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Executable models of immune signaling pathways in
HIV-associated atherosclerosis
Mukta G. Palshikar1, Rohith Palli 2, Alicia Tyrell3, Sanjay Maggirwar4, Giovanni Schifitto5,6, Meera V. Singh5,7 and Juilee Thakar 1,7,8,9✉

Atherosclerosis (AS)-associated cardiovascular disease is an important cause of mortality in an aging population of people living
with HIV (PLWH). This elevated risk has been attributed to viral infection, anti-retroviral therapy, chronic inflammation, and lifestyle
factors. However, the rates at which PLWH develop AS vary even after controlling for length of infection, treatment duration, and
for lifestyle factors. To investigate the molecular signaling underlying this variation, we sequenced 9368 peripheral blood
mononuclear cells (PBMCs) from eight PLWH, four of whom have atherosclerosis (AS+). Additionally, a publicly available dataset of
PBMCs from persons before and after HIV infection was used to investigate the effect of acute HIV infection. To characterize
dysregulation of pathways rather than just measuring enrichment, we developed the single-cell Boolean Omics Network Invariant
Time Analysis (scBONITA) algorithm. scBONITA infers executable dynamic pathway models and performs a perturbation analysis to
identify high impact genes. These dynamic models are used for pathway analysis and to map sequenced cells to characteristic
signaling states (attractor analysis). scBONITA revealed that lipid signaling regulates cell migration into the vascular endothelium in
AS+ PLWH. Pathways implicated included AGE-RAGE and PI3K-AKT signaling in CD8+ T cells, and glucagon and cAMP signaling
pathways in monocytes. Attractor analysis with scBONITA facilitated the pathway-based characterization of cellular states in CD8+
T cells and monocytes. In this manner, we identify critical cell-type specific molecular mechanisms underlying HIV-associated
atherosclerosis using a novel computational method.
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INTRODUCTION
Chronic human immunodeficiency virus (HIV) infection increases
the risk of atherosclerosis (AS) associated with cardiovascular
disease (CVD), which is a leading cause of morbidity in persons
living with HIV (PLWH)1–4. PLWH have an increased prevalence of
risk factors for AS5–9, some of which are driven by the off-target
effects of antiretroviral drugs9,10. However, even after controlling
for these risk factors, the risk of CVD remains significantly higher in
PLWH4,11,12, suggesting a role of long-term HIV infection.
HIV infection causes metabolic changes leading to a pro-

atherogenic inflammatory environment in the vasculature13–16.
HIV infection and long-term antiretroviral therapy also mediate
signaling dynamics, including inflammasome activation, cell migra-
tion and apoptosis, in PBMCs and the vasculature17,18. Biomarker
studies highlight these atherogenic processes, especially in the
context of activated monocyte/macrophages and T cells14–16. CD8+
T cells contribute to atherogenesis by secretion of cytotoxic
granules and the formation of the necrotic core of atherosclerotic
plaques19. Monocyte/macrophages migrate into the intima and
form apoptotic atherosclerotic plaques20. CD4+ T cells and B cells
have also been previously implicated in CVD21–31. The interplay
between signaling pathways, immune cell activation and inflam-
mation in HIV infection requires further investigation, which can be
studied using single-cell sequencing (scRNA-seq) allowing simulta-
neous investigation of multiple cells. To investigate the mechanistic
link between HIV infection and atherosclerosis, we sequenced

PBMCs from PLWH with and without atherosclerosis, matched for
the length of infection, cART, and other AS risk factors (Supple-
mentary Note 1, Supplementary Fig. 1).
The inference of mechanisms from high-dimensional scRNA-seq

data is not trivial32. Typically, the scRNA-seq analysis uses
clustering to define cell subpopulations, followed by differential
expression (DE) and gene set overrepresentation analysis (ORA) to
estimate pathway modulation. This approach discounts pathway
topology and cannot connect molecular state to cellular state.
ORA ignores synergistic interactions among genes by treating
genes as independent and equal33. Our previously published
algorithm overcomes the above caveats by using discrete-state
network modeling to perform pathway analysis using bulk
transcriptomic data34. This algorithm has been rigorously tested
and compared to other pathway analysis methods34. This
algorithm employs discrete-state network modeling, which uses
Boolean rules to explicitly define signal integration. These rules
can be used to simulate dynamic trajectories and to perform in
silico perturbation experiments. We have extensively used
discrete-state network modeling to investigate virus infections
and have experimentally validated the predictions35–37. Here, we
extensively expand our method and present single-cell Boolean
Omics Network Invariant-Time Analysis (scBONITA) to (a) infer
Boolean rules describing signal integration for pathway topologies
using scRNA-seq data and (b) use these rules to identify
dysregulated pathways and to prioritize genes/proteins for further
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investigation. scBONITA returns precise modes of dysregulation,
captured by node-specific scores that quantify the contribution of
each node to the overall dysregulation of a pathway. scBONITA’s
capability to perform in silico simulation and perturbation of
molecular pathways shows that it is a powerful hypothesis-
generating tool.
Here, we describe the immune cell subpopulations and

subpopulation-specific gene expression programs in a novel
scRNA-seq dataset obtained from PLWH with and without
atherosclerosis. We use scBONITA to identify dysregulated path-
ways in individual cell subpopulations, focusing on CD8+ T cells
and monocytes. scBONITA highlights dysregulated cell migration
and lipid metabolism pathways in several subpopulations and
influential genes, such as PI3K and PLC, which have high impacts
on signal flow in these networks. Furthermore, we used a publicly
available dataset of PBMCs from persons before and after HIV
infection38 to show that cell migration pathways are also
dysregulated in the early stages of HIV infection, suggesting
modulation of these pathways both by HIV infection and in
subsequent AS. We present a novel method (‘attractor analysis’)
that uses the models learned by scBONITA to identify pathway-

specific signaling states for CD8+ T cells and monocytes.
Additional in silico experiments show that scBONITA can learn a
context-specific rule set from the vast possible state space for a
Boolean network and that scBONITA’s importance score provides
novel information about signaling flow. This work hence provides
insights into the mechanisms of HIV-associated atherosclerosis at
the single-cell level by using a novel network modeling algorithm.

