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GLUT1 production in cancer cells: a tragedy of the commons
Anuraag Bukkuri 1✉, Robert A. Gatenby 1,2 and Joel S. Brown1

The tragedy of the commons occurs when competition among individual members of a group leads to overexploitation of a shared
resource to the detriment of the overall population. We hypothesize that cancer cells may engage in a tragedy of the commons
when competing for a shared resource such as glucose. To formalize this notion, we create a game theoretic model of glucose
uptake based on a cell’s investment in transporters relative to that of its neighboring cells. We show that production of transporters
per cell increases as the number of competing cells in a microenvironment increases and nutrient uptake per cell decreases.
Furthermore, the greater the resource availability, the more intense the tragedy of the commons at the ESS. Based on our
simulations, cancer cells produce 2.2–2.7 times more glucose transporters than would produce optimal fitness for all group
members. A tragedy of the commons affords novel therapeutic strategies. By simulating GLUT1 inhibitor and glucose deprivation
treatments, we demonstrate a synergistic combination with standard-of-care therapies, while also displaying the existence of a
trade-off between competition among cancer cells and depression of their gain function. Assuming cancer cell transporter
production is heritable, we then show the potential for a sucker’s gambit therapy by exploiting this trade-off. By strategically
changing environmental conditions, we can take advantage of cellular competition and gain function depression.
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INTRODUCTION
Glucose is a primary energy source for mammalian cells, serving as
fuel for creating ATP through oxidative phosphorylation and glycolysis
and as a carbon source for amino acids, nucleotides, and lipids1,2. Cells
acquire glucose through facilitated diffusion and can express several
membrane transporters that promote uptake of glucose and other
sugars3,4. Widespread clinical application of FdG-PET imaging has
demonstrated that most cancer cells consume glucose at a rate that is
more than twice their normal counterparts. Immunohistochemical
studies demonstrate that cancer cells typically have increased
expression of glucose membrane transporters such as GLUT1, which
correlates with rapid proliferation and metastatic potential5. Further-
more, many cancer cells exhibit the “Warburg phenomenon” in which
they metabolize glucose anaerobically even in the presence of
oxygen. The reduced efficiency of aerobic glycolysis (2 moles ATP/mol
glucose) compared to oxidative phosphorylation (30 moles ATP/mol
glucose) (termed “aerobic glycolysis”) requires increased glucose flux
for adequate ATP production6–8.
Glucose is but one of numerous resources available to cancer cells.

In addition to essential amino acids and trace nutrients, other
resources (e.g., amino acids, fatty acids, and acetate) provide carbon
sources to fuel biosynthesis, growth, and proliferation9,10. Glucose
can act as either a substitutable, complementary, or hemi-essential
resource with other resources11. As a consequence, glucose is likely a
limiting or co-limiting resource, and cancer cells are known to greatly
increase their uptake of glucose relative to normal cells12. In vitro,
cancer cells increase their proliferation rates with increased glucose
availability. Accordingly, glucose oversupply has been associated
with higher cancer risk13, and researchers have found that high
blood glucose levels are associated with increased risk and poor
prognosis in prostate14, gallbladder15, colorectal16, and pancreatic
cancer17. Here, we assume that glucose is a limiting resource.
At first glance, a cancer cells’ investment into transporters for

glucose uptake is a straightforward adaptation to compensate for
the inefficient production of energy by aerobic glycolysis and to

meet metabolic demands. However, glucose represents a “public
good” or shared resource supplied by blood perfusion. Further-
more, cancers typically generate poorly organized vascular
networks resulting in chaotic blood flow with reduced, temporally
fluctuating delivery of nutrients. When each cancer cell is
competing with its neighbors for a limited supply of glucose,
individual investment in uptake is subject to evolutionary cost/
benefit dynamics. For example, a cancer cell might consume more
glucose than necessary to meet its metabolic demands simply to
reduce the glucose supply for and general fitness of competing
cancer cells in its microenvironment. Here, the cost of increased
glucose transport is weighed against the benefit of reducing
fitness of the cell’s competitors.
These dynamics result in conflict between the best outcome for

the group and the optimal outcome for competing individuals
within the group. The former is termed the team-optimum strategy,
in which selection acts at the group level, providing a strategy that
maximizes the fitness of the entire population. That is, the team-
optimum strategy calls for maximally efficient nutrient utilization so
that the limited supply of glucose maintains the highest possible
fitness for each member. However, in cancer, the individual cell is
the unit of natural selection and each cell’s proliferation is
dependent on the difference between its fitness and that of its
competitors. Thus, evolutionary strategies include increases in
expression of GLUT1 and other transporters. Although the cost of
this increase in glucose transport may reduce the fitness of an
individual, the benefit accrued through “stealing” glucose from its
neighbors to decrease their fitness may result in a net evolutionary
benefit. To further understand this difference, consider an example
of cows grazing on a field. The team-optimal strategy describes the
amount of grass that each cow should eat to maximize the growth
of the entire cow population. However, selection acts on the
individual cow, so it is evolutionarily favorable for each cow to
consume more grass than it would under the team-optimum
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strategy even if it provides only marginal benefits, as this improves
its relative fitness within the population.
Although such a strategy may be initially successful, it inevitably

leads to a reciprocal, escalating response from neighbors. This “arms
race” among individuals, which consumes resources to synthesize
and maintain membrane glucose transporters, ultimately leads to
lower individual fitness than what would be achievable as a team-
optimum: a tragedy of the commons18–20. Nature abounds with
examples of the tragedy of the commons, from competing parasites
that selfishly destroy their mutual host21 to sexual conflict, in which
males may greatly harm females when competing with other males
for mating22. These general “prisoner’s dilemma” game theoretic
dynamics have been applied to explain cancer cells’ metabolic
transition from a Pasteur to Warburg effect and from a Warburg
effect to intraspecific competition6,23,24. Indeed, cancer itself can be
viewed as a tragedy of the commons: cancer develops from an
initially normal mass of cells, all working cooperatively, controlling
their own rates of cell growth and division. However, once these
cells become cancerous, they act selfishly, hoarding more nutrients
and growth factors than needed for efficient resource consumption,
to the detriment of all cells in the microenvironment25.
We hypothesize these dynamics play an important role in cancer

biology. In evolutionary game theory, the primary equilibrium
concept is the evolutionarily stable strategy (ESS) that describes the
expected outcome of evolution by natural selection (see ref. 26 for
nuances on this point). Once adopted by most individuals in a
population, the ESS cannot be invaded by any rare alternative
strategy. Specifically, at the ESS, no cancer cell can increase its
fitness by unilaterally changing its own strategy27,28. For more
details on equilibrium concepts and a more thorough introduction
to evolutionary game theory, we refer interested readers to ref. 29.
As noted above, when a common good such as glucose is available
to a group of cancer cells, there is a team-optimum strategy which
results in the highest collective fitness to the entire population.
However, if cancer cells individually compete for glucose and other
nutrients, a tragedy of the commons will result in an over-
investment in glucose transporters and a lower individual fitness.
Recognizing this vulnerability may permit treatment strategies to
exploit cell-cell competition and administer treatments to steer
cancer cell glucose transporter expression away from a team-
optimum and to levels even more extreme than those at the ESS.
Cancer cells engaging in a tragedy of the commons, by evolving a
less fit phenotype, can favor the patient and inducing or
exacerbating such tragedies offers novel therapeutic strategies.
To investigate the role of tragedy of the commons in cancer, we

create a game theoretic model, informed by estimates of glucose
membrane transporter (termed “GLUT1”) counts, of glucose uptake
and utilization in groups of cancer cells in which glucose is a public
good necessary for optimal fitness. We focus on the role of GLUT1 in
individual cells as they compete for a limited supply of glucose. We
compare the ESS that emerges from these evolutionary competi-
tions with the team-optimum to determine the presence of the
tragedy of the commons and its fitness cost. We simulate GLUT1
inhibitor and glucose starvation treatments and show the synergistic
impact cancer cell competition and neighborhood sizes have on
cancer cell fitness and transporter expression. We also show the
existence of a trade-off between inducing competition among
cancer cells and reduction of their gain function. Assuming cancer
cell transporter production is purely hereditary, we show the utility
of using sucker’s gambit therapy30 to exploit the cancer cell’s
proclivity to engage in tragedy of the commons. Such a therapy
aims to exploit and change the game31 and induces even lower
payoffs than those at the ESS.

