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Adaptive coding for DNA storage with high storage density
and low coverage
Ben Cao 1, Xiaokang Zhang1, Shuang Cui1 and Qiang Zhang 1✉

The rapid development of information technology has generated substantial data, which urgently requires new storage media and
storage methods. DNA, as a storage medium with high density, high durability, and ultra-long storage time characteristics, is
promising as a potential solution. However, DNA storage is still in its infancy and suffers from low space utilization of DNA strands,
high read coverage, and poor coding coupling. Therefore, in this work, an adaptive coding DNA storage system is proposed to use
different coding schemes for different coding region locations, and the method of adaptively generating coding constraint
thresholds is used to optimize at the system level to ensure the efficient operation of each link. Images, videos, and PDF files of size
698 KB were stored in DNA using adaptive coding algorithms. The data were sequenced and losslessly decoded into raw data.
Compared with previous work, the DNA storage system implemented by adaptive coding proposed in this paper has high storage
density and low read coverage, which promotes the development of carbon-based storage systems.
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INTRODUCTION
Massive data brings convenience and comes with great challenges
at the same time. In light of this, how to use and store huge
amounts of data wisely has become a difficult problem for data
scientists. The International Data Corporation has predicted that
the capacity of the global data will increase to 175 ZB by 2025.
Modern storage systems face the problems of high cost and high
energy consumption, and DNA has captured the attention of
researchers as a storage medium with high parallelism, low
maintenance cost, and great storage potential. DNA also offers
many other unique potential advantages, such as decades or
centuries of stability compared with traditional media that are
updated every few years and easy replication based on molecular
biology methods to prevent degradation.
DNA storage refers to the use of DNA bases to store data, and

the schematic diagram of traditional magnetic storage is shown in
Fig. 1. The first attempts to use DNA to store abiotic information
date back to the late 20th century, when Joe Davis1 pioneered the
use of bacteria as a storage medium for abiotic information.
However, biotechnologies such as synthesis and sequencing were
limited at that time, and the field did not develop rapidly. In 2001,
Bancroft et al.2 encoded two quotes from the opening lines of A
Tale of Two Cities into a DNA molecule using a method similar to
the codon method used in DNA to encode protein sequences. In
2012, Church et al.3 encoded text, JavaScript programs, and
images into corresponding DNA sequences that were eventually
deposited in DNA and could handle errors from DNA sequencing
and synthesis. Birney et al.4 took a 26-second “I Have a Dream”
speech fragment into a DNA sequence and stored it in DNA after
complete synthesis. In 2015, Yazdi et al.5 proposed an efficient
storage architecture that appended specific unique address bits of
20 bps length to the ends of a 1000 bps data block to store the
encoded Wikipedia of six universities. Furthermore, Organick
et al.6 in 2018, proposed an end-to-end DNA data storage that
implemented 200 Mb of data in DNA, demonstrating large-scale,
random-access capabilities. In 2019, Lee et al.7 described a de
novo synthesis strategy for DNA data storage that utilized

template-independent polymerase terminal deoxynucleotidyl
transferase under motion-controlled conditions. In 2020, Bee
et al.8 proposed a molecular-level similarity search method
comparable to the state-of-the-art in silico similarity search
algorithms that demonstrated a technique to perform similarity
search on a DNA-based database of 1.6 million images. Natural
DNA molecules contain four bases and can store up to 2 bits of
information per base9–13.
The first step in storing information in conventional magnetic

storage media is to efficiently encode the information to be
stored; this is also true in DNA storage, where encoding is the top
priority. A reasonable and efficient encoding of DNA not only
reduces coverage and improves base utilization but also reduces
errors, improves storage system coupling, and maintains data
integrity. The error-prone stages in DNA storage are mainly during
synthesis and sequencing, where most of the errors come from
the sequencing process again. Moreover, rational and efficient
coding can improve the accuracy rate of sequencing results and
thus reduce the number of repeat sequencing cycles. Therefore,
the coding problem in DNA storage has received a lot of attention
from researchers.
Huffman coding is a widely used coding method for data file

compression, commonly used for lossless data compression with
compression ratios of 20% to 90%. In 2013, Goldman et al.4

proposed an encoding scheme using Huffman coding to increase
the coding potential in DNA storage to 1.58 bits/nt. Then, Grass
et al.14 using Galois field (GF) and Reed–Solomon (RS) codes to
correct storage-related errors. In 2016, Bornholt et al.15 used the
XOR encoding code with Goldman’s encoding scheme and
proposed a DNA-based system. Fountain code is a widely used
information encoding method in communication systems. In 2017,
Erlich and Zielinski16 proposed DNA storage based on the fountain
code encoding scheme, which prevented single-nucleotide
duplication and GC content anomalies. Both Jeong17 and Anavy18