RESULTS
PBMC subpopulations in AS+ and AS− PLWH
To investigate dysregulated immune signaling in People Living
with HIV (PLWH), we recruited a cohort of eight PLWH, four with
atherosclerosis (AS+) and four without atherosclerosis (AS−).
Participants were matched for known atherosclerosis risk factors
(see the “Methods” section, Supplementary Note 1, and Supple-
mentary Fig. 1). We transcriptionally profiled ~1200 peripheral
blood mononuclear cells (PBMCs) per subject. This data was
processed using the Cell Ranger and Seurat pipelines39 to identify
16 subpopulations of immune cells (see the “Methods” section,
Fig. 1a) annotated using CIBERSORT40 (Supplementary Fig. 2) and
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Fig. 1 Characterization of PBMC subpopulations in people living with HIV (PLWH) with (AS+) or without (AS−) atherosclerosis. a t-SNE
projection of 16 transcriptionally distinct cell subpopulations, shown in distinct colors. b Subpopulation-level differences in the percentage of
sequenced cells corresponding to each cell type in panel ‘a’ between AS+ and AS− PLWH are identified using a t-test. The mean of each
group is represented by a red asterisk. Panels c–f show the expression of genes that are differentially expressed (DE) between cells derived
from AS+ and AS− subjects. DE genes were identified using the Wilcoxon test (Bonferroni-adjusted p-value < 0.1, absolute log2 fold
change > 0.3.) DE genes in c CD8 T cells/NK resting cells, d monocytes, e naïve B cells referred to as “B cells naïve-2” in panels a, b, and f T cells
referred to as “T cells CD8/CD4/CD4 naïve” in panels a, b.
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cell-lineage-specific markers (Supplementary Table 1). This scRNA-
seq dataset is referred to in the text as the HIV/AS dataset.
A population of CD8 T cells/NK resting cells were lower in AS-

PLWH and a population of CD14+ CD16+ monocytes were higher
in AS- PLWH (t-test, p < 0.05) (Fig. 1b). Cell subpopulation markers
were identified using MAST41 as described in the Methods. The
CD14+ CD16+ monocytes and CD8+ T cells/NK resting cell
markers were enriched for migration-related pathways (Supple-
mentary Table 1). Indeed, these cells are known to migrate into
the intima during the formation of atherosclerotic lesions in the
vascular wall42–48.
In addition, we tested the prevalence of the cell subpopulations

identified in scRNA-seq data in an independent cohort using bulk
RNA-seq dataset49. The bulk RNAseq dataset was deconvoluted
using CIBERSORT40,50 to quantify the abundance of the cell
subpopulations found in the scRNA-seq dataset (Supplementary
Fig. 3). The most clusters were not significantly different between
AS+ and AS− groups, as observed in scRNA-seq data. The
subpopulation ‘T cells CD8 NK cells resting’ was more abundant in
AS- PLWH (t-test, p < 0.1), while there was no significant difference
in the abundance of monocytes. As these differences in the
abundance of cell subpopulations were not robustly recapitulated
in the independent cohort, here we focus on differentially
regulated molecular mechanisms between AS+ and AS− PLWH.

Atherosclerosis-associated gene expression across PBMC
subpopulations
Differentially expressed (DE) genes between AS+ and AS− PLWH
(Fig. 1c–f and Supplementary Table 2) include upregulation of
MHC Class I and Class II genes in multiple cell subpopulations.
ITGB2, which is upregulated in CD8+ T cells from AS+ PLWH, is
involved in leukocyte transendothelial migration (Supplementary
Table 2). ACTB (β-actin) was upregulated in naïve B cells and CD8+
T cells from AS+ PLWH (Supplementary Table 2). CXCR4 was
upregulated in cells from AS+ PLWH in naïve B cells, CD8+ T cells,
and a population of resting NK cells. Both CXCR4 and ACTB
modulate dynamic actin cytoskeleton remodeling in transen-
dothelial migration. Gene set ORA of DE genes revealed

enrichment of cell migration and mobility functions in cells from
AS+ PLWH (Supplementary Table 2).
In AS- PLWH, S100A8/S100A9 are upregulated in three cell

subpopulations (Fig. 1c–f, Supplementary Table 2). S100B is
upregulated in CD8+ T cell populations from AS− subjects (Fig.
1c, f, Supplementary Table 2). Several ribosomal genes were DE in
12 subpopulations; out of which they were only upregulated in
naïve B cells from AS- PLWH and naïve T cells from AS+ PLWH
(Supplementary Table 2).
While DE and enrichment analysis indicated some mechanisms

of HIV-associated atherosclerosis, an integrated model of how
these genes jointly regulate signaling cascades did not emerge.
Hence, we developed the network-based pathway analysis
algorithm single-cell Boolean Omics Network Invariant-Time
Analysis (scBONITA) to investigate signal integration and flow.

scBONITA learns discrete-state models of signaling pathways
scBONITA is a discrete-state modeling approach to developing
executable models of immune signaling pathways34 (Fig. 2). The
scBONITA algorithm requires two inputs: (a) a scRNA-seq dataset
and (b) a prior knowledge network (PKN) (Fig. 2A). In these PKNs,
genes and their regulatory interactions are represented by nodes
and directed edges, respectively. scBONITA leverages the principle
that the observed states of single cells correspond to the states of
dynamic biological networks to identify regulatory rules (Fig. 2B).
A genetic algorithm is used to identify a minimum-error rule set
that is optimized by a node-wise local search. This returns a set of
discrete-state models for pathways as multiple rule sets explain
the training data equally well (equivalent rule set, ERS). A pathway
is described as ‘optimized’ if scBONITA-RD successfully reduced
the state space of the possible rules for at least one node in the
pathway.
scBONITA models can be simulated to generate dynamic

trajectories and in silico node perturbations. These models are
used to perform node knock-out and knock-in simulations. The
difference between network states after these simulations is
weighted by the size of the ERS to calculate a node importance
score. Thus, the node importance score measures the influence of
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Fig. 2 scBONITA pipeline to infer Boolean rules and perform pathway analysis using single-cell expression measurements. A Input: a
binarized single-cell RNA-seq dataset as a text file, and a prior knowledge network (PKN) describing the activating or inhibitory relationships
between genes. B Rule determination: inference of logic rules that describe the regulatory relationships between nodes in the PKN by a global
search followed by node-level rule refinement. C Pathway analysis: scBONITA calculates a gene importance score calculated by simulating
network perturbations with inferred rules and combines these scores with fold-changes from scRNA-seq to identify differentially regulated
pathways in a specified contrast. D Steady-state analysis: scBONITA simulates networks using learned rules to identify steady states which
correspond to observed cellular states.
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a node over the network and the weight incorporates the
uncertainty in rule determination. scBONITA combines these
importance scores and comparison-specific fold changes to
calculate a pathway modulation score (see the “Methods” section,
Fig. 2C).
The simulation trajectories of these discrete-state models fall

into steady states known as attractors, which have been
hypothesized to correspond to signaling behavior characteristic
of specific cell types51–56. Cells are assigned to the attractor closest
to their expression (Fig. 2D) to characterize signaling states for a
network. In conclusion, scBONITA allows in-depth comprehension
of signaling pathways by incorporating network topology.