RESULTS
Model analysis
Team-optimum versus ESS investment in transporters. Both in the
theoretical model we constructed (see Methods) and likely in actual
tumors, the upregulation and maintenance of glucose transporters
have a game theoretic component. When an individual cell increases
its transporters, it benefits in two ways. First, it accesses glucose that
otherwise would have gone unharvested by any cells. Second, it
accesses glucose that otherwise would have been harvested by
other cells, thus denying them resources. It is this second aspect that
creates the tragedy of the commons in which the evolutionarily
stable strategy (ESS) diverges from the team optimum.
The ESS and the Tragedy of the Commons: To determine the ESS

of transporter production, u*, we must find a v such that v satisfies
the ESS maximum principle29,32. Specifically, G must be maximized
with respect to v when all members of the population, including the
focal individual, are using u*. To do this, we first determine the
fitness gradient of G with respect to v in the model outlined in the
Methods section as follows:

∂G
∂v

¼ Rave�av

x
þ RNð1� e�avÞðx � vÞ

x2
� k (1)

Then, we set this gradient equal to zero and solve with v= u*:

k ¼ Rae�av

N
þ N � 1

N
Rð1� e�avÞ

v
(2)

To verify that this equilibrium occurs at a maximum on the
fitness landscape, we must confirm that G is concave with respect
to v. To do this, we compute the second derivative of G as follows:

∂2G
∂v2

¼ R
x

2Nðv � xÞð1� e�avÞ
x2

þ 2aðx � vÞe�av

x
� a2ve�av

N

� �
(3)

Once again, we let v= u* to get:

∂2G
∂v2

¼ R
x

2ð1� e�avÞ
v

1� N
N

þ ae�avð2ðN � 1Þ � avÞ
N

� �
(4)

Assuming biologically reasonable parameter values, ∂2G
∂v2 < 0,

implying that this equilibrium indeed lies on a peak of the fitness
landscape. From Eq. (2), we see that as the number of competing
cells in the microenvironment increases, each individual cell weights
its production more toward the average return per transporter
(second term) rather than the marginal return per transporter (first
term). For a negatively accelerating gain function, the average is
always greater than the marginal. Thus, transporter production per
individual increases with an increase in competing cell counts.
The team-optimum: Now we determine when collective nutrient

uptake is maximized. To do this, we must find the u* for which NG
(u, v, N), is maximized with respect to total transporter production.
Since ∂NGðu;v;NÞ

∂x ¼ N ∂Gðu;v;NÞ
∂x , we have

∂G
∂x

¼ Rae�av � k
N

(5)

Thus, we have

∂NG
∂x

¼ Rae�av � k (6)

Setting the gradient equal to 0, we have:

k ¼ Rae�av (7)

To confirm that this is the team optimum, we assess whether NG is
maximized with respect to x:

∂2NG
∂x2

¼ �Ra2e�av

N
(8)

A. Bukkuri et al.

2

npj Systems Biology and Applications (2022)    22 Published in partnership with the Systems Biology Institute

1
2
3
4
5
6
7
8
9
0
()
:,;



Thus, since ∂2NG
∂x2 < 0, we conclude that this equilibrium is indeed

the team optimum. Note that this is analogous to the ESS
transporter production when N= 1, in which average benefit
vanishes and production of transporters is dependent entirely on
marginal benefit. Thus, total nutrient uptake is maximized when
N= 1. Putting these two pieces together, we see the emergence
of a tragedy of the commons situation: in the presence of
competing cells, cells ramp up production of transporters but, in
the process, also reduce overall nutrient uptake.

Model parametrization. It is known that there are 500,000
−700,000 GLUT1 transporters on the surface of red blood cells33,
but analogous data is not available for cancer cells. We estimate
this quantity for cancer cells by using the following relationship,
derived from the Michaelis–Menten equation:

½E� ¼ Vmax

Kcat
(9)

in which [E] is the concentration of the enzyme, Vmax is the
maximum rate of the reaction, and Kcat is the catalytic constant:
the maximum number of chemical conversions of substrate
molecules per unit time per catalytic site for a given enzyme
concentration. In our case, [E] is the concentration of GLUT1
transporters (given in mol/gram of cell) and Kcat represents the
number of glucose molecules that can enter the cell through the
GLUT1 transporters per unit time.
The Kcat value for GLUT1 for 3-O-methylglucose (3-OMG) is

123s−134,35. Through analysis of dose-response data, a single
functional component with a Vmax of 14nmol/106cells/min for
3-OMG was determined for human choroid plexus papilloma
(HCPP) cells36. We assume here that there are 108 cancer cells in a
gram of tumor tissue37. From this, we can estimate the
concentration of GLUT1 transporters in mol per gram of cancer
cell, denoted by [GLUT1]HCPP, as follows:

½GLUT1�HCPP ¼
14 nmol=min =106 cells

7380=min
� 0:002 nmol=106 cells ¼ 0:2 nmol=g

(10)

Note that the higher expression of GLUT1 in the papilloma cell
is consistent with medical findings, which suggest higher glucose
utilization by tumor cells than normal somatic ones. Now, we can
estimate the number of GLUT1 transporters on a cancer cell,
denoted by GLUT1HCPP, as follows:

GLUT1HCPP ¼ 0:2 nmol=g � NA

108 cells=g
¼ 1; 204; 428GLUT1=cell (11)

Thus, assuming a 50% variance in both directions, we derive the
range of GLUT1 transporter count on cancer cells to be 602,214 to
1,806,642. Using these estimates, we parameterize our model as
shown in Table 1.

Transporter equilibria and payoff simulations. Using these para-
meters, we can compare the number of glucose transporters at
the ESS with that at the team-optimum. We can evaluate these
equilibria under high crowding and varying sizes of the depletion
zone. Since we cannot find an explicit solution for the ESS

equilibrium and we know that the team-optimum is analogous to
the ESS equilibrium for N= 1, we simply plot the equilibrium for
various values of N. First, we consider the high crowding
assumption simulations, depicted in Fig. 1.
In these plots, the intersection of each curve with the cost

function denotes the transporter equilibria. We notice a more subtle,
but nonetheless severe, tragedy of the commons. With an increase
in competing cells, the total number of transporters summed across
all cells increases while the number of transporters per cell
decreases. Considering the gain function plot, we note that a
unique payoff curve per cell exists for each N: the payoff for a cell
depends both on the payoff curve of the depletion zone and the
equilibrium number of transporters. This determines the exact
location of the cancer cell on the curve, thereby providing the
payoff. At the team-optimum, the total number of transporters
summed across all cells remains equal to the ESS of N= 1. Thus, the
transporters per cell at the team-optimum declines much more
rapidly than that of the ESS as crowding increases. Once N > 1, the
ESS results in the over-harvesting of nutrients as a consequence of
over-producing transporters relative to the team-optimum. Now, we
simulate changes in the depletion zone (Fig. 2).
With changes in the size of the depletion zone, the transporter