made further improvements to Erlich’s initiative, reducing the read
cost by 6.5%–8.9% in Jeong’s initiative, and increasing storage
density by 24% in Anavy’s initiative. In addition to the use of
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fountain codes to reduce the generation of errors in DNA storage,
Immink et al.19 described a simple and efficient implementation of
coding techniques to avoid the appearance of long homopoly-
mers. Yazdi et al.20 used weak mutual uncorrelation (WMU) coding
for primer design DNA storage coding. Song et al. proposed a
method for converting 0–1 sequences into DNA base sequences
that encoded results satisfying the runlength constraint and GC-
content constraint and achieved a rate of 1.90 bits/nt with low
encoding/decoding complexity and limited error propagation.
Error correction coding satisfying constraints21–25 and focusing to
improve storage density26 have also received extensive attention.
2021, Zhu et al.27 used quaternary barcodes to encode images
into 16 DNA fragments, and eventually, images were successfully
preserved, encrypted, and recovered while avoiding any protein
or enzyme reactions. This work implemented a nanopore platform
for DNA storage systems with improved capacity and program-
mability. In addition, there are also related DNA storage schemes
for reliable and orthogonal information encoding in living cells28.
DNA as a storage medium has a high theoretical storage

density, but it is difficult to reach the theoretical limit due to errors
inherent in DNA storage channels (sequencing and synthesis
errors) and biochemical limitations of sequences29. Therefore,
much work has focused on optimizing coding methods to reduce
information redundancy, such as Huffman codes and RS
codes30,31. Importantly, each DNA sequence, in addition to
encoding payload bits (data bits)32,33, needs to contain associated
primers, address bits, and other non-payload bits, which are
effective safeguards for the integrity of DNA stored data. The
ability to selectively access only part of the information is
necessary to make DNA storage viable. Implementing random
access has become the focus of current researchers34. Widely used
methods for random access are address bit addressing31 and
magnetic bead extraction methods35. Different types of stored
information, different environments, and different methods lead
to differences in DNA storage system models. Although research-
ers have proposed various DNA storage coding schemes with
different characteristics and preliminarily verified the coding
potential of DNA storage and the possibility of replacing silicon-
based storage to some extent, the recently proposed DNA storage
systems still have certain problems: (1) DNA as a storage medium
has high theoretical storage density, but the storage density of
existing DNA storage systems is far from the theoretical value. (2)
DNA storage often generates errors during synthesis and
sequencing, and redundant information, such as error correction,
needs to be added; alternatively, sequencing coverage and
double-end reads must be increased in sequencing to maintain
data consistency; all of this increases sequencing coverage. (3)
Previous work has effectively advanced coding at various locations
but lacks a unified approach from the system level to deal with
different coding location coordination errors, the lack of connec-
tion between the encoding results of different locations, and the
poor overall coupling of the system.

Although the field of DNA storage research has been steadily
developing in recent years, a DNA storage system with high
utilization of DNA sequences, low read coverage, and high
coupling between different coding locations is lacking. Therefore,
in this paper, we propose an adaptive coding DNA storage system
with high storage density and low coverage and with high
coupling between different coding locations using different
coding schemes for different functional areas. We optimize the
system at the hierarchical level to ensure the efficient operation of
each link. First, for payload bits, the storage files are converted to
binary by corresponding conversion methods; continuity, GC
content, and base balance degree constraint are satisfied, and
parameters such as GC content are calculated for non-payload
coding constraint thresholds after coding is completed. Second,
the non-payload bits are constructed using an intelligent
optimization algorithm under the condition of satisfying the
combination constraint, where the encoding constraint threshold
of the non-payload is generated adaptively from the encoding
result of the payload. The payload and non-payload are assembled
with high coupling. Then, in the decoding stage of the read
information, a certain number of reads are sampled from the read
results of each simulated sequencing of the resultant FASTQ file.
Finally, these reads are merged using the sequence collocation
algorithm, and the raw data are finally obtained using the
combined FASTQ file for RS-corrected LT decoding. The adaptive
coding DNA storage system proposed in this paper has achieved
satisfactory results in storage density, storage capacity, support for
random storage, and coverage.

RESULT
Low storage density, high sequencing coverage, and low coding
coupling are common problems in DNA storage. The coupling
degree is very important in DNA storage coding, because payload
and non-payload bits need to be encoded separately according to
different conditions and constraints in DNA storage, ensuring the
coupling degree between different coding locations can ensure
the robustness of the final synthesized DNA sequence. For
example, if there is payload bits A and non-payload bits B,
respectively, encoded to satisfy the constraint, then both A and B
satisfy the constraint, but when A and B assemble into the DNA
sequence to be synthesized, the last base of B and the first base of
A may be the same, which breaks no-runlength constraint,
reduces the overall robustness. In this case, the coupling degree of
coding is low, because in the process of coding, the connection
between payload and non-payload bit coding is poor, and there is
no comprehensive consideration. Of course, this example is only
in the simplest case, where the DNA storage system is much more
complicated. In this section, we show that the adaptive coding
DNA storage system proposed in this paper can reduce the impact
of common problems on system performance by comparing the
base distribution, the assembly of DNA coding, and the DNA

Fig. 1 DNA storage versus conventional magnetic storage.
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storage results. The distribution of base functional bits on DNA
sequence in the adaptive coding of DNA storage system is shown
in Fig. 2. First, by comparing the base distribution, it is illustrated
whether the encoding result of the payload is a high base balance
library, which is crucial to obtain higher-quality sequencing data36,
reduce the coverage, and ensure the effectiveness of the base
balance constraint. Then, the comparison of the assembly results
illustrates whether adaptive coding during the assembly process
improves the coupling of different coding positions. Finally, the
adaptive DNA storage system is compared with previous work in
terms of storage density, storage capacity, and sequencing
coverage, and an independent random-access experiment is
performed to verify the performance of the storage system.

