE) finds the (distribution of) latent
variables of embeddings (which can be encoded by GCN), using a
(variational) inference model and a Generative Model (GM), in low-
dimensional space to recover the adjacency matrix of a graph in
an unsupervised manner112. Loss functions in GAE and VGAE can
be the reconstruction loss of the adjacency matrix (i.e., graph
connectivity) and the variational lower bound, respectively112. The
reduced dimensionality of data speeds up the training/back-
propagation processes. However, the autoencoder-based meth-
ods focus on capturing most of the information from dataset
based on a lossy reconstruction, which may not be relevant to the
problem, and a relatively large dataset is needed to train an
autoencoder. The inadequate bioinformatic data can be augmen-
ted by learning strategies. Graph Generative Adversarial Nets
(GraphGAN)113 composed of a GM and a Discriminative Model
(DM) can be used for this task. GM in both of GraphGAN and VGAE
captures the distribution of the graph connectivity. However,
rather than predicting the interacting pairs of nodes in each
training epoch in VGAE, the GM in GraphGAN generates fake
samples to deceive the discriminiator, such that DM learns to
discriminate the true samples (that come from training data) from
the generated samples. A Nash equilibrium that balances between
two models is desired for convergence. Some limitations of GAN,
including the unstable gradient updates and the vanished
gradients of generator114, may potentially cause problems when
being applied to graphs. See Table 4 for comparison of these
graph learning methods.
Additionally, the negative interacting pairs are rarely available in

bioinformatics data, which results in an unbalanced dataset. The
negative sampling115 can be applied that randomly assigns
negative labels to the unlabeled data during the training process.
This step aims at training the classifier to tell the difference
between positive samples and the pseudo-negative samples
drawn from training data. Lastly, a powerful package “PyTorch
Geometric”116 (python), which contains multiple recent graph
learning algorithms and uses fast tensor operation in GPU, can be
used for implementation.

Compare to a binary classification problem (e.g., predict if the
interaction exists or not), the multi-class classification problem is
more attractive since more than two classes are involved.
Examples of multi-class prediction can be found in predicting
the interaction type of protein pairs117, the gene phenotype118,
etc. The loss functions are designed based on class or labels. Each
sample in a multi-class problem is assigned to one of the classes,
and the labels for multi-label problems are usually obtained using
categorical one-hot encoding119, which encodes the label as a
vector with binary values. The entropy-based loss will be different
for multi-class and multi-label classification. The Softmax function
is often used to output probabilities of classes for the multi-class
problems120, and Sigmoid function is used for multi-label
problems.
The integrative static modeling conveys information through

networks, which potentially results in a more comprehensive
disease model by prediction. Similarities of nodes and edges
among the nodes are calculated, and the quantified information is
embedded in nodes and edges. Then the learnable models find
representative features to predict potential molecular interactions.
The benefits of static modeling-based prediction for disease
treatment include: (1) the predicted disease-related regulators can
be the new drug targets, which potentially improves treatment
efficacy by finding new drugs for the same diseases; (2) the known
drug target proteins redirect the drug molecules to bind with
similar proteins through PPIs for drug re-purposing; (3) proteins/
genes identified from the predictive model may explain variability
among patients for specific disease phenotype or specific drug
responses, which contributes to precision medicine; (4) the
predicted off-target activities help avoid side effects; (5) the
potential drug interactions contribute to designing novel thera-
pies by drug combination, since the combinations may either
reduce or enhance drug therapeutic efficacy. Though hypotheses
and predictions can be made in a static network, the clinical use of
potential drugs, drug combinations, or drug repurposing is highly
concerned with patients’ safety, which means the accuracy and
generalization of current predictive algorithms could be proble-
matic. Besides, the commonly acknowledged problem in analyz-
ing interactions between biological and chemical molecules based
on database is data scarcity20, and how to use limited data to
reliably produce more data for learning and obtain highly accurate
predictive models remains an open problem.

DYNAMIC MODELING OF REGULATION IN ORGANISMS
The term dynamic disease refers to that disease pathogenesis is
mainly caused by the appearance of new dynamic behaviors of
organism, independently of the underlying pathogenesis121. The
dynamics of diseases and drug reactions are informative for
treatment design. For example, the viral reservoir dynamics are
significant to understand the natural properties of ongoing viral

Table 4. Graph learning methods.

Methods Advantages Limitations

Graph Covolutional
Network107

Aggregate graph information and make the use of
structural information of graphs.

Less computationally efficient for large graphs. Lack of
generalization to graphs with different structure110.
Oversmoothing of graph embeddings108.