production at the ESS is strictly greater than the team-optimum
when at least one competing cell is present. As the size of the
depletion zone increases, the team-optimum transporter production
per cell remains unchanged while that of the ESS continues to
increase. Unlike the crowding assumption, the number of cells in the
depletion zone does not influence the payoff curve per cell: the cell’s
payoff is solely determined by where on the curve the cell’s
transporter equilibrium lies. As the depletion zone and the number
of competing cells increase, the payoff at the ESS declines and
diverges more and more from the per cell payoff at the team-
optimum. Thus, the tragedy of the commons becomes more intense
as the depletion zone increases in size. We also note that the change
in equilibrium transporter value as a function of N seems to follow a
roughly logistic trend: equilibrium transporter values for low values
of N differ much more than for high values of N.
To explore this further, we computed the per cell payoff and

transporter production at the ESS for a wide range of N (Table 2).
Note that for a fixed density of cancer cells, the depletion zone is
directly proportional to N. The team-optimum transporter produc-
tion and payoff, for all values of N, is the same as the ESS transporter
equilibrium for N= 1.
To gain a better understanding of this data, we created plots of

the nutrient uptake and ESS transporter equilibria as influenced by
the number of competing cells within a focal cell’s depletion zone
(Fig. 3). Here, we assume that the increase is due to a larger
depletion zone and not through a change in cell density. A large
depletion zone exacerbates the tragedy of the commons.
From Fig. 3, we notice that the payoff per cell decreases in a power-

law fashion and the transporter equilibria increases in a logistic fashion
with an increase in competing cells. Therapeutically, this implies that
strategies which promote clustering of cancer cells may be highly
effective towards disease eradication: through cell-cell competition,
the cancer cells overproduce transporters, driving down their own
nutrient uptake of glucose in the process. Cancer cells depend on
glucose for aerobic and anaerobic respiration, ATP production, and the
construction of functional and structural molecules. Enhancing
competition may greatly reduce cell proliferation relative to what it
would be at a team-optimum2,38. If cancer cells engage in this tragedy
of the commons, then exploiting or encouraging this therapeutically
could work to the patient’s advantage.

Modeling therapy
GLUT1 inhibitors. Therapies exist that target glucose uptake by
cancer cells. One class includes GLUT inhibitors that prevent the

Table 1. Parameter values used in numerical simulations.

Parameter Meaning Value

k Cost of Transporter Production 0.0055

R Resource Availability 10,000

a Encounter Rate 2e−6
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GLUT channels on cancer cells from uptaking glucose1,39.
Mechanistically, this can be done through competitive (STF-31,
Genistein, Fasentin) or noncompetitive (Ritonavir, Resveratrol)
inhibition5,40–43. Both mechanisms cause cells to uptake fewer

glucose molecules through their transporters, while the cell still
pays the same cost of producing and maintaining them. Medically,
these drugs have been shown to result in apoptosis and
decreased cancer cell proliferation44,45. In our model, this is

Fig. 1 How changing crowding (see Fig. 12) influences transporter equilibria per cell, transporter equilibria per depletion zone, and
payoff curve per cell for various N. At the team-optimum, the total number of transporters remain constant for various N (transporters per
cell would adjust accordingly). At the ESS, the total number of transporters in the neighborhood increases while the number of transporters
per cell decreases as a function of N (though this decrease is much lower than it would be if maintaining the team-optimum). The payoff to
each cancer cell depends on both a unique payoff curve (determined by the number of competing cells in the neighborhood) and the
location of the cell on this curve (determined by the ESS transporter count).

Fig. 2 How changing the depletion zone (see Fig. 12) influences transporter equilibria per cell, transporter equilibria per depletion zone,
and payoff curve per cell for various numbers of neighbors N. At the team-optimum (analogous to the N= 1 curves), the total number of
transporters remains constant for various N. At the ESS, the number of transporters per cell increases as a function of N. Since the payoff curve
per cell is the same regardless of N, the payoff to each cell depends solely on the location of the cell on the curve (determined by the ESS
transporter count).
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analogous to decreasing the encounter rate, a. Under low (a= 1/
800, 000 per time), medium (a= 1/1, 000, 000 per time), and high
(a= 1/1, 200, 000 per time) therapeutic efficacy, we simulate the
treatment in Fig. 4. In the following simulations, the number of
competing cells is set to either 1 or 10, though the same
qualitative trends result from other values of N.
As we can see in Fig. 4, the payoff curve for cells under GLUT1

inhibitor treatment is strictly lower than that for the untreated
cells for any positive number of transporters on the cell. Under all
therapeutic efficacies, the number of transporters produced by
GLUT1 inhibitor treated cells (per the ESS equilibrium) is similar to
the equilibrium for non-treated cells in the N= 1 case. In the N=
10 case, the transporter count per cells for treated cells is clearly
lower than that of non-treated cells. In particular, if we interpret
competitiveness as the difference between the ESS and team-
optimum equilibria, the cancer cells become less competitive with
each other as a decreases. The difference between the N= 1
(analogous to the team-optimum) and N= 10 ESS transporter
numbers declines in the GLUT1 inhibitor treated cells as relative to
the untreated cells. This difference can also be seen across
therapeutic efficacies: the more effective the treatment, the
smaller the difference between the ESS and team-optimum is. This
means that GLUT1 inhibitors, though effective at decreasing
nutrient uptake and the overall payoff to cells, lose therapeutic
efficacy because the cancer cells shift closer towards the team
optimum as they engage less in the tragedy of the commons. In a
sense, this therapy rescues the cancer cells from themselves. To
further investigate the impact of treatment on transporter
equilibria and payoffs, we compute the ESS equilibrium and
payoff of treated cells under medium efficacy of GLUT1 inhibitors
for various values of the neighborhood size N (Table 3).
The team-optimum and payoff, for all values of N, is analogous

to the ESS case for N= 1. As N increases, the divergence between
the payoffs to the team-optimum and ESS increases. Note that the

tragedy of the commons increases with the number of competing
cells. Even as payoffs decline, each produces even more
transporters at its ESS as N increases. Clustering of cancer cells
overall boosts the efficacy of the GLUT1 inhibitor treatment (Fig. 5).
From Fig. 5, we see that, for all N, cancer cells treated with the

GLUT1 inhibitor produce fewer transporters and have lower
payoffs than untreated cancer cells. More importantly, the
reduction in transporter production caused by the treatment
reduces the extent to which cancer cells engage in a tragedy of the
commons. As seen by the slopes of the curves, as nutrient
encounter rate decreases from treatment, the cancer cells become
less competitive with each other. The GLUT1 inhibitor directly
reduces tumor size by making cancer cells less effective foragers.
However, this direct effect is mitigated as the cancer cells’ new ESS
involves less of a tragedy of the commons. Thus, clustering of
cancer cells helps drive an overproduction of transporters and
reduction in payoff at the ESS. This effect is less pronounced for
treated than for untreated cells, reducing the overall efficacy of the
treatment.