Contrast the distribution of bases
To verify the effectiveness of the base balance constraint, the
result plots of the effect of adding the base balance constraint on
the distribution of bases in the coding results are shown in Figs. 3
and 4, where the blue lines represent the results of the coding in
this paper and the orange lines represent the results of Jeong
et al.17. In order to get a clearer view of the different base balances
in the figure, the notes for balanced bases have been bolded. It is
clear from the fluctuation of the lines and the maximum and
minimum values that the payload coding in this paper has a better
base balance in DNA sequencing, and Illuminate’s sequencing
manual36 states that balancing the library allows the sequencing
system to keep focus better and deliver higher-quality data.
In addition, to more effectively illustrate the good base balance

in the proposed payload coding scheme, a random sampling of all
coding results was also performed, with the same number of
bases taken each time. The sum of variances, means, and medians

of the sampled base fragments are compared in Table 1, and
compares the work in this paper with the original coding scheme
of Jeong et al.17 and the results of Jeong with the base balance
constraint. The detailed comparison schemes are shown in
Supplementary file 1. The smaller the sum of variance, mean,
and median, the higher the base balance, and the smaller the bias
of sequencing can improve data quality37, which in turn reduces
the number and coverage of sequencing. There are two reasons
why the base distribution in the DNA sequence is more ideal in
the results of adaptive coding. First, the adaptive coding considers
both payload and non-payload sites, which improves the coupling
of the overall coding. Second, compared with Jeong et al.’s work17,
GC content constraint is simply considered in data bits. However,
when the sequence is longer, GC content is satisfied as a whole,
but some DNA blocks may have large GC deviations.

Comparison of coding integrity
To illustrate that the adaptive coding algorithm can reduce the
problem of poor coupling between different coding positions in
previous work, the integrity of coding is compared in this section.
The coupling of address bit and data bit coding were evaluated by
the stability and thermodynamic properties of bare DNA single
strands during assembly. When the coding of each part is
completed and DNA synthesis is performed, the assembly of the
coding results of different parts of the DNA sequence is required.
In most previous works, no attention has been paid to increasing
the coupling between the payload and non-payload. In contrast,
in this paper, the coupling is improved and collisions between
primers and payloads are reduced by efficient screening and
adaptive coding of address and data bits. In the Gibson assembly
process in Fig. 5, the use of the nucleic acid exonuclease to ablate
the 5′−3′ is shown. The process of ablating the 5′−3′ strand using
the nuclease results in the exposure of the complementary strand;
thus, the evaluation of the coupling between the address and data
bits can be accomplished by measuring the stability and
thermodynamic properties of this segment of DNA.
To reflect the merit of the assembly results, Table 2 presents a

comparison of the performance of the exposed single-strand
during the assembly process in the work of Jeong et al.17 and that
of this paper. Biochemical reactions are involved in DNA unchainFig. 2 Different coding classes in DNA storage.

Fig. 3 The influence of high base balance constraint on A and T base contents.
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and synthesis, and the essence of biochemical reactions is a
change in energy. The size of minimum free energy (MFE) can
reflect the stability of DNA single chain and the error rate in PCR
and sequencing to a certain extent38. Therefore, this paper
illustrates the advantages of coding algorithm by comparing MFE.
MFEAVE, MFEMAX, and MFEMIN represent the mean, maximum,
and minimum values of the minimum free energy, respectively,
and TM variance represents the variance of the melting
temperature (TM). The results encoded in the work of Jeong
et al. are compared with the four representative schemes in this
paper. Smaller TM variance and MFE can indicate stronger
sequence stability, the full names of the specific combined
constraint schemes are given in Table 3. By comparing the MFE
and TM variances, it is clear that the assembly results in this paper
have good stability and thermodynamic properties that reduce
the generation of read and write errors. MFEAVE and TM variances
were reduced by 21–26% and 10%, respectively. A smaller MFE
free energy indicates that the single strand of DNA is more stable
in solution, and a smaller TM variance indicates that the TM of
DNA sequences is more similar in PCR and other processes,
resulting in fewer errors. DNA coding is superior to Jeong in
expected attributes (GC balance, MFE, continuous base, etc.),
which can reduce error rate bias in the sequencing process37. A
higher-quality coding assembly strategy can improve intercoding
coupling, which has the effect of avoiding additive-memory
crosstalk, reducing the number of repeat sequencings, and
decreasing coverage. In addition, a comparison of the thermo-
dynamics and stability of the assembly schemes under different
constraints of the same length is also presented in Supplementary
Tables 1–3, further indicating the superiority of the adaptive
coding proposed in this work.