Dysregulated pathways in T cell populations linked to HIV-
associated atherosclerosis
The scBONITA pathway analysis algorithm identifies dysregulated
pathways in all subpopulations derived from AS+ and AS− PLWH,
providing insights into mechanisms of HIV-associated athero-
sclerosis (Supplementary Table 3). In CD8+ T cells, these pathways
included pro-inflammatory, anti-viral, cell migration and apoptosis
pathways (Fig. 3a, Supplementary Table 3). All of which were
downregulated in AS+ PLWH except the Th17 cell differentiation
pathway, which includes genes involved in generic T cell
differentiation. All these pathways were identified by scBONITA,
but not by enrichr (Supplementary Table 2).
scBONITA identified multiple optimized pathways in CD4+

T cells (subpopulations represented in Fig. 1a) as being
dysregulated (padj < 0.01) in AS+ PLWH (Fig. 3b, Supplementary
Table 3). CD4+ T cells may exert either an atherogenic or
atheroprotective phenotype, depending on the subset and
interactions with antigen-presenting cells in the adventitia or
plaques57. Our results suggest that CD4+ and CD8+ T cells from
AS+ PLWH play a role in cell adhesion, apoptosis and migration
processes involved in atherosclerosis, and these atherogenic
processes are mediated by the upregulated PI3K-AKT, mTOR,
and cytoskeletal signaling pathways.

The AGE-RAGE signaling pathway was further investigated in
CD8+ T cells because of its role in dysregulated lipid metabo-
lism19,21,23,58–62 and to demonstrate the additional information
obtained from scBONITA in comparison to ORA. This pathway had
the highest pathway modulation score (0.8) (Supplementary Table
3). Most genes in this pathway were upregulated in AS+ PLWH
(Fig. 3c). scBONITA optimized rules for DIAPH1 (uncertainty
score= 0.5, see the “Methods” section) (Fig. 3c), which has a
strong influence over the signal flow through the network due to
its high centrality. The combination of scBONITA’s node impor-
tance score and fold change between subject groups were used to
identify genes whose activity influences signal flow in AS+ PLWH.
These genes include the class 1 PI3K genes, the P13K regulator
PI3KR1, and PLC genes. All of them are highly expressed in AS+
PLWH (Fig. 3c). PI3K activates lipid metabolism, macrophage
autophagy, phenotypic transition, and the expression of adhesion
molecules (reviewed in ref. 63). In this manner, scBONITA identified
dysregulated pathways and genes associated with atherosclerosis-
linked migration of T cells derived from PLWH.

Dysregulated pathways in monocytes linked to HIV-associated
atherosclerosis
In monocytes, scBONITA identified several dysregulated pathways
(Fig. 4a, Supplementary Table 3) which are known to be involved
in the pro-inflammatory behavior of pro-atherogenic mono-
cytes43,64–73. Of these pathways, only cAMP signaling and
endocrine resistance are overall upregulated in cells from AS+
PLWH, suggesting that monocytes from AS− are pro-atherogenic.
The leukocyte transendothelial migration pathway was further

investigated as monocyte migration outside the vascular compart-
ment plays a crucial role in the inflammatory cascade that leads to
an atherosclerotic phenotype64,66,74. The pathway modulation
score of 0.45 was the third highest amongst tested pathways
(Supplementary Table 3) (Fig. 4b). scBONITA optimizes regulatory
rules for the influential RHOA gene (uncertainty factor= 0.13).
High importance scores were assigned to the NCF genes, PLCG

Fig. 3 scBONITA identifies dysregulated pathways in T cells derived from AS+ and AS− PLWH. Pathways (y-axis) dysregulated in the AS+
vs AS− contrast in PLWH in clusters of a CD8+ T cells and b CD4+ T cells and naïve T cells. Clusters are differentiated by point shape, as
shown in the legend. Pathways that have Bonferroni-corrected p-value < 0.01 (x-axis) and a reduced ERS (see the “Methods” section for details)
are shown. Pathways labeled with “***” were also dysregulated between cytotoxic T cells (a) and T cells (b) derived from HIV− subjects and
subjects after 1 year of HIV infection38 (c). Network representation of the AGE-RAGE signaling pathway (Bonferroni-corrected p-value < 0.01) in
a cluster of CD8+ T cells referred to as CD8 T cells −1 in Fig. 1a. Small black intermediate nodes indicate that the downstream nodes are
controlled by an AND function of the upstream nodes. The size of nodes corresponding to genes is proportional to their importance score
calculated by scBONITA. Nodes are colored according to the magnitude of their fold change between the HIV+AS+ and HIV+AS− groups.
Violet edges indicate inhibition edges and black edges indicate activation edges.
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genes, MSN, ROCK, CYBA, and CYBB. NCF genes are involved in
superoxide production and are a positive regulator of P13K
signaling75,76. The upstream regulator of PLCG1, MSN, is involved
in cytoskeletal remodeling during leukocyte migration77.
ROCK2 shows a small change across AS groups, which may be
driven by feedback regulation, but has a stronger role in
regulating signal flow, as shown by its high importance score.
The high importance of the G protein GNAI3, downstream of
CXCR4 indicates a role in the CXCR4-mediated activation of this
pathway. GNAI3 is also present in two other significantly
dysregulated networks in monocytes—Cushing Syndrome and
cAMP signaling—but does not have a high importance score in
those networks, indicating that it is critical in regulating signal
coming from CXCR4 only in the leukocyte transendothelial
migration network. The downstream effectors of GNAI3 and
ROCK2 have higher fold changes, possibly due to feedback
regulation. These effectors include ACTG1 and EZR, involved in
cytoskeletal remodeling77–79, and ITGA4, ITGB1, and ITGB2,
involved in cell adhesion. scBONITA thus identifies several genes
and pathways associated with dysregulated transendothelial
migration in the context of HIV-associated atherosclerosis.