Glucose starvation. Glucose starvation provides another
approach to cancer treatment, such as with the use of 2-deoxy-
D-glucose to enhance cancer therapies46,47. Because cancer cells
uptake and rely on glucose to a much greater extent than normal
cells, glucose starvation preferentially results in cytotoxicity
through oxidative stress mechanisms in cancer cells relative to
normal ones48,49. Cancer cells may experience chronic oxidative
stress relative to normal cells. In response, cancer cells upregulate
glucose metabolism to produce more pyruvate and NADPH. This
protects against hydroperoxide-induced toxicities49. Thus, glucose
deprivation is expected to inhibit the pathways that cancer cells
use to protect against higher steady-state levels of hydroper-
oxides. In our model, this treatment can be modeled by reducing
the amount of available resources, R. We simulate low (R= 7000),
medium (R= 5000), and high (R= 3000) therapeutic efficacy of
the glucose starvation treatment in Fig. 6.
We see similar trends in Fig. 6 as we did in Fig. 4. We see an

even more pronounced payoff curve depression in the cells under
glucose starvation treatment, which selects for greatly reduced
transporter numbers for both the N= 1 and N= 10 cases across all
therapeutic efficacies. Furthermore, as above, notice that as R is
decreased, cancer cells seem to become much less competitive
with each other, meaning that glucose starvation, while effective
as a treatment, is buffered by this reduced competition. As will be
shown later, this trend of a trade-off between a depression of the
payoff curve and a decrease in competitiveness among cancer
cells is a general one. It is important to recognize, as evidenced by

Table 2. Under different levels of crowding, the ESS transporter
equilibrium and payoffs for various values of N.

N ESS Transporter/Cell Equilibrium ESS Payoff/Cell

1 645,492 3700

5 1,430,884 1558

10 1,592,629 827

50 1,729,743 172

100 1,747,277 86

Fig. 3 Nutrient uptake and transporter production as functions of competing cells. ESS transporter equilibrium increases in a logistic
manner while the ESS payoff per cell deceases in a power-law manner as a function of N.
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Figs. 4 and 6, that a change in resource availability has a larger
impact on the transporter equilibria and payoff curve per cell than
a change in nutrient encounter rate. To further investigate the
impact of treatment on transporter equilibria and payoffs, we
compute the ESS number of transporters and payoff of treated
cells under medium efficacy of glucose starvation for various
values of the neighborhood size N (Table 4).
The team-optimum and payoff, for all N, equals the ESS for

N= 1. As N increases, the difference in payoffs between the ESS
and team-optimum also increases. Again, the tragedy of the
commons increases with the number of neighboring cancer cells.
Even as payoffs decrease, each cell produces more transporters at
its ESS as N increases. Cancer cell clustering increases the efficacy
of the glucose starvation treatment (Fig. 7).
From Fig. 7, we see that glucose-starved cancer cells produce

fewer transporters and have lower payoffs than untreated cells for
all N. Like the GLUT1 inhibitor case, when resource availability is
reduced, cancer cells become less competitive with one another,
detracting from the efficacy of cell clustering in the treatment.
Experimentally, studies measuring how GLUT expression changes

in response to glucose availability have been inconclusive. For
example, one study on membrane GLUT expression in thyroid
cancer cells in hypo-, normo-, and hyperglycemic conditions found
that, in FTC-133 cells, plasma membrane GLUT1 expression increased
with increasing glucose concentration, while in 8305c cells, it
decreased50. In a study on diabetic retinopathy, both total and
membrane GLUT1 expression increased in response to hypergly-
cemic conditions51. Another study investigating expression patterns
of glucose transporters in the rat eye lens found no detectable
change in GLUT1 transcript levels in response to hyperglycemia,
though an upregulation of GLUT3 (a higher affinity glucose
transporter found in cortical fiber cells) was noticed52. Reasons for
these discrepancies have not been determined, suggesting that
further experimental work must be performed to more clearly
understand the conditions and cell types under which these trends
in plasma membrane GLUT expression occur. Briefly, cancer cells
could be grown in normoglycemic conditions (5mM glucose) for
48 h. These cells could then be passaged into hypoglycemic (2mM),
normoglycemic (5mM), and hyperglycemic (25mM) conditions. To
assess expression plasticity, GLUT1 expression levels could be
monitored over time with Western blotting. The impact of depletion
zone scaling assumptions could be explored through the use of a
matrigel cell culture matrix vs. standard aqueous media. From the
model, we would expect to see an eventual increase in GLUT1
expression with hyperglycemic conditions.

Sucker’s gambit. When the cancer cells engage in a tragedy of
the commons, treatment efficacy becomes reduced as the
reduction in cancer cell numbers or resource availability render
the tragedy less strong and the cancer cells respond to less
competition from neighbors. Is there any way to counteract the

Fig. 4 Impact of GLUT1 inhibitor treatment. A lower payoff curve per cell results from treatment. The ESS number of transporters per cell is
similar to and lower under GLUT1 treatment than under no treatment for N= 1 and N= 10, respectively.

Table 3. GLUT1 inhibitor ESS transporter equilibria and payoffs.

N ESS Transporter Equilibrium/Cell ESS Payoff/Cell

1 597,837 1212

5 1,106,639 607

10 1,217,628 344

50 1,317,444 76

100 1,330,640 38
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trade-off between payoff curve depression and reduced cancer
cell competition? One way is with a sucker’s gambit approach53. In
the context of cancer, a sucker’s gambit refers to the process of
changing selection pressures in an evolving tumor to select for
phenotypes that are easier to treat54,55. This suggests that we may
maximize therapeutic impact by first selecting for competitive
cancer cell phenotypes and then administering glucose starvation
or GLUT1 inhibitor treatments. Consider the situation in which, for

example, the concentration of glucose in a depletion zone is
increased. Once cancer cells have evolved a higher competitive-
ness (as is predicted with an increase in resource availability),
treatment is administered. We simulate the effects of this strategy
on ESS transporter number and payoff under GLUT1 inhibitor and
glucose starvation therapy for N= 5 in Fig. 8.
From Fig. 8, we see that the cancer cells not only have a

depressed gain function, due to a lack of resources, but also

Fig. 5 GLUT1 inhibitors vs normal transporter equilibria and payoffs. The left panel plots the number of transporters at ESS as a function of
the number of neighboring cells. The right panel plots ESS payoff as a function of neighboring cells. Cancer cells under GLUT1 inhibitor
treatment produce fewer transporters and have a lower payoff than untreated cancer cells.

Fig. 6 Impact of glucose starvation. Therapy results in a lower payoff curve per cell in a glucose-starved environment. The ESS number of
transporters per cell is lower under glucose starvation than under normal conditions.
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produce many more transporters than the team-optimum, or even
ESS, due to the added competitiveness. As expected, this results in
the cancer cells obtaining a much lower, and even negative,
payoff.
To implement a successful evolutionary double-bind by

alternating therapy will require knowledge of how quickly the
cancer cells manifest changes in transporter numbers29. The goal
is to exploit the rate of change to create glucose rich conditions
when transporter numbers are low, and then induce resource
poor conditions (through targeted therapy or glucose starvation)
just as the cancer cells have switched to high transporter
numbers. If transporter production is highly plastic, meaning cells
can modify their production of transporters within their lifetime to
environmental changes (plasticity hypothesis), this strategy would
require rapid therapeutic switching which may be unrealistic.
However, if cancer cell transporter production is heritable
(requires genetic or epigenetic changes) and only changes over
generations of cancer cells, then we would be able to initially
induce high levels of competitiveness in glucose-starved environ-
ments, before cancer cells evolve to new transporter equilibria.
We now more precisely analyze the efficacy of this strategy in