Storage integrity comparison
After completing data writing and reading, to verify the
performance of the proposed adaptive encoding DNA storage
system, comparisons were made with the previous representative
works in various aspects, namely storage density, coverage,
storage capacity, and encoding methods (Table 4). The storage
density, storage capacity, and coverage in the table respectively
refer to the data storage capacity of each base, the size of data
stored, and the coverage degree of DNA sequence in the
sequencing process. It is worth mentioning that the increase in
coverage in the sequencing process will make it difficult to read
information. The calculation method and explanation of the
different storage densities in the table are in supplementary
document 1.
As can be seen in Table 4, the table is drawn in reference6,31, the

adaptive coding DNA storage system proposed in this paper has
excellent storage density even at low coverage, and the adaptive
process adaptively generates thresholds for the coding constraints
of the non-payloads from payload bits, which improves the coding
coupling and increases the storage density. Due to the difficulty of
synthesizing longer DNA strands, this scheme continues to follow
DNA sequences with a length of ~100. In terms of storage density,
the adaptive coding DNA storage system proposed in this paper
reaches 1.29 bits/nt (if the file size is calculated before
compression, the storage density can reach 1.87 bit/nt), which
exceeds the work of Church et al. and stores more information
using fewer bases. Although there is still a gap between choi
et al.’s work, but the proposed method can support random
access without any external memory. The sequencing coverage of
the DNA storage system plays a decisive role in the complexity of
information reading, and higher sequencing coverage makes it
more difficult to read information. As shown in Table 4, the
coverage of the storage system proposed in this paper is second
only to that proposed by Erlich et al. and even an order of
magnitude lower compared to other schemes. Although the
adaptive coding DNA storage system is slightly weaker than that
in Choi et al.’s work in terms of storage density, it is slightly higher
than that of Erlich et al. in terms of sequencing coverage.
However, a complete storage system needs to implement random
access to information to reduce the difficulty of reading.

Fig. 4 The influence of high base balance constraint on C and G base contents.

Table 1. Sum of variances, mean, and median comparisons of
fragments of length 100 bases.

Sum of the variance Mean Median

Jeong17 4.35E+ 06 241.7865 2.32E+ 02

Improve Jeong 3.41E+ 06 189.3271 1.76E+ 02

In this work 3.26E+ 06 181.3739 1.77E+ 02

B. Cao et al.
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Compared with the respective storage schemes of Choi and Erlich,
this storage system can implement random access to data.
Furthermore, this scheme stores 480 KB (Compression before
689 KB) of data, including Jifi, MP4, and TXT. Compared with
Bornholt and Choi et al.’s simple storage of pictures and texts, this
scheme has higher applicability and practical significance and is
suitable for storing various forms of files in the information age.
Although the storage capacity in this paper is still far behind that
of Blawat and Organick, the adaptive coding DNA storage system
has the characteristics of low coverage and reducing
address–memory crosstalk. Moreover, compared to previous work
in simple mapping coding, this paper uses adaptive coding with
better coordination; the payload bits are coded using fountain
codes; RS error correction codes are included; the non-payload
bits are coded using constraint coding; the coding constraint
thresholds of the non-payload bits are generated by the payload
bits adaptively, which improves the overall coupling of the system.
It is important to note that in Table 4, we give two values for

both storage density and storage capacity. The one on the left is
the storage density for storing 480 KB data without rigor storing
the addressing table, which is accepted by most existing work.
The two mainstream storage density calculation methods include
whether to include primers or not6. For rigorous consideration, the

storage density calculation in this paper includes primers. The two
storage density values in the table represent the storage density
for 480 KB data (without storage addressing table) and the storage
density for independent random storage Harry Potter 1 (including
storage addressing table). Although compared with the calcula-
tion method without primers, the storage density on the left is
already very convincing. However, in a storage system that
supports random access, the address table needed to access data
is often stored in external memory. Therefore, in order to better
illustrate the performance of the adaptive scheme proposed in
this paper under extreme conditions, such as earthquake, tsunami,
electromagnetic storm, and other harsh conditions, or when the
addressing table is damaged. Rigorous random-access experi-
ments were also carried out, with excerpts from Harry Potter
1 stored in index pools and archive pools, finally achieving access
requirements to read any paragraph. This method does not
require any external memory, is truly random access, and the
storage density is recorded to the right of the slash line in Table 4.
Although the development of DNA storage is just beginning,
especially for random access storage, the development of DNA
storage is well promoted by strict standard random access.

CONCLUSION
This paper reviews the development and architecture of DNA
storage systems, highlights their advantages and disadvantages,
describes the existing DNA storage steps in detail, and illustrates
the technical details and problems of these steps. To address the
problems of low storage density, high sequencing coverage, and
poor coding integrity of traditional DNA storage systems, an
adaptive coding DNA storage system with high storage density,
low coverage, high base balance, and high coupling is proposed.
The DNA storage system proposed in this paper has two stages.
The writing of data is mainly encoded and then synthesized into
DNA sequences by DNA synthesis technology and stored in DNA

Fig. 5 Gibson assembles address bits and data bits.

Table 2. Comparison of single-strand MFE and TM.