Pathways dysregulated by HIV infection and in HIV-associated
atherosclerosis
To identify the biological mechanisms modulated by HIV infection
that may also contribute to the elevated risk of AS in PLWH, we
used a publicly available scRNA-seq dataset of PBMCs from
persons before and during acute HIV infection38. Kazer et al.38

identified gene expression programs in activated T cells, mono-
cytes, and NK cells during HIV infection. We used this dataset with
scBONITA to infer Boolean rules for KEGG networks and perform
pathway analysis. The results were compared to the pathways
dysregulated in HIV-associated atherosclerosis in the above-
described HIV/AS dataset.

scBONITA identified 10 optimized pathways dysregulated after
1 year of HIV infection in cytotoxic T cells38 (Fig. 3a, b,
Supplementary Figure 6, Supplementary Tables 5 and 6). Of these
pathways, five signaling pathways were dysregulated in AS+
PLWH. Similarly, 5 out of 19 optimized pathways were dysregu-
lated in monocytes upon HIV infection and in AS+ individuals (Fig.
4a, Supplementary Fig. 6, Supplementary Table 6). 81 and 41
genes from these overlapping pathways were upregulated both
upon HIV infection and in AS+ PLWH in the cytotoxic T cell
populations and monocyte populations, respectively (Supplemen-
tary Fig. 7, statistical significance was not tested as scBONITA does
not depend on DE genes to perform pathway analysis). The genes
upregulated after HIV infection and in AS+ PLWH in the CD8+ T
cell subpopulation were involved in viral response pathways
(Supplementary Fig. 7). Similarly, the genes upregulated after HIV
infection and in AS+ PLWH in the monocyte subpopulation are
involved in cell migration-related pathways (Supplementary Fig.
7). This suggests that the modulation of cell migration and
inflammation processes upon HIV infection progresses over time,
increasing risk of AS in PLWH.

Pathway-specific cellular signaling states associated with
atherosclerosis
We used the network models learned by scBONITA to identify
attractors for the pathways dysregulated between AS+ and AS−
PLWH in CD8+ T cells discussed above (Cluster CD8 T cells -1 in
Fig. 1a) and evaluated cellular states across subjects and disease
groups. The simplest rules, which have the smallest number of
“AND” terms, were chosen to simulate the network and identify
attractors. The insulin resistance pathway, which is downstream of
the AGE-RAGE and PI3K-AKT signaling pathways, was particularly
interesting in CD8+ T cells (Cluster CD8 T cells −1 in Fig. 1a).
72 signaling states were identified by network simulation, of
which 3 dominant signaling states mapped to 16.5%, 7.5% and

Fig. 4 scBONITA identifies dysregulated pathways in monocytes derived from AS+ and AS− PLWH. a Pathways (y-axis) dysregulated in the
AS+ vs. AS− contrast in monocytes derived from PLWH. Only pathways that have Bonferroni-corrected p-value < 0.01 (x-axis) and reduced ERS
(see Methods for details) are shown. Pathways labeled with “***” were also significantly dysregulated in monocytes after one year of HIV
infection38 b Network representation of the leukocyte transendothelial migration pathway. Small black intermediate nodes indicate that the
downstream nodes are controlled by an AND function of the upstream nodes. The size of nodes corresponding to genes is proportional to
their importance score as calculated by scBONITA. Nodes are colored according to the magnitude of their fold change between the HIV+AS+
and HIV+AS− groups. Violet edges indicate inhibition edges and black edges indicate activation edges.
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27.4% of cells respectively (Fig. 5a, b). There is an association
between attractors and subjects (chi-square test, p-value < 0.05)
but no association between attractors and atherosclerosis status
(chi-square test, p-value > 0.05). Additionally, we also performed
attractor analysis for other cell clusters. Among those,

interestingly, assigned chemokine signaling attractors of CD4+
T cells were subject-specific (chi-square test, p < 0.01). Similarly, we
observed subject-specific attractors of the PI3K–AKT signaling
pathway for the T cells CD8/CD4/CD4 naive cluster (chi-square
test, p < 0.01).

Fig. 5 CD8+ T cell states with respect to the insulin resistance pathway identified by attractor analysis with scBONITA. a UMAP
representation of a cluster of CD8+ T cells (CD8+ T cells – 1 in Fig. 1a) colored by the attractor to which they are assigned, based on their
similarity. The three dominant states (PI3KR+ PI3K+, TNFR1+TNF−, and TNFR1-TNF+ attractors) are represented by green, blue, and orange.
All other attractors are collectively labeled in gray. b Percentages of CD8+ T cells derived from each subject, mapping to the three dominant
and all other attractors. c Gene activity (ON- red, OFF- light blue) in the three dominant attractors. Only genes that are different between these
states are shown. d Attractor gene values ranging from 0 (blue) to 1 (red) averaged for each individual subject. The top bar indicates AS+
(gray) and AS− (black) subjects.
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The CD8+ T cell states for the insulin resistance pathway were
characterized by differences in several key genes (Fig. 5c),
including PI3K genes and the PI3K regulators that were identified
as being influential in the AGE-RAGE signaling pathway (Fig. 3b). In
addition, the two less abundant attractors differed in the activity
of the key TNFR and TNF genes. Hence, these attractors are
referred to as the PIK3R+PI3K+, TNFR+TNF− and TNFR-TNF
+attractors. The activity of PI3K and AKT genes was higher in the
most common signaling state (PI3KR+PI3K+attractor). However,
the activity of the downstream targets of AKT, such as the CREB
genes, NFKB1, FOXO1, were lower in the PI3KR+ PI3K+ attractor.
TNF, which is produced at a low level by some subsets of T cells,
also mediates a range of pro-inflammatory processes in vascular
endothelial cells80,81. TNF-TNFR1 signaling mediates an apoptotic
process mediated by TRADD and FADD82. TNFR1 activates PI3K
signaling in regulatory T cells83. Thus, our attractor analysis reveals
different T CD8+ cell states. This analysis also indicates differences
in TNF production and response based on cell states and suggests
the existence of distinct modes of operation across subjects (Fig.
5d).
Attractor analysis of the leukocyte transendothelial migration

pathway in monocytes revealed 9 attractors that mapped to cells
in the dataset. The two dominant signaling modes differed in the
activity of the PECAM1 and F11R genes respectively (Fig. 6a–c).
The attractors are referred to as the PECAM+ and F11R+
attractors and mapped to 51.04% and 30.73 % of cells,
respectively. F11R is required for platelet adhesion to vascular

endothelial cells84, which occurs prior to infiltration of monocytes
into the endothelium and eventual plaque formation85,86. PECAM1
has widespread effects on vascular biology and atherosclerosis in
particular87–89. These subject-specific attractors (chi-square test, p-
value < 0.05, Fig. 6b) were not associated with atherosclerosis
status. Similarly, the attractor activity of individual genes was not
associated with atherosclerosis status (two-sided t-test, p-value >
0.05). Thus, scBONITA identifies two cellular states of monocytes
driven by molecular signaling. These states are associated with
monocyte migration into the vasculature and reflect inter-subject
variability.