Graph Attention
Network110

Computationally efficient for node-level parallel
processing. Don’t need the knowledge of the entire
graph structure.

Can’t tell the differences between local and global structures
well111.

(Variational) Graph
Autoencoder112

Reduce data dimensionality and speed up the training
process.

Captures more information from dataset, rather than the
relevant information to the problem. And the reconstruction
process loses information.

Graph Generative
Adversarial Nets113

Can augment dataset and impute missing values. Instability of gradient updates, and the vanished gradients of
generator114, etc.
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progression with treatment122, which help researchers find the
cures for diseases. A kinetic model predicts disease outcome by
modeling the time-course behaviors of patients’ interactome19,25,
and model performance can be assessed by its ability to generate
testable predictions123.

Gene regulatory network
In organisms, the changing gene expression results in phenotypic
changes. Genes interact with each other through RNA and protein
expression products, thereby governing the rates at which genes
in the network are transcribed into messenger RNA121. The causal
information in gene expression data, e.g., key drivers of complex
traits in phenotype-related gene interaction network13, can be
identified by variations in DNA and gene expression-related
traits25,37. Gene regulatory networks (GRN) are thus used to detect
potential mechanisms based on dynamic behaviors of epigenomic
activity between normal and disease state10. For applications,
GRNs have been used to analyze infectious diseases by detecting
gene regulations related to the infectious and viral mechanism15.
A combination of gene regulatory components including myeloid
and lymphoid has been studied to identify cell fate specification11.
Analyzing GRN is regarded as the reverse engineering for
investigating gene regulatory relations by going backward with
the observed gene expression28. The causal regulatory relations of
genes are desired to be found from genome-wide expression
data. A diagram of GRNs is shown in Fig. 6a. A GRN model contains
genes and regulators as the nodes, and directional edges as the
regulatory relations between the nodes31. To model and
reconstruct GRN, the time-course microarray data of gene
expression product (e.g., gene expression values, chromatin
expression profiles) are required25,28,124, and the quantitative
regulation can be obtained from computational models of GRN.

Signaling pathway and transcription
Signal transduction pathway contains regulators between mole-
cules in an organism. It attributes to changes in both gene
expression and gene connectivity29. Errors in signal transduction
lead to altered development and incorrect behavioral decisions in
organisms, whose dysfunction may result in uncontrolled cell
growth or tumorigenesis28,125,126. At the protein level, signaling

pathways are comprised of protein interactions covering the
biological functions in living cells, which captures the inter- and
intracellular regulatory mechanisms of gene transcription and
protein synthesis28,31. The modeling of dynamic signaling path-
ways measures disease progression. For example, pathway
analyses contribute essentially to the systematic profiling of the
transcriptome in heart failures29. The fungal signaling pathways
model the regulatory behaviors in fungal pathogen infections7.
Notably, the pathway-wide association can even extract valuable
information from background noise and the context-specific logic
of GRN38.
Transcription Factors (TFs) are the keys in modeling gene

regulatory relation. For example, TF regulates the development of
innate and adaptive cells of the immune system11. The dynamic
transcriptional and translational subnetworks have been used to
model the trigger mechanism of the innate response regulated by
intercellular and intracellular heterogeneity15. A diagram of signal
transduction is shown in Fig. 6b.

ANALYSIS OF DYNAMIC MODELING
Mathematical modeling for dynamic regulation
The dynamics of omics data reflects organism’s response to the
changes of interior milieu or environmental factor. Variability in
metabolisms and phenotypes can be huge even if most of the
corresponding genes are the same127. Dynamic modeling exerts
mathematical tools that quantify the rate of state change in gene
regulation in different conditions and time sequences25. More
logic models and kinetic models using Hill function or piecewise
linear differential equations for quantifying the dynamic behaviors
of gene network have been reviewed in the references128. This
section reviews the computational modeling of diseases using
Differential Equations (DEs), which can be used for drug
administration by control theory.
DEs capture how the system reacts to the variations caused by

disease or drugs. From a systemic view, DEs integrate information
from multi-layer omics data into a unified form34. DEs model the
dynamic behaviors of organisms, such as transcription31, gene
regulation25, metabolite concentrations129, reaction rate34, and
factors in signal transduction pathway127. DEs have also been used
to quantify signal flow in pathways and explores the effect of