MFEAVE MFEMAX MFEMIN TM variance

Jeong17 −11.5095 −4.9 −26.3 2.2409

HGN −14.238 −3.4 −23.9 2.034

HGNN −14.0197 −5.6 −26.7 2.0542

EGNA −14.4701 −4.8 −31.1 2.0271

EGNAM −14.4146 −5.0 −32.7 2.027

B. Cao et al.
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pools, and the reading of data is decoded after DNA sequencing.
Encoding the data is the first and most important step in DNA
storage. In this paper, different characteristics of the payload and
non-payload are encoded separately. Payloads are encoded using
a fountain code encoding scheme that satisfies constraints,
homopolymer, GC content, and base balance degree constraints
are imposed to guarantee the quality of the encoding. Base
balance is essential for optimal run performance and high-quality
data generation, it also reduces sequencing coverage during data
reads. Compared to the coding results without added base
balancing constraints, a higher base balance in each cycle can be
seen in Figs. 3 and 4. For the encoding of the non-payloads using
heuristic class algorithms constructed under combinatorial con-
straints, the thresholds of combinatorial constraints can be
generated adaptively based on the encoding results of the
payloads. In addition to the original combination method, this
paper also gives other methods in Table 2. Additionally, the types
of heuristic class algorithms and constraints can be selected
according to different storage environments. By analyzing the
stability and thermodynamic properties of the bare single strand
during Gibson assembly, the advantages in dynamically modulat-
ing the non-payload by the characteristics of the payload are
demonstrated, with a 21–26% and 10% reduction in MFEAVE and
TM variance compared to previous work. A smaller MFE in the
solution means a more stable single strand of DNA. The smaller
variance of TM means that the TMs of DNA sequences in PCR and
other processes are more similar, resulting in fewer errors.

Furthermore, high-quality coding results not only increase storage
density but also reduce the error rate, thereby affecting the
sequencing coverage when the data are read. The experimental
results show that files of images, videos, and PDFs of size 689 KB
were successfully stored in DNA and eventually read out losslessly
using the sequencing software. Further comparisons with previous
work were made in the various aspects of storage density,
coverage, storage capacity, and encoding methods. Except for
slightly weaker performance than Erlich and Organick in terms of
storage capacity and coverage, ideal results were achieved in all
other cases; in terms of random storage potential and storage
density, the adaptive encoding DNA storage system proposed in
this paper provides great advantages compared with previous
work. In order to better explain the random access function of the
adaptive DNA storage system proposed in this paper, an
independent random storage test was carried out, and finally a
section of Harry Potter 1 was read.
In future work, we will implement an adaptive encoding DNA

storage system for sequencing coverage, storage density, storage
capacity, and other storage-related indexes with better perfor-
mance and features to improve the storage density and capacity
and minimize the coverage to reduce the cost. However, wet
experiments have not been conducted in this study. Therefore, we
will continue to promote the practical application of DNA storage
in our future work and carry out related work in terms of both
storage cost and synthetic biology development to improve the
storage potential of DNA storage and the availability of cold data.

Table 3. Constraint coding condition abbreviation and full name contrast.

Acronym Full name

HGN Hamming distance constraint, GC-content constraint, No-runlength constraint

HGNN Hamming distance constraint, GC-content constraint, No-runlength constraint, Non-adjacent subsequence

EGNA Storage edit distance constraint, GC-content constraint, No-runlength constraint, Uncorrelated of the address constraint,

EGNAM Storage edit distance constraint, GC-content constraint, No-runlength constraint, Uncorrelated of the address constraint, Minimum free
energy (MFE) constraint

Table 4. Comparison of an adaptive coding DNA storage system with previous work.

Refs. Length (nt) Bits per base
including
primers

Bits per base
excluding
primers

Random access Coverage Code Contents Storage
capacity

Church3 115 0.60 0.83 No 3000× 1 bit to 1 base English text, JPG
images, computer code

650 KB/
630 KB

Goldman4 117 0.19 0.33 No 51× Rotating encoding Text file, JPEG file,
MP3 file

739 KB

Grass14 158 0.86 1.14 No 372× Reed–Solomon coding Text from the Swiss
Federal Charter

83 KB

Organick29 150–200 0.81 1.10 Yes 4–11× Reed–Solomon coding high-definition video,
images, audio, and text