Evaluation of scBONITA performance in silico
The BONITA algorithm has already been rigorously validated in
our previous study34. Specifically, a comparison with other
pathway analysis tools was performed. Here we evaluate the
scRNA-seq specific components of the algorithm. To show that
scBONITA rule determination is robust to training set size, we
varied the size of the training data. The number of cells in the
largest cluster (Naïve B cells −1) was varied by random selection
from 1% of cells from that cluster to 200% by adding cells from
neighboring clusters. The reduced size of the ERS for nodes with
in-degree 3 (i.e., the most complex case considered by scBONITA)
is a metric for certainty in rule inference by scBONITA (Fig. 7b,
Supplementary Fig. 5). While there was a significant decline in
performance when the data were downsampled to 1% of the
original cluster, there was no significant increase in effect once

Fig. 6 Monocyte states with respect to the leukocyte transendothelial migration pathway identified by attractor analysis with scBONITA.
a UMAP representation of the cluster of monocytes colored by the attractor to which they are assigned, based on their similarity. The two
dominant modes (F11R+ and PECAM+ attractors) are represented by blue and orange. All other attractors are collectively labeled in gray.
b Percentages of monocytes derived from each subject, mapping to the two dominant attractors and all other attractors for the leukocyte
transendothelial migration pathway. c Attractor gene values for the leukocyte transendothelial migration pathway trained on monocytes,
ranging from 0 (blue) to 1 (red), averaged for each individual subject. The top bar indicates AS+ (gray) and AS− (black) subjects. The genes
that differ between the two dominant attractors F11R+ and PECAM+ are highlighted by a violet box.
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50% of the cells were used, or when the training dataset was
augmented to 200% of its original size by using cells from
adjacent clusters (Fig. 7a, see the “Methods” section). This
indicates that scBONITA is robust to heterogeneity in the training
data set.
The node importance scores calculated by scBONITA for KEGG

networks trained on the HIV/AS dataset are not correlated to six
centrality measures (Fig. 7d). We found that the node importance
scores between comparable cell subpopulations in Kazer et al.39

and HIV/AS datasets were correlated, as shown by a representative
comparison between cytotoxic T cells from the Kazer et al. dataset
and the subpopulations of CD8+ T cells from the HIV/AS dataset
(Fig. 7c, 0.71 < Pearson correlation coefficient < 0.91, p < 0.01).
Similarly, the node importance scores for the populations of
monocytes were highly correlated (Pearson correlation coeffi-
cient= 0.78, Supplementary Table 4, Supplementary Fig. 4). The
correlations were lower for other pairs of subpopulations
(Supplementary Table 4, Supplementary Fig. 4). This indicates
that scBONITA learns some characteristic features of network
topologies, but node importance scores are still assigned in a
context-dependent manner.

DISCUSSION
Among people living with HIV, widespread use of cART has
significantly reduced overall mortality. However, the earlier and

increased incidence of cardiovascular diseases remains the major
cause of mortality in an aging HIV+ population for multiple
intersecting reasons4,9–12. We and others have attempted to
identify the immune signaling mechanisms that lead to this
increased incidence of atherosclerosis49. However, to the best of
our knowledge, no study has systematically investigated cell-type
specific signaling dysregulations at the single-cell level. To this
end, we sequenced, for the first time, PBMCs from four AS+ and
four AS- PLWH. The cohort was closely matched for known AS risk
factors. These risk factors will be harder to match exactly in a
larger cohort. Although a small sample size in some contexts can
limit the power of the study, previous scRNA-seq studies have
provided insight into both changes in PBMC composition and
signaling with cohort sizes similar to this study in the context of
HIV, because of the depth of information on molecular mechan-
isms that can be obtained from scRNA-seq experiments38,90–93. To
increase statistical power, we evaluated the proportion of the
subpopulations identified from scRNA-seq in a bulk RNA-seq
dataset from an independent cohort of PLWH with and without
AS49 (Supplementary Fig. 3). Enrollment of more subjects in the
future will help further elucidate the signaling dysregulations
leading to HIV-associated atherosclerosis. We found that in
accordance with the previous studies19,21,58–61,94,95, a population
of CD8+ T cells was increased in PBMCs from AS+ PLWH.
However, contrary to our expectations20,64–66,71,73,96–98, a popula-
tion of monocytes was decreased in PBMCs from AS+ PLWH

Fig. 7 Performance of scBONITA rule determination. a The number of pathways identified as significantly dysregulated (Bonferroni-adjusted
p value < 0.05) one year upon HIV infection38, between AS+ and AS− PLWH, and the intersections between these sets. Subpopulations from
the two datasets were matched as shown in Supplementary Table 5. b Effects of the number of cells on the ERS size evaluated by
downsampling and augmentation using the largest cluster (“B cells naïve – 1”) from the HIV/AS dataset. c Relation between importance scores
in 130 KEGG networks evaluated using CD8+ T cells from two comparisons—AS+ and AS− PLWH and from persons before and one year after
HIV infection38. d Spearman correlation coefficients (p < 0.01 for all comparisons) between scBONITA’s node importance score (labeled as
‘scBONITA score’) and 6 measures of node centrality (along x and y-axis). Correlation coefficients are depicted by colors ranging from blue (−1)
to red (+1).
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suggesting their migration into the intima. Here we focus on cell-
type-specific molecular changes associated with atherosclerosis.
We observed that differentially expressed genes between AS+

and AS− were involved in cell migration; however relevant
pathways were not identified using over-representation analysis
(ORA). This demonstrated the inefficacy of conventional ORA
methods in identifying coherent molecular processes. For
example, CXCR4, a DE gene, leads to the activation of
phosphatidylinositol-3-OH kinases (PI3K), which in turn activates
the serine-threonine kinase AKT via PIP399. PI3K/AKT signaling
leads to processes involved in plaque formation, such as cell
migration, intracellular lipid accumulation, and smooth muscle cell
proliferation63. None of these processes were enriched in the DE
genes. This may be because of the technical limitations of scRNA-
seq leading to nonspecific distortions of expression and identifica-
tion of fewer differences across conditions100,101. Even DE analysis
methods that are sensitive to the known characteristic distribu-
tions of scRNA-seq data are prone to false discoveries102. These
methods failed to provide insights into how disparate genes
involved in different pathways regulate cellular states. To
mechanistically characterize signaling dysregulations in HIV-
associated atherosclerosis, we developed the scBONITA algo-
rithms for regulatory rule inference, network simulation, pathway
analysis, and attractor/steady-state analysis. As a gene is evaluated
in the context of its complete signaling pathway, our approach
minimizes the impact of the caveats in scRNA-seq technology
described in refs. 100,101.
scBONITA learns condition-specific logic models using scRNA-