the GLUT1 inhibitor and glucose starvation treatments. Under the
plasticity hypothesis, we assume that transporter production
immediately adjusts to environmental change. Thus, transporter
production and payoffs under this case would be analogous to
those under just GLUT1 inhibitor or glucose starvation treatment.
To measure efficacy, we can then simply compare equilibria and
payoffs under the genetic hypothesis to our controls: the isolated
GLUT1 inhibitor and glucose starvation treatments.
We assume cancer cells are maintained at the original resource

availability (R= 10,000) before inducing glucose starvation, bring-
ing R down to 5000. Table 5 represents the ESS equilibria and
payoffs under the sucker’s gambit strategy (under the genetic
hypothesis) and Fig. 9 compares payoffs for the treatment with

and without the gambit. Note that the following trends could be
further exaggerated by inducing hyperglycemia through the use
of β-blockers or protease inhibitors, for instance, before using the
glucose starvation treatment56.
Under the sucker’s gambit, we were able to take advantage of

both cancer cell competition, as evidenced by the increased ESS
transporter numbers per cell with an increase in N, and the
decreased payoff per cell associated with glucose starvation
treatment. The result is striking: negative payoffs were detected
for all values of N tested above 1. Maintaining negative payoffs
could result in cure.
Similarly, assume cancer cells are maintained at the original

nutrient encounter rate, before a GLUT1 inhibitor treatment is
administered. Assuming a treatment efficacy of 50%, Table 6
represents the ESS equilibria and payoffs for such a strategy for
cells under the genetic hypothesis and Fig. 10 compares
treatment payoffs with and without sucker’s gambit incorporation.
Again, note that these trends could be further exaggerated by first
activating GLUT1 through the use of osmotic or metabolic stimuli
such as MβCD or azide, before administering the GLUT1
inhibitors57,58.
Though these results are not as extreme as those for the

glucose starvation treatment, we still took advantage of both the
competition among cancer cells and the reduced payoff curve of
GLUT1 inhibitor treatments. Again, we have negative payoffs for
all values of N above 1. Thus, when the genetic hypothesis is true,
exploiting cancer cell competition through the sucker’s gambit
may prove to be an extremely effective therapeutic option for
GLUT1 inhibitor and glucose starvation treatments. It is important
to remember here that, even under the genetic hypothesis, cancer
cells will eventually evolve to new transporter equilibria; hence, it
may be required to iterate the sucker’s gambit strategy,
alternating between high and low resource availability or nutrient
encounter rates for maximal therapeutic impact and eventual cure
or maintenance as a chronic disease as envisioned by adaptive
therapies59,60.
In addition to the transporter equilibria and payoff changes we

have analyzed here, we speculate that an overproduction of
transporters may have an additional benefit. Drawing from life
history theory, there exist trade-offs between somatic and
reproductive effort, which arise from competitive allocation of
limited resources and energy between different life history
traits61,62. Thus, cells that are forced to invest much energy and
resources (as evidenced by the negative payoffs) in maintenance
and growth have less energy to invest in cell division, reducing the
growth rate of the tumor overall. Having the cancer cells engage

Table 4. Glucose starvation ESS transporter equilibria and payoffs.

N ESS transporter/cell equilibrium ESS Payoff/Cell

1 298,919 606

5 553,319 303

10 608,814 172

50 658,722 38

100 665,320 19

Fig. 7 Glucose starvation vs normal transporter equilibria and payoffs. The left panel plots the number of transporters at ESS as a function
of the number of neighboring cells. The right panel plots ESS payoff as a function of neighboring cells. Glucose-starved cancer cells produce
fewer transporters and have a lower payoff than cancer cells in normal conditions.
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in a tragedy of the commons does not render the cancer benign,
but it does render the cancer cells less proliferative than they
otherwise could be under a team optimum. This works to the
patient’s advantage by slowing tumor growth below its intrinsic
maximum.

DISCUSSION
In this paper, we developed a game theoretical model of cancer
cell competition for limited nutrients in the tumor microenviron-
ment. We parametrized our model in the context of glucose
uptake by GLUT1 transporters. The model, concepts, and frame-
work, however, are more general. A tragedy of the commons

could result from cancer cells competing for other limiting or co-
limiting resources that involve upregulating transporters and
other uptake machinery for enhancing nutrient uptake63–66.
Through mathematical analysis, we determined an implicit ESS
and an explicit team-optimum and proved the emergence of a
tragedy of the commons. We made estimates of the number of
GLUT1 transporters on the surface of cancer cells and parameter-
ized our model to fit these estimates. Our simulations confirmed
that competition for limited resources among individual cancer
cells produce a GLUT1 “arms race” with individual cells increasing
glucose uptake in excess of their metabolic demands to reduce
nutrient availability for competitors. A decreasing power law
relation was found between gain function payoff and competing
cell number, while a logistic relation was found between
transporter production and competing cell counts. Our simula-
tions show that a tragedy of the commons will consistently
emerge in cancer populations resulting in a lower fitness
compared to an optimal state in which glucose metabolism is
maximally efficient to optimize resource availability for all
members of the population. We demonstrate that GLUT1
inhibition and glucose starvation have synergistic impacts on
cancer cell fitness through lower payoffs and higher transporter
production. A trade-off between cancer cell competition and
payoff curve depression was recognized and the efficacy of a
sucker’s gambit strategy to circumvent this issue was shown.
Importantly, a tragedy of the commons reduces the fitness of

cancer cells and, ironically, the least competitive cells in the
competition for public goods are actually the most dangerous to
the patient. Note that, unlike traditional public goods games in
which competition reduces (but does not disappear) as the
number of competitors increases, our tragedy of the commons is
exacerbated as the density of competitors in a cancer cell’s
neighborhood increases. With this knowledge, researchers and
clinicians may focus on creating and administering treatments

Fig. 8 Team-optimum, ESS, and sucker’s gambit equilibria for GLUT1 inhibitor (left) and glucose starvation (right) treatments: N= 5 case.
The payoff per cell is plotted as a function of the transporters per cell. Under the sucker’s gambit strategy, cancer cells have a lower payoff
curve per cell and produce more transporters than both the team-optimum and ESS cases.

Table 5. ESS transporter equilibria and payoffs under sucker’s gambit
strategy: resource availability modification.

N ESS Transporter/Cell Equilibrium ESS Payoff/Cell

1 645,492 75

5 1,430,884 −3156

10 1,592,629 −3966

50 1,729,743 −4671

100 1,747,277 −4762

Fig. 9 Payoff from the glucose starvation treatment with and
without a sucker’s gambit. Payoff is plotted as a function of the
number of competing cells. Under the sucker's gambit strategy, we
see a clear depression of the payoff curve per cell, with negative
payoff values.

Table 6. ESS transporter equilibria and payoffs under sucker’s gambit
strategy: nutrient encounter rate modification.

N ESS Transporter/Cell Equilibrium ESS Payoff/Cell

1 645,492 1206

5 1,430,884 −260

10 1,592,629 −793

50 1,729,743 −1287

100 1,747,277 −1353
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that increase cancer cell competition, forcing cancer cells to lower
their own fitness, in addition to improving current, standard-of-
care therapies by inducing higher rates of cancer cell clustering.
Finally, we note that the evolutionary dynamics that produce a

tragedy of the commons may occur with other public goods that
are used by or produced by cancer cells. For example, the
production of angiogenic promoters such as VEGF is subject to
cheating dynamics in which cells do not assume the cost of VEGF
production but still benefit from production of VEGF by their
neighbors. This work will benefit from future experimental work to
quantify limitations and costs of cancer cells’ transporter
production, the effect of transporter production on cell prolifera-
tion rates, synergistic combination of cancer cell glucose transport
with standard cancer treatments, and application of the sucker’s
gambit strategy for glucose uptake in cancer treatment.