Fig. 6 Schematic diagrams in dynamic modeling. a Gene regulatory network adapted from the work25. Gene 1, 2, and 3 are coding genes.
Gene 1 regulates its own expression and those of Gene 2. The protein produced by Gene 1 regulates Gene 3 expression through a signaling
factor/protein (that is produced from the protein expressed by Gene 2.) Drugs can intervene in the regulation by binding with proteins that
change the gene expressions. b Diagram of signaling transduction. Signals are received and enter the nucleus to change gene expression.
Proteins are synthesized to regulate phenotypic behaviors of cells or tissue. Errors (e.g., dysregulation) in signaling pathways (e.g.,
dysregulation) may cause the ceasing of cell apoptotic that results in unlimited growth and division.
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oncogenic mutations on dynamics of ligands123. For disease
modeling and treatment, DEs have been used to capture the
dynamics of HIV viral infection130, drug response of an irradiation-
induced cellular senescence131, and cancer cell population132. The
components in DEs can be the metabolite concentration in
nonlinear biochemical models129, the signal transduction mole-
cules in dynamic cell compartment models34, and transcription
factors and regulatory site31. A two-step approach, including the
estimation of cell expression velocity using finite difference, and
the estimation of a numerical square matrix that depicts the gene
regulatory influence using sparse regression, can be used to
computationally model a GRN from time-course single-cell RNA-
sequencing data133. The accuracy of the approximated model
depends on the user-defined sampling rate in finite difference. A
robust dynamic model design makes it less sensitive to biological
noise and disturbances, allowing us to track abnormal varia-
tions21,134. An example of the robust design of a physical system
can be found in 134. Modeling noise is usually assumed to be
Gaussian. Non-Gaussian stochastic noise can be modeled by
solving the Fokker-Planck equation135.

Parameter estimation in dynamic models
The main task of parameter estimation is to find the best-fit
parameters to characterize physical processes and reproduce
experiments136–138. To develop data-driven models, one can
optimize the fit of a collection of parameters iteratively to a given
dataset with random disturbance137,139, which explores the
parameter space extensively and limits the number of non-
convergent solutions131. The least-square estimation (LSE) that
minimizes quadratic errors between the predicted model values
and experimental data129,140,141), and the maximum likelihood
estimation142, are widely used for this task. A Kalman Filter (KF)
can recursively generate the maximum likelihood estimates for a
linear dynamic system from a series of noisy measurements143,144.
It handles the approximate modeling of high-dimensional noisy
data with small sample sizes145. The Extended KF deals with
nonlinear models in biology146. Note that the Gaussian noise is
assumed in KF, and Particle Filters (PFs) are more appropriate
when dealing with non-Gaussian processes. By randomly drawing
samples from numerical simulation, the Monte Carlo method
estimates parameter values122 and quantifies their uncertain-
ties147. PFs in sequential Monte Carlo method obtain weighted
samples from the non-Gaussian posterior probability of the state

in nonlinear systems148. Study shows that a PF with an orthogonal
basis (used for approximating the posterior by an orthogonal
series expansion) outperformed Extended KF when estimating
parameters of a Wiener anesthesia delivery model146. The process
of parameter estimation is shown in Fig. 7a.
Sensitivity analyses assess how sensitive the models’ outputs

are to the fitted models’ parameters changes. Sensitivity can then
quantify model uncertainty through finite differencing or varia-
tional equations139. Identifiability checks the reliability of the
estimates and assesses how well the model explains experimental
data144,149. The global optima for parameter estimation are always
desired, leading the multiple approaches to converge to the same
solution ultimately129. Time of searching parameters is upper
bounded to prevent an endless search139. Calling a single data
cluster recursively may cause the absence of global parameters34

and get stuck in the misleading local optimum that should be
avoided139 due to the generality. Precision medicine requires the
patient-specific parameters for individual variability, resulting in a
more complicated model. Note that a robust model design134 is
desired after adding new parameters.

Drug administration with control theory
Drug dosage is designed for patients’ recovery by control
algorithms. Though the dynamics of drug concentration in plasma
and drug response are usually nonlinear in real world, a linearized
model is usually used to approximate the nonlinear behaviors of
the original system due to the reduced complexity150–153. Several
methods can be applied for the linear approximation. For
example, when the pharmacokinetic data is available, drug model
can be fitted using regression methods4. Linear models can be
approximated from a nonlinear model by truncating Taylor
expansion at the first-order term. Or, the linear descriptors can
be obtained using Koopman operator, which projects the infinite-
dimensional time-evolving observables (e.g., time-series data of
drug concentration and cell population) into finite-dimensional
states, using dynamic mode decomposition154. The Koopman
method is driven by data, which can be generated from the
nonlinear model155. Then the linear controllers for drug dosages
can be designed based on a linear model.
The Proportional, Integral and Derivative (PID) control is a classic

control algorithm that takes the error e(t) between closed-loop
feedback signal y(t) and the setpoint r(t) (i.e., e(t)= r(t)− y(t)) as
the controller input to calculate input needed, such that the