200.2 MB/
33 KB

Bornholt42 120 0.57 0.85 Yes 40× rotating encoding Three JPG files 151 KB

Erlich16 152 1.18 1.57 No 10.5× DNA fountain
encoding

Text file, SVG file,
Video file

2 MB

Jeong17 152 1.17 1.53 No 600× DNA fountain
encoding

JPG file 513.6 KB

Blawat43 230 0.89 1.08 No 160× 6 bis to 3 bases MPEG compressed
movie sequence

22MB

Choi26 85 1.78 3.37 No 250× One character Text file 854 B

Yazdi44 880–1000 1.71 1.74 Yes 200× 14 bits to 8 bases Two JPEG images 3 KB

Lee7 150–200 1.57 1.57 No 175× 2 bits to 1 base Text message 18 B

This work 162 1.29/1.22 1.41 Yes 35× DNA constraint +
fountain encoding+RS

jifi, mp4, txt, jpg,
pdf files

480 KB/
83.3 KB

B. Cao et al.
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METHODS
After transforming the original file into binary, the adaptive coding DNA
storage system uses different coding methods for two different cases of
payload and non-payload depending on the characteristics of the coding
location. First, the fountain code that meets not only the homopolymer
and GC content constraints, but also the base balance degree constraint is
used for payload encoding. Then, for non-payload coding processes, a
strategy of constraint filtering is used, and a variety of algorithms and
combined constraints are provided to choose from. This paper not only
provides the combination of constraints that appeared in the past work,
but also the repetition of constraint candidate solutions would cause a
waste of computing power, so it is further extended. In this paper, DMVO
algorithm and HGN combination constraints are selected according to the
size of stored files and storage scenarios. And the constraint threshold of
non-payload, such as the range of GC content and the threshold of
homopolymer, is generated adaptively by the characteristics of payload.
Finally, the DNA sequences in the DNA pool are sequenced using
sequencing software39, and the original data are restored using the
sequence collocation algorithm and the RS error correction algorithm. A
schematic diagram of the full process of the adaptive coding DNA storage
system is given in Fig. 6. In this section, first, the base balance constraint is
introduced. A high base balance library can provide high-quality
sequencing data to reduce the coverage. Then, the adaptive coding
threshold method is proposed to improve the coupling between different
coding positions, and finally, a more convincing independent random
access experiment is performed.

In the coding process, some coding constraints are proposed for
different error causes to ensure the coding quality, such as Hamming
distance and store edit distance constraint32, minimum free energy
constraint40, No-runlength constraint41. The Hamming distance and store
edit distance constraints are designed to reduce the similarity between
DNA sequences and avoid nonspecific hybridization. The minimum free
energy constraint screens DNA code words with more stable thermo-
dynamic properties based on the heat variation in the reaction38, and the
No-runlength constraint can avoid consecutive identical bases. Homo-
polymers can make the sequence difficult to synthesize and increase the
probability of misreading in the process of sequencing. The mathematical
expression of the above constraints is shown in Eqs. (1–4), where the
symbol meanings are kept consistent with the original text. The Hamming
distance constraint is introduced as follows.

H x; yð Þ ¼
Xn

i¼1

h xi ; yið Þ; h xi ; yið Þ ¼ 0; xi ¼ yi
1; xi ≠ yi

�
(1)

where x and y are a pair of DNA sequences. The Hamming distance is
defined as H (x, y) ≥ d, and H (x, y) represents the number of different
positions of x and y. The store edit distance constraint is shown below.

SE aið Þ ¼ min
1�j�n;j≠i

E ai ; bj
� �� � � d (2)

where a, b are DNA code words of length n, and E(a, b) is defined as the
storage edit distance between a and b. SE (ai) defines the minimum E
(ai, bj) in all DNA coding sets, which should not be greater than the

Fig. 6 Process diagram of an adaptive coding for DNA storage system.
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element d. The MFE constraint is introduced as follows.

t ¼
Pn

i¼1
ΔM si ; s0i

� �

n

(3)

where s and s’ are complementary DNA sequences, The ΔM(s, s’) denotes
the value of MFE between s, s’, Given the threshold parameter t, the
following constraints are given based on MFE, for all pairs of s in S,
ΔM(s, s’) ≤ t, namely ΔM(S)=max s∈ S[ΔM(s, s’)] ≤ t. Parameter t can be a
constant or have other values.
The No-runlength constraint requires that there is a DNA sequence

L (l1, l2, l3…, ln) of length n such that for any i satisfy formula (4):

li ≠ liþ1 i 2 1; n�1½ � (4)

Base balance degree constraint
To reduce the higher DNA sequencing coverage when low error rate reads
are performed on the information stored in DNA, this section proposes the
base balance degree constraint applied in the payload encoding phase of
the adaptive encoding scheme. Although GC content and homopolymer
constraints can be applied to fountain code coding, the base balance
degree constraint has unique advantages over GC content constraint. As
shown in Fig. 7, in the case of a long DNA sequence, the encoding
constraint GC content is no longer applicable. The amount of G and C in a
sequence as a whole may be satisfactory, but the bases in a fragment are
extremely unbalanced. But the base balance degree constraint overcomes
this defect and satisfies the base balance of any DNA fragment. The
sequence satisfying the constraint is obtained through a continuous loop
during coding, which increases the computation and time, but it is worth
it. DNA sequences with high base balance have a high diversity of bases. A
diverse balanced library is important for generating high-quality sequen-
cing data which can reduce the number of repeat sequencings and thus
the coverage can be reduced. Base balance refers to the relative
proportions of A, C, G, and T bases in each cycle of the run. Libraries
with high base balance have approximately the same proportion of all four
bases in each cycle throughout the sequencing process. When sequencing
highly diverse libraries, the high-throughput sequencing system can
maintain focus and easily register images to the cluster map, thus
accomplishing the objective of delivering high-quality data36. The base
equilibrium constraint is defined as the length in a DNA sequence X of
length l such that for any i ∈ (1, l-a) there exists a subsequence Xj i; aþ ið Þ
of DNA sequence X satisfying

0:45 � GC Xj i; aþ ið Þ� � � 0:55 i 2 1; l � að Þ (5)