seq data in conjunction with published prior knowledge networks
(PKNs). This study builds on our published BONITA method34 that
inferred logic rules from bulk RNAseq data. scBONITA exploits the
bimodal nature of scRNA-seq data41,103 and the cell-level
resolution of expression to successfully learn regulatory rules
and identify attractors for PKNs. These rules can be used to
perturb and simulate pathways in silico. Unlike other algorithms to
infer logic rules and reconstruct gene-regulatory networks on a
small subset of genes from scRNA-seq data104–106, scBONITA does
not pre-select genes. In addition, scBONITA is not dependent on
time-series data, a significant advantage since time-series data is
rarely available in human studies. In lieu of using time-series data,
scBONITA hypothesizes that scRNA-seq data represents samples in
the state space of a dynamic Boolean network. In addition, the use
of known network topologies reduces the uncertainty of inferred
rules. Indeed, we show that scBONITA can successfully restrict the
state space of possible rules. scBONITA combines expression
information with the importance score to create a unique metric
of pathway dysregulation. scBONITA node scores can be directly
translated into empirical perturbation studies.
In CD8+ T cells, we identified AGE-RAGE signaling, which elicits

activation of multiple intracellular signaling pathways such as cell
proliferation and apoptosis pathways (Fig. 3a)107–115. The PI3K
family of genes, which had the highest importance score and were
upregulated in AS+ PLWH, promote intracellular lipid deposition
leading to the formation of foam cells and atherosclerotic plaques
and can reduce the expression of lipid transporters and reduce the
efflux of intracellular cholesterol depending on upstream signals63.
PLC, which also has a high importance score, promotes leukocyte
adhesion, VEC apoptosis, and plaque development induced by
oxidized low-density lipids77,116.
In monocytes, dysregulation of lipid-metabolism pathways such

as cAMP signaling and leukocyte transendothelial migration
suggest the infiltration of monocytes into the intima during the
formation of atherosclerotic lesions and progression of athero-
sclerosis42–47. scBONITA identified genes critical to the athero-
sclerotic process in the leukocyte transendothelial migration
pathway. ROCK activation by atherogenic stimuli such as oxidized
LDLs leads to pathophysiological changes including endothelial
dysfunction and vascular remodeling117,118. ROCK inhibitors such

as statins attenuate atherosclerosis by inhibiting chemotaxis of
macrophages and their transformation into foam cells119. The
dysregulation of glucose metabolism pathways in AS+ PLWH can
induce the expression of adhesion molecules by VECs and
increased monocyte transendothelial migration63,120. Thus, here
we find migratory and lipid-metabolism pathways and key genes
driving atherosclerosis in PLWH.
PI3K-AKT signaling is dysregulated in all cell subpopulations

(Figs. 4 and 5, Supplementary Table 3). The activation and effector
mechanisms of this cascade vary by cell type, as shown by the
different dysregulation of linked signaling pathways in different
cell types. For example, in two populations of naïve B cells derived
from AS+ PLWH, the apelin signaling pathway was upregulated in
one and the adipocytokine signaling pathway was downregulated
in the other. The cardioprotective effect of apelin is modulated by
(amongst other routes) the PI3K-AKT signaling and MAPK
signaling pathways, which are also dysregulated in these naïve
B cells. Apelin is also shown to be upregulated in human
atherosclerotic coronary arteries and colocalized with markers for
macrophages121,122.
We find that HIV infection dysregulates several pathways that

are further impacted in PLWH with AS (Figs. 3a, 4a, Supplementary
Fig. 6, and Supplementary Table 6). These pathways are
suggestive of changes occurring in cell migration of cytotoxic
T cells and monocytes123–126. The overlap also suggests that cAMP
and PI3K-AKT signaling is affected during the course of HIV
infection.
To map cells to distinct signaling modes of the pathways

described above, we developed scBONITA’s attractor analysis
functionalities. Attractors are regions in the state space of a
dynamic system towards which simulation trajectories are “pulled”
and are characteristics of a specific network with a specific set of
regulatory rules. These attractors may correspond to observable
cell states, or hallmarks of specific phenotypes such as cell type
differentiation, disease state, or drug treatment51–56. These studies
show that even simple dynamic models capture rich and nuanced
cell behaviors. scRNA-seq allows the study of these dynamic
landscapes and their attractors at an unprecedented resolu-
tion56,127,128. Attractor analysis with scBONITA allows users to
characterize cells based on the dynamic properties of signaling
networks, which dictate phenotype. scBONITA identifies these
attractors and their master regulators that control the changes
between these cell states, providing complex insights into cellular
processes.
The importance of cell migration and lipid signaling in the

development of HIV-associated atherosclerosis was underscored
by attractor analysis in CD8+ T cells and monocytes. In most cases,
only one dominant signaling state existed in the cell subpopula-
tion. However, the three dominant signaling modes of the insulin
resistance pathway in CD8+ T cells differed in the activity of PI3K
and AKT genes and their downstream effectors, such as CREB and
FOXO1. This suggests the existence of two distinct modes for this
signaling pathway corresponding to a proliferative cell state
(activation of PI3K and AKT) and a senescent cell state
(transcription of CREB- and FOXO1-controlled genes)129–131. The
insulin signaling pathway exerts immunomodulatory effects on
T cells132. Similarly, we identified two dominant signaling modes
(PECAM+ and F11R+) for the leukocyte transendothelial migra-
tion pathway in monocytes, suggesting variation in the cell states
with respect to this pathway in PLWH. Dysregulation in insulin
signaling, which is a risk factor for CVD promotes PECAM1-
mediated migration of monocytes into the endothelium133,134.
PECAM1’s loss contributes to atherosclerosis89. PECAM1+ cells
may contribute to the suppression of inflammatory processes
driving atherosclerosis. Thus, our analysis connects molecular
processes to cellular states, unlike conventional DE and ORA
analyses.
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Although the BONITA algorithm has been rigorously validated
in our prior publication135 here we wanted to evaluate the scRNA-
seq-specific parts of the algorithm. We demonstrated that
scBONITA can identify characteristic structural properties of
networks and use this in conjunction with expression information
to identify dysregulated pathways in a specified condition (Fig. 7).
Moreover, scBONITA is minimally affected by the heterogeneity of
training data and can narrow down the vast state space for a
Boolean network (Fig. 7a). We expect that scBONITA inference will
improve when pure cell populations are sequenced. While
scBONITA is not strictly dependent on the clustering method
used to classify scRNA-seq data into subpopulations, we used pre-
classified subpopulations to reduce variability and to improve the
specificity of scBONITA-PA. Additionally, scBONITA-RD requires a
longer runtime (<12 h in our tests) and more powerful computa-
tional capabilities than a typical processing and clustering analysis
pipeline run on datasets of typical size. These resources are usually
available to academic users on computing clusters. In conclusion,
we present a novel dynamic network modeling method that yields
mechanistic insights into the cellular and immunological pro-
cesses involved in HIV-associated atherosclerosis.