Fig. 7 Dynamic modeling and analyses. a Scheme of parameter estimation. After data acquisition, parameters are fitted in models by
minimizing the difference between experimental data and model output. Sensitivity analysis, uncertainty quantification and identifiability
analysis help assess the performance and robustness of the fit. b Loop of Model Predictive Control. Based on the output of model prediction,
this control strategy updates control input (e.g., drug administration) to make the system dynamics track reference trajectory (e.g., desired
tumor cell decrement) during each time interval. Its essence is to handle the constrained optimization problem (Constraints can be maximal
drug doses and minimal normal cell populations).
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model states can be driven to the setpoints156. PID controller has
been used to design the drug administration for the chemother-
apy treatment in a cancer model18 and the anesthesia in the
neuromuscular blockade models146,151. The clinical evaluation and
simulation results show that drug concentration levels can reach
and be maintained at certain levels in acceptable time horizon. A
PID controller copes with the uncertainty in the system’s dynamics
caused by interpatient variability157 and time variations151. The
concise scheme of PID158 makes it flexible for functional
expansion, such as an I-PD controller constructed by cascading18.
However, the performance and the robustness of PID controllers
depend heavily on tuning146,159, and one of the frequently used
tuning approaches is the Ziegler-Nichols method160.
Besides maintaining the drug concentration at certain levels,

drug dosage should also balance the therapeutic performance
and the toxicity/side effects. Optimal control law minimizes
control errors (e.g., drive the systems along trajectories) and
control efforts (e.g., less energy consumption)161 subject to system
dynamics. The linear quadratic regulator (LQR), as one of the
optimal control strategies, can be used for deriving an optimal
control sequence (e.g., a sequence of drug infusion rates) when
dealing with a linear model in the form _xðtÞ ¼ AðtÞxðtÞ þ BðtÞuðtÞ,
with quadratic objective functions in form of l2-norm ∣∣ ⋅ ∣∣2) from
time t0 to tf with the initial state x0, as shown in Eqn. (1)162.

J ¼ 1
2
jjxðtf Þjj2Sf þ

1
2

Z tf

t0

ðjjxðtÞjj2QðtÞ þ jjuðtÞjj2RðtÞÞ; subject to xðt0Þ ¼ x0 (1)

where Sf is the terminal weighting matrix. Q(t) and R(t) are user-
defined positive semi-definite and positive definite weighting
matrix, respectively. Large Q(t) results in aggressive drug doses,
and large R(t) leads to medical conservatism. The optimal
feedback control law u(t)=− K(t)x(t) is derived by solving the
algebraic Riccati equation and Hamiltonian. Compared to PID
control, optimal control balances the drug toxicity and dosage. For
chemotherapy treatment, the control problem can be to minimize
the kinetic energies of all the cancerous cells with low drug
toxicity18,163–165 by searching the optimal sequence of drug
dosages. In a HIV model, the goal can be to maximize the benefit
based on levels of healthy CD4+ T cells and immune response
cells by reducing the systemic cost of anti-HIV drugs130, and the
cost function consists of beneficiary T Cell population and
systemic costs of therapy166. For multi-drug treatment, the ratio
of co-administration between different drugs is also consid-
ered164,167. More examples of optimal control in cancer treatment
can be found in the book168. The control law calculated by
minimizing the cost can be piecewise constants or linear in the
finite time horizon169.
Drug concentration in patients is delicate. The dangerous

therapeutic window of drug concentration in plasma determines
whether the level is tolerable and the drug is effective for
patients17,170. Thus, state and input constraints are necessary to a
drug delivery system. Usually, constraints include the upper
boundary of toxicity level and the certain therapeutic window for
drug concentration and disease progression18,167. The constrained
optimization problems require more complicated control algo-
rithms. In a multi-objective genetic algorithm, the Pareto optimal
sets have been used to search for lower values of the objectives
simultaneously18. Nonlinear optimization can be solved by Bock’s
direct multiple shooting method with a numerical solution on a
fixed control discretization grid167. The steepest descent method
can be used to search numerical solutions iteratively to minimize
or maximize the cost function164, and the numerical solutions can
be derived with Miser3/Matlab132. Model Predictive Control (MPC)
handles the constraints in optimization problems and the
mismatch between nominal and actual processes169, compared
to optimal control. MPC solves a finite horizon open-loop optimal
control problem to obtain control actions with predicted states
from models. The local asymptotic stability of the control law is