METHODS
Model creation
Consider a tumor microenvironment in which a finite number of cancer
cells obtain nutrients from a finite pool of resources. Uptake of nutrients by
one cell decreases the amount available for other cells. The cells uptake
these nutrients through transporters on their cell membrane; however,
each transporter costs the cell a fixed amount of energy to produce and
maintain. Furthermore, due to the nature of uptake kinetics, nutrient
uptake increases at a decelerating rate with the number of transporters. As
the cell produces more transporters, the marginal benefit of each
transporter declines. The questions we seek to answer are the following:
given this framework, how many transporters should a cell produce, what
are the corresponding payoffs, and how do these compare to what is best
for the group (the collective payoff)?
To answer these questions, we draw inspiration from nutrient foraging

by plants. They adjust the proliferation, structure, and physiology of their
root systems in response to resource availability and the presence of
competitors’ roots67–69. The root systems of neighboring plants influence
the nutrient uptake, and thus fitness, of a focal plant17,70. A study
performed by ref. 71 demonstrated the existence of an intraspecific root
proliferation game in the soybean plants Glycine max: these plants reduced
root production when their roots were the entirety of the competitive
environment and exaggerated root production in the presence of other
plants’ roots. In cancer, we hypothesize that a similar tragedy of the
commons scenario occurs in the context of cellular nutrient uptake and
transporter production. To examine this hypothesis, we formalize a cell’s
nutrient uptake rate as a function of its transporters and the number of
transporters of its competitors using a modified version of the game
theoretical model presented in ref. 71. We use a fitness generating function
approach (G function, as in ref. 29) to describe the expected success of an
individual cancer cell as influenced by its own transporter production and

that of others:

Gðv; û;NÞ ¼ v
x
ϕðxÞ � CðvÞ (12)

G captures cancer cell fitness as the difference between nutrient uptake
(first term) and cost of transporter production and maintenance (second
term). In this function, v is the transporter count of the focal individual, û is
a vector describing the number of transporters for each of the other cells
in the group, x= v+ ∑ui is the total number of transporters in the group,
and N is the total number of interacting individuals within the local
microenvironment. We use the functional forms ϕ(x)= R(1− e−ax) and
C(v)= kv for nutrient uptake and transporter cost, respectively, where R is
glucose availability in the tumor microenvironment, a measures the
encounter probability of a single membrane transporter with a given
glucose molecule, and k is the cost of producing and maintaining a
transporter. In this way, the fitness generating function is both frequency
dependent (i.e., individual fitness depends on the trait values of cells in the
population: v, û) and density dependent (i.e., individual fitness depends on
the number of cells in the microenvironment: N). As we discuss in the next
section, resource availability (R), encounter rate (a), and the population size
within the microenvironment (N) are scale-dependent and influenced by
the area encompassed by a cancer cell’s microenvironment.
The bounded exponential form we use for uptake kinetics is appropriate

under the assumption that at any given time, each transporter has the
same probability as another at encountering any given glucose molecule.
This assumes a well mixed system within the neighborhood of cancer cells,
and is consistent with prior studies which show that nutrient uptake
follows Michaelis–Menten kinetics72,73. As the collective number of
transporters of the neighborhood of cells goes from zero to infinite, the
rate of nutrient harvest goes from zero to R, with diminishing returns to
each additional transporter.
It is important to make a distinction between N and the total number of

cancer cells in the tumor. Just as a tree in a large forest only competes with
its immediate neighbors and not all of the trees, competition for nutrients
among cancer cells only occurs within a small neighborhood of a given
cell74. We define competition here as a cell’s investment into producing
glucose transporters to preempt its neighbors’ uptake. The size of a cancer
cell’s neighborhood is determined by the cell’s depletion zone: the area
over which a cell can effectively access and deplete nutrients. We let N be
the number of cells within this zone. For simplicity, we assume that the
spatial distribution of cells within the depletion zone is negligible, i.e., all
cells in the depletion zone have equal access to nutrients. The collective
uptake of nutrients is determined by the collective number of transporters
present among the cells of the neighborhood, x. An individual cell’s share
of this collective harvest is determined by its proportional share of
transporters which is v/x. The second term then gives the cost of
investment into the production and maintenance of a cell’s transporters: kv
in the case of the focal cell.
The assumed relationship between nutrient uptake and number of

transporters, with and without including the cost of producing transpor-
ters, is shown in Fig. 11.

Fig. 10 GLUT1 inhibitor treatment payoffs with and without
sucker’s gambit. Payoffs per cell are plotted as a function of number
of competing cells. Under the sucker's gambit strategy, we see a
clear depression of the payoff curve per cell, with negative payoff
values.

Fig. 11 Plots of nutrient uptake. Incorporation of the cost of
transporters into the payoff per cell changes the payoff curve from
one which is strictly increasing to one with a clear maximum.
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Scaling assumptions
Before proceeding, we must enforce a scaling rule that tells us how resource
availability (R) and nutrient encounter rate (a) change as the number of cells in
a depletion zone (N) change. First, with crowding (crowding increase
assumption), the size of the depletion zone remains fixed and changes in N
reflect fewer or greater individual cells within this fixed space. As a result, the
resource availability, R, and nutrient encounter rate of a cell, a, remain
constant. Second, changes in N may reflect changes in the size of the
depletion zone (depletion zone increase assumption) while the density of cells
stays constant. In this case, both R and a will change in opposite directions. A
larger depletion zone results in a higher nutrient availability, but it also
decreases the chance of a cell encountering them. These scenarios are
depicted below in Fig. 12. Drawing on plant biology, we choose to enforce the
latter assumption71. Specifically, we assume that R is directly proportional to
and a is inversely proportional to the number of cells in the depletion zone.
Under the depletion zone assumption, R(N)= RN and a(N)= a/N. With this
formulation, notice that resources per cell remain constant: Nϕ(u)= ϕ(x).

DATA AVAILABILITY
Data sharing not applicable to this article as no datasets were generated and
analysed during the current study.

CODE AVAILABILITY
Codes used to produce all plots in this paper can be found at the following publicly
accessible GitHub page: https://github.com/abukkuri/TOC.

Received: 8 June 2021; Accepted: 31 May 2022;

REFERENCES
1. Adekola, K., Rosen, S. T. & Shanmugam, M. Glucose transporters in cancer

metabolism. Curr. Opin. Oncol. 24, 650–654 (2012).
2. VanderHeiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the warburg

effect: The metabolic requirements of cell proliferation. Science 324, 1029–1033
(2009).

3. Galochkina, T., Ng Fuk Chong, M., Challali, L., Abbar, S. & Etchebest, C. New
insights into GluT1 mechanics during glucose transfer. Sci. Rep. 9, 1–14 (2019).

4. Pragallapati, S. & Manyam, R. Glucose transporter 1 in health and disease. J. Oral.
Maxillofac. Pathol. 23, 443–449 (2019).

5. Zambrano, A., Molt, M., Uribe, E. & Salas, M. Glut 1 in cancer cells and the
inhibitory action of resveratrol as a potential therapeutic strategy. Int. J. Mol. Sci.
20, 1–20 (2019).