In order to distinguish the difference between the base balance degree
constraint and the conventional GC content constraint, a schematic
diagram 7 is given. In the case of longer DNA sequence length, the coding
constraint GC content is no longer applicable, because only the overall
control of the base G and C content ratio, may appear that the overall GC
content is satisfied, but there are extremely unbalanced bases in a certain
segment. For example, in Fig. 7, the first sequence satisfies the overall GC
content, but because the sequence is long, poor base distribution in the
red box is possible. According to the Illumina second-generation

sequencing manual36, this base distribution will make the light signal
difficult to identify. That’s because Illumina sequencers are sophisticated
optical instruments that rely on changes in light signals to identify bases.
Balanced bases show roughly equal signals in each sequencing channel,
while unbalanced bases show that there may be more of one signal in the
channel, and thus less of the other bases36. When all clusters provide
signals primarily in one channel, the instrument may have difficulty
identifying the location of the cluster and making base calls. The optical
signal that is difficult to identify will reduce the accuracy of sequencing
data. In this case, if we want to obtain high-quality sequencing data, we
need to increase the sequencing coverage. But this increases the cost of
time and consumables.
High base balance is critical for optimal run performance and high-

quality data generation, and it is particularly important in the first 25 cycles
of the sequencing run, as this is the time for clustering through filters,
phase/pre-phase, and color matrix correction calculations. For platforms
with non-modal flow cells such as MiniSeq™, MiSeq, NextSeq™500/550, and
HiSeq™1000/2500, base balance is important during template generation.
Illumina reported thumbnails of balanced and unbalanced libraries in a
MiSeq™ sequencing cycle and showed approximately equal signals in each
lane36. When all clusters provide signals primarily in one channel, it may be
difficult for the instrument to identify cluster positions.

Adaptive coding process
Existing DNA storage systems do not utilize bases sufficiently, and the
storage density has some distance from the theoretical value. Moreover,
the integrity between different coding positions is poor. Therefore, this
paper proposes an adaptive coding scheme. The adaptive process is
reflected in the adaptive generation of threshold values of non-payload
coding constraints by payload bits. Since different positions of DNA
sequences in DNA storage play different functions and have different error
tolerance, different encoding methods are used at different encoding
positions.
To further improve the storage density, the encoding method of

fountain codes satisfying GC content, continuity, and base balance degree
constraints is used in the encoding of the payload, and RS codes and LT
codes are used as internal codes. The coding process first redundantly
evaluates the polynomial at multiple points and then transmits or stores it.
When the receiver correctly receives enough points, it can recover the
original polynomial even if many noise points are interfering with the
received polynomial. Formally, the set of code words R for RS codes are
defined as follows:

R ¼ p a1ð Þ; p a2ð Þ; ¼ ; p anð Þð Þj p is a poly over F of degree<kf g (6)

LT codes are the first practical fountain codes that come closest to
perfect erasure correcting codes. LT encoding and decoding are performed
as in Eqs. (7) and (8).

M1 �M2 ¼ �Mdð Þ; 1 � d � n (7)

Fig. 7 The difference between base balance degree constraint and GC content constraint.
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where M1;M2 ¼ ;Md is the selected group d out of the total n groups of
packets.

M1 � ¼ �Mdð Þ � M1 � ¼ �Mk�1 �Mkþ1 � ¼ �Mdð Þ
¼ M1 �M1 � ¼ �Mk�1 �Mk�1 �Mk �Mkþ1 �Mkþ1 � ¼ �Md �Md

¼ 0� ¼ � 0�Mk � 0� ¼ � 0

¼ Mk

(8)

where n and k satisfy 1 ≤ k ≤ n ≤ | F | , and R is an [n, k, n-k+ 1] code, which
is a linear code of length n, dimension k, and minimum Hamming distance
n-k+ 1 in F.
Similarly, to improve the coding quality, imposing constraints on the

constructed non-payload can ensure the stability of the non-payload
during storage and reduce the probability of error occurrence while also
reducing the coverage. The constrained encoding of the non-payload can
be approximated as a multi-objective combinatorial optimization problem
and constructed using heuristic class algorithms. Therefore, a combination
of a heuristic class algorithm and a combinatorial constraint construction
scheme is used in the encoding process of non-payload. All subsets in the
set S of non-payload encodings need to satisfy the given encoding
constraints such that any two encodings ci and cj in the subset C satisfy:

τ ci ; cj
� � � k (9)

here, k is a specific positive integer, and the symbol τ denotes the
encoding constraints that should be satisfied by the two encodings ci and
cj, such as Hamming distance, storage editing distance, GC content, and
MFE constraints.
In the process of non-payload coding, the coding constraint threshold to

be satisfied is adaptively generated by payload coding results, such as GC
content, continuous base, etc. For the problem that different locations of
DNA sequences in existing storage systems exercise different functions
and the coupling between each different encoding location is poor,
adaptive generation of non-payload encoding thresholds is used to
strengthen the connection between different encoding locations. The
coding threshold adaptive method can adaptively generate the threshold

in the non-payload combination constraint by the result of payload, as
shown in Fig. 8. Moreover, reducing the coordination error rate in DNA
data storage by adaptively generating coding thresholds can improve the
throughput and reduce the sequencing coverage. Previous work has
effectively advanced coding at various locations but lacks a unified
treatment of coordination errors from a system level. Non-payload
constraint threshold adaptive coding improves the ability to handle
coordination errors. For example, GC content works best at around 50% in
DNA synthesis and sequencing, but previous work has focused only on
partially encoded GC content. In the adaptive coding algorithm for non-
payload bits proposed in this paper, the GC content threshold during non-
payload coding can be set in the DNA storage system based on the GC
content encoded in the payload bits, which is calculated as in Eq. (10). The
table of lower bounds for the set of non-payload encoding under different
constraints is given in Supplementary Table 4.