guaranteed when time horizon is sufficiently long169. The loop of
model predictive control is shown in Fig. 7b. Besides, controllers
can also “learn” from complex situations through iterative
learning-based strategies to obtain optimal parameterized control
signals171. The equilibrium in a chemotherapy model refer to the
elimination or the stop of cancer cell proliferation, so that no more
treatment will be needed164. While using MPC, the feasibility and
stability should be carefully considered. Compared to optimal
control, MPC handles the constrained optimization problems,
which makes it more suitable for the drug administration design
subject to patients’ physical constraints.
The advanced control has good performance on drug dose

adjustment. When eliminating cancer cell population, it has been
found that giving bursts of high-dose abiraterone reduces tumor
burden more than 10 times, compared to giving a constant
dose163. For robustness, when model parameter error is 25%, MPC
reaches 98% success rate (among 100 simulations) of stabilizing
HIV infection in 2 years165. When designing the dosage of
remdesivir for SARS-CoV-2, an optimal control sequence has been
obtained by solving a constrained optimization problem, and
simulation shows that the proposed control scheme reduces the
treatment horizon from 10 days to 5 days and it also reduces more
than 50% of the drug dose, compared to the recommended
treatment regimes from FDA and WHO172. See Table 5 for
comparing these methods used for drug dosage design. By using
the advanced control algorithms, fewer drugs can be used to
obtain the same or better treatment efficacy with less toxicity.
There are some other control strategies that use feedback control
laws based on nonlinear models. For example, a positive semi-
definite Lyapunov function, whose gradient requires to be
negative semi-definite, can be designed to calculate the
controlled vaccination rate that asymptotically stabilizes Covid
infection138.
Optimal drug dosage designed by control algorithms is used to

efficiently intervene in disease progression, based on dynamic
models with parameters estimated from sample data. Drug
administration is transformed into an optimization problem with
or without model constraints. The design of personalized
treatments requires the patient-specific parameters for individual
variability, which makes control scheme more complicated.
Notably, the impulsivity of the model should be considered
during the design process, and discrete drug therapy should be
considered to allow the normal cells to rebuild in clinical
treatment166.

CONCLUSION AND OUTLOOK
Launching new drugs could be costly compared to using existing
drugs for new therapeutic performance, and drug predictions
based on computational systems biology have shown its potential
in precision medicine, drug combinations, and repurposing. A
static network composed of molecular interactions is able to
predict the potential interaction pairs based on known omics data
by conveying information through nodes and edges. The new
participants in the map of molecular interactions help obtain a
more comprehensive view of disease progression and drug
response. This results in using drug molecules with better
therapeutic performance while avoiding off-target effects. Also,
the potential patient-specific regulators can be identified to
explain individual variability for personalized treatment. However,
the predictive models may fail due to in vivo changing behaviors,
which makes dynamic modeling necessary. Dynamic modeling
aims at building math models to predict disease progression and
drug response. Model parameters are estimated from clinic data.
The potential participants identified from static modeling can be
the new elements in dynamic models. By applying optimal drug
dosages designed by control algorithms, disease progression can
be intervened efficiently, which also indicates the predictive
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model in static modeling will be valid again. The combination of
static and dynamic modeling makes it a powerful tool for disease
analysis and therapy design. SSL outperforms other learning
methods for making static modeling predictive, while the under-
lying assumptions may not hold in real cases, which makes the
model loss generality. The learning algorithms that have an
accurate prediction of other testing data are always desired. For
drug administration, the simple control algorithms cannot meet
the complicated design objectives (e.g., control with constraints),
while a complicated control algorithm may not be time-efficient,
though it aims at more control objectives. A control algorithm that
handles multi-objectives and computes drug dosage needed
efficiently is desired.
The modeling of DTIs by expanding drugs and targets based on

DDIs and PPIs offer opportunities for (1) finding new targets for
the same drug, (2) exploring new drugs for the same disease, and
(3) minimizing off-target side effects for safe therapies. Though
side effects should be avoided for safety issues, it does not mean
all drugs that cause side effects should be abandoned. Treatments
like chemotherapy harm normal cells, so we shall choose the drug
agents that specifically target on cancer cells, rather than healthy
cells. Combined with drug administration for changing conditions
of patients using control theory, the treatment with better
therapeutic performance and lower impairment can be realized
simultaneously.
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