6. Alfarouk, K. O., Muddathir, A. K. & Shayoub, M. E. Tumor acidity as evolutionary
spite. Cancers 3, 408–414 (2011).

7. Gatenby, R. A. & Gillies, R. J. Why do cancers have high aerobic glycolysis? Nat.
Rev. Cancer 4, 891–899 (2004).

8. Martinez, C. A. & Scafoglio, C. Heterogeneity of glucose transport in lung cancer.
Biomolecules 10, 1–28 (2020).

9. Keenan, M. M. & Chi, J. T. Alternative fuels for cancer cells. Cancer J. 21, 49–55 (2015).
10. Navrátilová, J., Hankeová, T., Beneš, P. & Šmarda, J. Low-glucose conditions of

tumor microenvironment enhance cytotoxicity of tetrathiomolybdate to neuro-
blastoma cells. Nutr. Cancer 65, 702–710 (2013).

11. Amend, S. R., Gatenby, R. A., Pienta, K. J. & Brown, J. S. Cancer foraging ecology:
diet choice, patch use, and habitat selection of cancer cells. Curr. Pathobiol. Rep.
6, 209–218 (2018).

12. Fadaka, A. et al. Biology of glucose metabolization in cancer cells. J. Oncol. Sci. 3,
45–51 (2017).

13. Wu, D. J. Oversupply of limiting cell resources and the evolution of cancer cells: a
review. Front. Ecol. Evol. 9, 1–7 (2021).

14. Marrone, M. T., Selvin, E., Barber, J. R., Platz, E. A. & Joshu, C. E. Hyperglycemia,
classified with multiple biomarkers simultaneously in men without diabetes, and
risk of fatal prostate cancer. Cancer Prev. Res. (Phila) 12, 103–112 (2019).

15. Navarro, J. et al. Glucose to lymphocyte ratio as a prognostic marker in patients
with resected pT2 gallbladder cancer. J. Surg. Res. 240, 17–29 (2019).

16. Yang, I. P. et al. High blood sugar levels significantly impact the prognosis of
colorectal cancer patients through down-regulation of microRNA-16 by targeting
Myb and VEGFR2. Oncotarget 7, 18837–18850 (2016).

17. Zhang, Z. et al. T cell dysfunction and exhaustion in cancer. Front. Cell Dev. Biol. 8,
17 (2020).

18. Hardin, G. Extension of ’the tragedy of the commons’. Science 280, 682–683 (1998).
19. Hardin, G. The tragedy of the commons. Science 162, 1243–1248 (2010).
20. Rankin, D. J., Bargum, K. & Kokko, H. The tragedy of the commons in evolutionary

biology. Trends Ecol. Evol. 22, 643–651 (2007).
21. Dionisio, F. & Gordo, I. The tragedy of the commons, the public goods dilemma,

and the meaning of rivalry and excludability in evolutionary biology. Evol. Ecol.
Res. 8, 321–332 (2006).

Fig. 12 Illustration of the differences between crowding and depletion zone increase assumptions. Sugar cubes represent glucose
molecules, the cell depicted is a cancerous one, and the black lines divide the environment into depletion zones. With the “crowding increase"
assumption, the size of the depletion zone and nutrient availability are held constant while the cell density per unit area increases, reducing
nutrient availability per cell. In the “depletion zone increase" assumption, both nutrient availability and size of the depletion zone are
increased, keeping cell density per unit area and nutrient availability per cell constant. Created with BioRender.com.

A. Bukkuri et al.

11

Published in partnership with the Systems Biology Institute npj Systems Biology and Applications (2022)    22 

https://github.com/abukkuri/TOC


22. Rankin, D. J. & Kokko, H. Sex, death and tragedy. Trends Ecol. Evol. 21, 225–226
(2006).

23. Kareva, I. Prisoner’s dilemma in cancer metabolism. PLoS One 6, 1–9 (2011).
24. Fais, S., De Milito, A., You, H. & Qin, W. Targeting vacuolar H+-ATPases as a new

strategy against cancer. Cancer Res. 67, 10627–10630 (2007).
25. Anderson, G. R., Stoler, D. L. & Brenner, B. M. Cancer: The evolved consequence of

a destabilized genome. BioEssays 23, 1037–1046 (2001).
26. Apaloo, J., Brown, J. S. & Vincent, T. L. Evolutionary game theory: ESS, con-

vergence stability, and NIS. Evol. Ecol. Res. 11, 489–515 (2009).
27. Maynard-Smith, J. Honest signalling: the Philip Sidney game. Anim. Behav. 42,

1034–1035 (1991).
28. Maynard-Smith, J. & Harper, D. Animal Signals (Oxford University Press, 2003).
29. Bukkuri, A. & Brown, J. S. Evolutionary game theory: darwinian dynamics and the

G function approach. MDPI Games 12, 1–19 (2021).
30. Maley, C. C., Reid, B. J. & Forrest, S. Cancer prevention strategies that address the

evolutionary dynamics of neoplastic cells: Simulating benign cell boosters and
selection for chemosensitivity. Cancer Epidemiol. Biomarkers Prevention 13,
1375–1384 (2004).

31. Kaznatcheev, A., Peacock, J., Basanta, D., Marusyk, A. & Scott, J. G. Fibroblasts and
alectinib switch the evolutionary games played by non-small cell lung cancer.
Nat. Ecol. Evolution 3, 450–456 (2019).

32. Vincent, T. L., Van, M. V. & Goh, B. S. Ecological stability, evolutionary stability and
the ESS maximum principle. Evol. Ecol. 10, 567–591 (1996).

33. Anstee, D. J. The functional importance of blood group-active molecules in
human red blood cells. Vox Sanguinis 100, 140–149 (2011).

34. Carruthers, A. Facilitated diffusion of glucose. Physiol. Rev. 70, 1135–1176 (1990).
35. Vannucci, S. J., Gibbs, E. M. & Simpson, I. A. Glucose utilization and glucose

transporter proteins GLUT-1 and GLUT-3 in brains of diabetic (db/db) mice. Am. J.
PHYSIOL. Endocrinol. Metab. AM J. PHYSIOL-ENDOC M 272, 267–274 (1997).

36. Ulloa, V. et al. Human choroid plexus papilloma cells efficiently transport glucose
and vitamin C. J. Neurochem. 127, 403–414 (2013).

37. Del Monte, U. Does the cell number 109 still really fit one gram of tumor tissue?
Cell Cycle 8, 505–506 (2009).

38. Koppenol, W. H., Bounds, P. L. & Dang, C. V. Otto Warburg’s contributions to
current concepts of cancer metabolism. Nat. Rev. Cancer 11, 325–337 (2011).

39. Ancey, P. B., Contat, C. & Meylan, E. Glucose transporters in cancer - from tumor
cells to the tumor microenvironment. FEBS J. 285, 2926–2943 (2018).

40. Chan, D. A. et al. Targeting GLUT1 and the Warburg effect in renal cell carcinoma
by chemical synthetic lethality. Sci. Transl. Med. 3, 1–17 (2011).

41. Vera, J. C. et al. Genistein is a natural inhibitor of hexose and dehydroascorbic
acid transport through the glucose transporter, GLUT1. J. Biol. Chem. 271,
8719–8724 (1996).

42. Wood, T. E. et al. A novel inhibitor of glucose uptake sensitizes cells to FAS-
induced cell death. Mol. Cancer Ther. 7, 3546–3555 (2008).

43. McBrayer, S. K. et al. Multiple myeloma exhibits novel dependence on GLUT4,
GLUT8, and GLUT11: Implications for glucose transporter-directed therapy. Blood
119, 4686–4697 (2012).

44. Zhang, W., Liu, Y., Chen, X. & Bergmeier, S. C. Novel inhibitors of basal glucose
transport as potential anticancer agents. Bioorg. Med. Chem. Lett. 20, 2191–2194
(2010).