MATERIALS AND METHODS
Participant cohort summary, sample collection, and storage
Eight men living with HIV and ≥50 years of age on stable
combined antiretroviral therapy (cART) for at least 1 year and with
viral load ≤ 50 copies/mL were recruited. All methods were carried
out in accordance with University of Rochester guidelines and
regulations, and all experimental and study protocols were
approved by the University of Rochester Institutional Review
Board (#RSRB00063845). Informed consent was obtained from all
subjects. Individuals were classified as having atherosclerosis (AS
+) if they had plaques on the carotid arteries on ultrasound
imaging. Four of the eight subjects were assigned as AS+ and had
plaques in both right and left carotid arteries. AS− subjects were
aged between 47 and 57 and AS+ subjects were aged between 51
and 66. AS+ subjects had mean serum cholesterol of 161.5 mg/dl
(σ= 40.9) and mean serum high-density lipid HDL of 54.7 mg/dl
(σ= 16.3). AS− subjects had mean serum cholesterol of 167.7 mg/
dl (σ= 57.2) and mean serum high-density lipid HDL of 51mg/dl
(σ= 7.7). AS− subjects and AS+ subjects had a mean CD4+ T cell
count of 518.5 cells/µl (σ= 347.8 cells/µl) and 838.7 cells/µl
(σ= 514.5 cells/µl) respectively. De-identified subject information
is available in Supplementary Note 1 and Supplementary Fig. 1.
Subjects were matched for lipid profiles, hypertension status,
smoking status, CD4+ T cell counts, and age. In addition, all
subjects were treated with cART for at least one year. Thirty
milliliters of blood per study participant was collected in ACD
vacutainers and was processed within 2–3 h of collection.
Peripheral Blood Mononuclear Cells (PBMCs) were isolated using
Ficoll density gradient centrifugation. 5 million PBMCs were
preserved using RNAlater (Thermo Fisher) and were used for
scRNA-seq.

Single-cell RNA sequencing and data processing
Frozen vials containing cells in RNAlater were thawed quickly in a
37 °C water bath. Cell suspension was transferred to a 15ml
conical tube. 10ml PBS/2% FBS was slowly added. Samples were
centrifuged at 500 × g for 6 min. Washes were repeated for an
additional 2 times for a total of three washes. Using the MACS
Miltenyi Biotec Dead Cell removal kit (PN130-090-101), dead cells
were removed using the manufacturer’s recommendations. Cells
were counted and cellular suspensions were loaded on a
Chromium Single-Cell Instrument (10x Genomics, Pleasanton, CA,
USA) to generate single-cell Gel Bead-in-Emulsions (GEMs). ScRNA-
seq libraries were prepared using Chromium Single-Cell 3’ Library

& Gel Bead Kit (10x Genomics). The beads were dissolved, and
cells were lysed per the manufacturer’s recommendations. GEM
reverse transcription (GEM-RT) was performed to produce a
barcoded, full-length cDNA from poly-adenylated mRNA. After
incubation, GEMs were broken, and the pooled post-GEM-RT
reaction mixtures were recovered, and cDNA was purified with
silane magnetic beads (DynaBeads MyOne Silane Beads,
PN37002D, Thermo Fisher Scientific). The entire purified post-
GEM-RT product was amplified by PCR. This amplification reaction
generated sufficient material to construct a 3’ cDNA library.
Enzymatic fragmentation and size selection was used to optimize
the cDNA amplicon size and indexed sequencing libraries were
constructed by End Repair, A-tailing, Adaptor Ligation, and PCR.
Final libraries contain the P5 and P7 priming sites used in Illumina
bridge amplification. Sequence data were generated using
Illumina’s NovaSeq 6000. Approximately 2000 cells were
sequenced from each subject. Cell Ranger (version 2.1.1; 10x
Genomics) was used for demultiplexing and alignment with
default parameters. Reads were aligned to the human reference
genome GRCh38 (Ensembl 93). The Seurat R package (version
2.3.4)39 was used to further process the gene counts obtained
from the CellRanger pipeline. Cells that express <200 genes,
>2500 genes, or >5% mitochondrial genes were filtered out.
Genes expressed in <3 cells were filtered out. Gene counts were
per-cell normalized and log2-transformed. These preliminary
filtering and selection procedures yielded a set of 9368 sequenced
cells, approximately equally distributed between subjects (and
hence conditions), and 14,017 genes. Note that sample collection,
processing, and sequencing were performed in one batch, leading
to extremely high-quality data where no subject-specific patterns
were observed.

Classification into subpopulations using modularity-
optimized Louvain community detection, and cluster labeling
Cells were classified into subpopulations using modularity-
optimized community detection, implemented in the Seurat R
package39. 664 highly variable genes were used to identify 10
principal components that explained the majority of variance in
the data. These principal components were used to cluster the
data. Clustering yielded 16 subpopulations. Cluster markers were
identified using MAST41. As suggested in136, CIBERSORT40 was
used to “deconvolute” the average gene expression of each
cluster into the constituent canonical cell types. A reference
expression set of 22 immune cell types and 547 genes was used40.
Over-representation analysis was performed using the implemen-
tation of the hypergeometric test in the R package clusterprofiler
(version 3.12.0) with Kyoto Encyclopedia of Genes and Genomes
(KEGG) gene sets downloaded from MSigDb137–139. Gene sets
were identified as significantly over-represented if the Bonferroni-
adjusted p-value was <0.05.

scBONITA algorithm for the development of discrete-state
models of pathways
Network topologies: ScBONITA infers Boolean regulatory rules/
logic gates for directed networks wherein nodes represent genes
and edges represent the regulatory relationships between those
genes. These networks contain edge annotations denoting
activation/inhibition relationships between nodes, which are
exploited by scBONITA to restrict the search space for rule
inference to sign-compatible canalyzing functions. Such network
topologies of biological pathways are commonly obtained from
pathway databases such as KEGG and WikiPathways139–141.
ScBONITA offers an interface to KEGG and WikiPathways
databases that allows automated download and processing of
user-specified networks. Users can also provide custom networks
in graphml format.
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Boolean rule determination from scRNAseq data: scBONITA
assumes that cross-sectional measurements of cells by scRNA-seq
data represent a steady state of an underlying dynamic biological
process. scBONITA’s rule determination (scBONITA-RD) algorithm,
which has been extended from our previous BONITA algorithm
exploits this property to infer Boolean rules for an input biological
network, using a combination of a genetic algorithm (GA) and a
node-wise local search135.
The global search uses a genetic algorithm (GA) infers a single

candidate rule set that adequately describes the input data with
respect to the network topology with minimum error34,142. The
function to be minimized is described in Eq. (1):

Xcells

c¼1

min
Xnodes

n¼1

Ec;n � Ac;n;a

�� ��8 a in Tc
 !