GCðnopayÞ ¼ 50%ðlengthðnopayÞ þ lengthðpayÞÞ � payGC
lengthðnopayÞ (10)

where nopay and pay represent non-payload and payload, respectively; GC
(nopay) is the threshold of the GC content of the non-payload that needs
to be generated adaptively; payGC is the number of bases of G and C in the
payload.
The process of adaptive generation of thresholds for non-payload

encoding constraints is as follows.
Step 1: receive the set of encoded payload codes completed by

encoding.
Step 2: calculate eigenvalue such as GC content and continuity of the

payload encoding set.
Step 3: calculate the threshold value for generating the non-payload GC

content, continuity threshold, and whether uncorrelation in the address
constraint is required.
Step 4: input the number of address bits needed to encode the set, and

determine whether the current threshold condition exceeds the lower
bound of the non-payload encoding set.
Step 5: return to step 4 if it exceeds; otherwise, to step 6.

Fig. 8 Constraints and algorithms are optional threshold adaptive non-payload coding algorithms.
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Step 6: continue the next encoding process with the current non-
payload encoding threshold as in Fig. 8.
The adaptive generation of non-payload encoding thresholds for payload

bits enables a strong coupling between the non-payload and payload, which
can reduce the probability of errors in DNA assembly. In Fig. 5, the Gibson
assembly process is shown, in which the address and data bits need to be
spliced, and it is crucial to ensure the stability of the assembly process as the
DNA single-strand is exposed during the digestion of the 5’ end by the
nucleic acid exonuclease, while the strong coupling between the non-
payload and payload reduces the address–memory crosstalk generation. To
use bases more rationally, the non-payload coding scheme supports heuristic
class algorithms and constraints for selective use, which are reasonably
chosen for different storage conditions, different storage contents, different
experimental environments, and different storage overheads. The currently
supported heuristic class algorithms are KMVO33, DMVO32, BMVO38, and
CLGBO41, and the supported constraints are Hamming distance constraint,
storage edit distance constraint, GC content constraint, no-runlength
constraint, and minimum value-free energy constraint. K-means Multi-Verse
Optimizer (KMVO) algorithm33 is an improvement of the Multi-Verse
Optimizer (MVO) algorithm by K-means clustering. Wang et al.32 proposed
Damping Multi-Verse Optimizer (DMVO) algorithm on the basis of MVO
algorithm by adding a disturbance factor. The Brown Multi-Verse Optimizer
(BMVO) algorithm was obtained by adding Brownian motion and single-line
method to MVO algorithm, and the CLGBO algorithm41 improved the
Gradient-based optimizer (GBO) algorithm by adopting Cauchy mutation
operator and Levy strategy. The overlap of candidate solutions under
different constraints is shown in Fig. 9. For example, the GC content
constraint and TM constraint imply a lower utilization of bases. It is necessary
to classify and use constraints selectively, and different combinations of
constraints can be chosen according to different requirements (real
problems). The computational complexity can be reduced, and the base

utilization can be improved. By the way, a combination constraint can be any
combination of constraints in the diagram.

Independent random access
In order to better illustrate the performance of the adaptive DNA storage
system proposed in this paper, an independent random storage test is
performed in this section. Storage samples are excerpts from Harry Potter.
It is worth mentioning that in this section, all the information needed to be
used in random access is stored in DNA. Although this may reduce the
storage density, it is necessary for random access DNA storage systems, the
specific process is shown in Fig. 10.
In this strictly random access experiment, the first 500 segments of Harry

Potter 1 are selected for storage, and the strategy of encoding according to
different characteristics is used to assemble the DNA sequence after adaptive
coding, and the address bit information is assembled into additional DNA
sequences, which are stored in DNA pool an (index pool). The complete DNA
sequence containing address bits, primers, and payload bits is stored in DNA
pool b, also known as the archive pool. When random access to data is
required, all index pools are sequenced first, and the results are decoded and
restored into indexes. Then, the access request is synthesized into the
complementary sequence of address bits, and the DNA sequence to be
retrieved is separated by PCR amplification and purification in the archive
pool. Finally, the separated DNA sequence is sequenced and decoded into
the original information to obtain the access content.

DATA AVAILABILITY
All data are available at the following code repository: https://github.com/caobencs/
Adaptive-DNA-Storage with the MIT license. Supplementary data are available at Npj
online.

Fig. 9 Classification and overlap of coding constraints.

Fig. 10 Independent random storage that requires no additional storage.
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