45. Wang, D. et al. Development of a novel class of glucose transporter inhibitors. J.
Med. Chem. 55, 3827–3836 (2012).

46. Simons, A. L., Mattson, D. M., Dornfeld, K. & Spitz, D. R. Glucose deprivation-
induced metabolic oxidative stress and cancer therapy. J. Cancer Res. Ther. 5, 1–7
(2009).

47. Durán, I. et al. Glucose starvation as cancer treatment: Thermodynamic point of
view. Integr. Cancer Sci. Ther. 5, 1–5 (2018).

48. Warburg, O. On the origin of cancer cells. Science 123, 309–314 (1956).
49. Spitz, D. R., Sim, J. E., Ridnour, L. A., Galoforo, S. S. & Lee, Y. J. Glucose deprivation-

induced oxidative stress in human tumor cells. A fundamental defect in meta-
bolism? In Annals of the New York Academy of Sciences, vol. 899 (2000).

50. Jozwiak, P., Krzeœlak, A., Bryœ, M. & Lipiñska, A. Glucose-dependent glucose
transporter 1 expression and its impact on viability of thyroid cancer cells. Oncol.
Rep. 33, 913–920 (2015).

51. Calado, S. M., Alves, L. S., Simão, S. & Silva, G. A. GLUT1 activity contributes to the
impairment of PEDF secretion by the RPE. Mol. Vis. 22, 761–770 (2016).

52. Merriman-Smith, B. R., Krushinsky, A., Kistler, J. & Donaldson, P. J. Expression
patterns for glucose transporters GLUT1 and GLUT3 in the normal rat lens and in
models of diabetic cataract. Invest. Ophthalmol. Vis. Sci. 44, 3458–3466 (2003).

53. Merlo, L. M., Pepper, J. W., Reid, B. J. & Maley, C. C. Cancer as an evolutionary and
ecological process. Nat. Rev. Cancer 6, 924–935 (2006).

54. Gatenby, R. A., Brown, J. & Vincent, T. Lessons from applied ecology: cancer
control using an evolutionary double bind. Cancer Res. 69, 7499–7502 (2009).

55. Basanta, D. & Anderson, A. R. Exploiting ecological principles to better under-
stand cancer progression and treatment. Interface Focus 3, 1–9 (2013).

56. Rehman, A., Setter, S. M. & Vue, M. H. Drug-induced glucose alterations part 2:
Drug-induced hyperglycemia. Diabetes Spectr. 24, 234–238 (2011).

57. Barnes, K., Ingram, J. C., Bennett, M. D. M., Stewart, G. W. & Baldwin, S. A. Methyl-
beta-cyclodextrin stimulates glucose uptake in Clone 9 cells: a possible role for
lipid rafts. Biochem. J. 378, 343–351 (2004).

58. Caliceti, C. et al. Effect of plasma membrane cholesterol depletion on glucose
transport regulation in leukemia cells. PLoS One 7 (2012).

59. West, J. et al. Towards multidrug adaptive therapy. Cancer Res. 80 (2020).
60. Gatenby, R. A., Silva, A. S., Gillies, R. J. & Frieden, B. R. Adaptive Therapy. Cancer

Res. 69, 4894–4903 (2009).
61. Blacher, P., Huggins, T. J. & Bourke, A. F. Evolution of ageing, costs of reproduction

and the fecundity-longevity trade-off in eusocial insects. Proc. R. Soc. B: Biol. Sci.
284, 1–9 (2017).

62. Hill, K. & Kaplan, H. Life history traits in humans: Theory and Empirical Studies.
Annu. Rev. Anthropol. 28, 397–430 (1999).

63. Wang, Q. et al. Targeting ASCT2-mediated glutamine uptake blocks prostate
cancer growth and tumour development. J. Pathol. 236, 278–289 (2015).

64. Van Geldermalsen, M. et al. ASCT2/SLC1A5 controls glutamine uptake and
tumour growth in triple-negative basal-like breast cancer. Oncogene 35,
3201–3208 (2016).

65. LaMonte, G. et al. Acidosis induces reprogramming of cellular metabolism to
mitigate oxidative stress. Cancer Metabol. 1, 1–19 (2013).

66. Pérez-Escuredo, J. et al. Lactate promotes glutamine uptake and metabolism in
oxidative cancer cells. Cell Cycle 15, 72–83 (2016).

67. Campbell, B. D. & Grime, J. P. A comparative study of plant responsiveness to the
duration of episodes of mineral nutrient enrichment. New Phytol. 112, 261–267
(1989).

68. de Kroons, H. & Hutchings, M. J. Morphological plasticity in clonal plants: the
foraging concept reconsidered. J. Ecol. 83, 143–152 (1995).

69. Friend, A. L., Eide, M. R. & Hinckley, T. M. Nitrogen stress alters root proliferation in
Douglas-fir seedlings. Can. J. For. Res. 20, 1524–1529 (1990).

70. Kim, B. M., Horita, J., Suzuki, J. I. & Tachiki, Y. Resource allocation in tragedy of the
commons game in plants for belowground competition. J. Theor. Biol. 529, 1–8
(2021).

71. Gersani, M., Brown, J. S., O’Brien, E. E., Maina, G. M. & Abramsky, Z. Tragedy of the
commons as a result of root competition. J. Ecol. 89, 660–669 (2001).

72. Harrison, P., Parslow, J. & Conway, H. Determination of nutrient uptake kinetic
parameters: a comparison of methods. Mar. Ecol. Prog. Ser. 52, 301–312 (1989).

73. Bonachela, J. A., Raghib, M. & Levin, S. A. Dynamic model of flexible phyto-
plankton nutrient uptake. Proc. Natl. Acad. Sci. USA 108, 20633–20638 (2011).

74. Greenwood, D. L. & Weisberg, P. J. Density-dependent tree mortality in pinyon-
juniper woodlands. For. Ecol. Manag. 255, 2129–2137 (2008).

ACKNOWLEDGEMENTS
A.B. is supported by the National Science Foundation Graduate Research Fellowship
Program under Grant No. 1746051. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the author and do not
necessarily reflect the views of the National Science Foundation. J.S.B. and R.A.G.
acknowledge grant support from NIH/NCI “Cancer as a complex adaptive system”
U54CA193489, NIH/NCI U54 Supplement, “The tumor-host evolutionary arms race”,
and NIH/NCI “Eco-evolutionary drivers of clonal dynamics during UV-induced skin
carcinogenesis”, 1R01CA258089.

AUTHOR CONTRIBUTIONS
A.B., R.A.G., and J.S.B. conceptualized the project. A.B. wrote the original draft and
performed all analyses and simulations. A.B., R.A.G., and J.S.B. reviewed and edited
the final manuscript.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Correspondence and requests for materials should be addressed to Anuraag Bukkuri.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

A. Bukkuri et al.

12

npj Systems Biology and Applications (2022)    22 Published in partnership with the Systems Biology Institute

http://www.nature.com/reprints
http://www.nature.com/reprints


Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2022

A. Bukkuri et al.

13

Published in partnership with the Systems Biology Institute npj Systems Biology and Applications (2022)    22 

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	GLUT1 production in cancer cells: a tragedy of the commons
	Introduction
	Results
	Model analysis
	Team-optimum versus ESS investment in transporters
	Model parametrization
	Transporter equilibria and payoff simulations

	Modeling therapy
	GLUT1 inhibitors
	Glucose starvation
	Sucker&#x02019;s gambit


	Discussion
	Methods
	Model creation
	Scaling assumptions

	DATA AVAILABILITY
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