(1)

where c from 1 to cells iterates over the number of cells in the
training dataset (cell cluster), n iterates from 1 to a number of
nodes in the network, Ec,n is the binarized expression of node n in
cell c, Ac,n,a is the value of node n in the attractor a reachable from
cell c, and Tc is the attractor reachable from state of the cell c. Note
that Tc may have multiple repeating states in a limit cycle or only
one steady state, i.e., it may be a singleton attractor. Tc is obtained
after simulating the network with the candidate rule set for 100-
time steps, which causes the simulation to reach an attractor state
for all tested networks.
The minimum error rule set identified using the above-

described GA strategy is further refined by a node-level local
search that sequentially optimizes the rule for each node keeping
the rules for all other nodes in the network constant. An optimal
set of rules for a node n is obtained by minimizing the function in
Eq. (2)

Xcells

c¼1

min Ec;n � Ac;n;a

�� ��8 a in Tc
� �

(2)

where variables and constants are the same as described above.
Several rules may satisfy the termination criteria. The local

search returns a set of equivalent rules that all satisfactorily
explain the observed state in the experimental data. This set of
rules is referred to as the equivalent rule set (ERS) in the text.
Pathway analysis (PA) with scBONITA: scBONITA performs

pathway analysis in a two-step process. In the first step,
importance scores for each node in the biological network under
consideration are calculated. In the second step, a pathway
modulation metric incorporating both experiment-specific fold
changes and the node importance scores calculated in step 1 is
calculated.
scBONITA quantifies the influence In of node n over the state of

the network by quantifying the overall effect of its perturbation on
that network (Eq. (3)). This is achieved by simulating knock-in and
knock-out of that node.

In ¼
Xcells

c¼1

KIc;n � KOc;n

�� �� � Uncertainty Factor (3)

where KIc,n and KOc,n are the discrete expression vectors of
network node n in the attractors reached after a simulation
starting from cell c where the node under consideration n is
knocked in and knocked out respectively. The uncertainty factor is
defined as follows (Eq. (4)):

Uncertainty factor ¼ Maximum ERSij j � Observed ERSij j þ 1
MaximumERSij j (4)

where ERSi is the ERS for node i, |Maximum ERSi| is the maximum
possible size of the ERS for a node i and |Observed ERSi| is the size
of the ERS for a node i upon optimization by scBONITA.

The uncertainty factor weighs In relative to the maximum
state space for that node, to capture the uncertainty in the rule
determination for that node. The importance scores of the
nodes in a network are scaled to [0, 1] by dividing by the
maximum calculated importance score for the network under
consideration.
A pathway modulation metric (MP) (Eq. (5)) is calculated by

weighting the node importance score by the difference between
the average gene expression in each group (relative abundance,
RA) and the standard deviation of expression of that gene (σ)
across cells. A p-value is calculated by bootstrapping, where a
contrast-specific distribution of weighted importance scores is
generated using randomly resampled RA values. Pathways are
described in the text as being overall upregulated in a given
contrast if the sum of fold changes of all genes in the pathway is
positive. Conversely, pathways are described as being down-
regulated if the sum of fold changes of all genes in the pathway is
negative.

Mp ¼
Xnodes

n¼1

RAn � σn � In (5)

Steady-state analysis with scBONITA
scBONITA assumes that the observed cellular states are defined by
states of multiple dynamic cellular processes or signaling path-
ways. While observed cells are samples along a dynamic trajectory
of signaling cascades, analyzing attractors upon randomly
sampling the rules from ERS allows us to investigate the most
common signaling states of a network under consideration. We
sample 10 network-specific from the ERS inferred by scBONITA-RD
to identify a set of reachable attractors. This is achieved by
simulating the network synchronously as performed in other
studies104,143–145 starting from an observed state (i.e., a cell
expression vector) until a steady state (or an attractor cycle) is
reached. By starting simulations from observed expression levels
of all cells (i.e., all observed states), we can ensure that these
simulations cover a large fraction of available state space for a
given network. In this way, all reachable attractor states,
corresponding to observable signaling states, can be identified.
The similarity between cells and attractors is quantified using the
Hamming distance. Cells are assigned to the attractor that is
closest to their expression data.

Application of scBONITA on a publicly available data set
A scRNA-seq dataset obtained from four persons living with HIV
(PLWH) before and during infection was selected to demonstrate
the utility of the scBONITA pipeline on other datasets and to
compare signaling dysregulations upon atherosclerosis in PLWH to
signaling dysregulations upon HIV infection38. Log2-transformed
TPM data and metadata processed and curated by the study
authors were collected from the Single-Cell Portal database
(https://singlecell.broadinstitute.org/single_cell/study/SCP256.). The
complete scBONITA pipeline was used to compare samples
collected before infection to samples collected 1 year after
infection. We retained the cluster labels assigned by the authors
of the original study. A set of 210 KEGG networks was used with the
scBONITA pipeline.

In silico evaluation of scBONITA
To show that scBONITA-RD is robust to the training set size, we
selected a cluster of B cells from the HIV/AS dataset. This subset of
the dataset was manipulated to either downsample or augment
the size of the training dataset (number of cells) presented to
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scBONITA-RD. The training dataset was downsampled to 1% and
50% of the original number of cells for cluster 0 (“B cells naïve –
1”). To augment the dataset and thereby introduce heterogeneity,
the dataset was increased to 200% of its original size by adding
cells from a neighboring cluster of B cells. A set of 210 KEGG
networks was used to evaluate the sizes of the ERS obtained by
scBONITA-RD using these manipulated training datasets. The size
of the ERS is used as a proxy for scBONITA’s ability to successfully
cut down the state space of the possible rules for each node using
cross-sectional scRNA-seq data.

Implementation and availability
scBONITA is implemented in Python3 and C. Source code, Bash
scripts, documentation, and tutorials are available on https://
github.com/Thakar-Lab/scBONITA.

Ethics declarations
All methods were carried out in accordance with University of
Rochester guidelines and regulations, and all experimental and
study protocols were approved by the University of Rochester
Institutional Review Board (#RSRB00063845). The project does
not qualify as human subjects research (45 CFR 46.102) in that
the activities do not involve human subjects as defined in
federal regulations because this project utilizes anonymous
information.

DATA AVAILABILITY
The HIV/AS scRNA-seq dataset presented in this manuscript has been deposited in
NCBI’s Gene Expression Omnibus146,147 and is accessible through GEO Series
accession number GSE198339. Due to the sensitive nature of HIV data, we have not
made the raw sequence data public. All results presented in this manuscript may be
recapitulated from the raw count data, processed data, and metadata in GEO. We also
analyzed a previously published dataset that is freely accessible at https://
singlecell.broadinstitute.org/single_cell/study/SCP256. All source code, tutorials, and
documentation for the scBONITA Python package are available at https://github.com/
Thakar-Lab/scBONITA.
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