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Comprehensive network medicine-based drug repositioning via
integration of therapeutic efficacy and side effects
Paola Paci 1,2✉, Giulia Fiscon1,2, Federica Conte2, Rui-Sheng Wang3, Diane E. Handy 3, Lorenzo Farina1 and Joseph Loscalzo 3

Despite advances in modern medicine that led to improvements in cardiovascular outcomes, cardiovascular disease (CVD) remains
the leading cause of mortality and morbidity globally. Thus, there is an urgent need for new approaches to improve CVD drug
treatments. As the development time and cost of drug discovery to clinical application are excessive, alternate strategies for drug
development are warranted. Among these are included computational approaches based on omics data for drug repositioning,
which have attracted increasing attention. In this work, we developed an adjusted similarity measure implemented by the
algorithm SAveRUNNER to reposition drugs for cardiovascular diseases while, at the same time, considering the side effects of drug
candidates. We analyzed nine cardiovascular disorders and two side effects. We formulated both disease disorders and side effects
as network modules in the human interactome, and considered those drug candidates that are proximal to disease modules but far
from side-effects modules as ideal. Our method provides a list of drug candidates for cardiovascular diseases that are unlikely to
produce common, adverse side-effects. This approach incorporating side effects is applicable to other diseases, as well.
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INTRODUCTION
Cardiovascular disease (CVD) is a group of disorders of the heart
and blood vessels, including coronary and peripheral arterial
disease, cerebrovascular disease, congenital heart disease, heart
failure, hypertension, and arrhythmias. CVD is consistently ranked
as the leading cause of mortality and morbidity in the United
States and globally. According to the World Health Organization
(WHO), 17.9 million people die each year from CVDs, an estimated
32% of all deaths worldwide. Despite remarkable progress in
addressing CVD, the decline in population mortality rates is
slowing and cardiovascular drug innovation is lagging. There is,
therefore, an urgent need for new approaches to improve CVD
drug treatments1,2.
New drug development from compound identification to

application in the clinic is a lengthy and costly process. Drug
repositioning (or repurposing), a process of using an existing drug
for a new indication, has numerous advantages over conventional
drug discovery3. High-throughput screening approaches4,5 and
computational drug repositioning approaches6,7 are currently
used to repurpose approved drugs. In particular, unbiased systems
pharmacology methods using omics data to reposition drugs
computationally has attracted increasing attention8,9. Notwith-
standing the success of these approaches, a crucial issue in the
repurposing of approved drugs is the possible occurrence of
unexpected side effects. While many computational methods
have been proposed for drug repositioning, few of them
incorporate an analysis of potential side effects10–13.
Prevailing opinion holds that repurposing approved drugs is a

comparatively safe process owing to the known side-effect profile
of those compounds. Yet, this tenet fails to take into consideration
the potential for new or unrecognized side effects that are
unveiled in the context of the drug’s use for a new disease (drug-
by-disease interaction). Moreover, often a drug’s side effects are

not observed during clinical trials but emerge only after approval
when a much larger number of patients begin to use it14,15.
In this work, we present a new approach to the identification of

repurposed drug candidates that incorporates protein interaction
network-based analysis of therapeutic efficacy and side effects. By
classifying potentially repurposable drugs in terms of efficacy and
adverse effects, we can identify the most promising candidates
based on optimal benefit and safety. As a proof-of-concept, we
apply this strategy to repurposing drugs for cardiovascular
diseases and do so while utilizing a similar network-based
approach to two side effects that often appear among cardiovas-
cular medications (i.e., electrocardiographic QT interval prolonga-
tion and drug-induced asthma).
Our approach is based on the notion that, much like diseases

themselves, drug side effects are exerted through discrete
subnetworks or modules within the interactome (which we
demonstrate here for the serious side-effect of electrocardio-
graphic QT interval prolongation, a harbinger of sudden cardiac
death; and for drug-induced asthma). The rationale underlying our
analysis is analogous to the proximity hypothesis for drug
repurposing for disease—the closer a drug target is to a disease
module in the interactome, the greater the likelihood that the
drug can be repurposed for the disease8,16. Similarly for drug-
induced side effects, we propose that the closer a drug target is to
a side-effect module, the greater the likelihood that the drug will
induce the side-effect. From a primary disease module perspective
for a drug target that is proximal both to a disease module and a
side-effect module, the closer the drug target is to a side-effect
module, the greater the likelihood that the drug will not only
produce the side-effect, but may also attenuate the benefit of
drug action. This effect is particularly likely to occur if a side-effect
is manifest in the same general disease cluster as the disease for
which the drug is being repurposed (e.g., a cardiovascular side-
effect for a drug repurposed for a cardiovascular disease). From a
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primary side-effect module perspective for a drug that is proximal
both to a side-effect module and a disease module, the closer a
drug target is to a disease module, the greater the likelihood that
the drug will be effective in treating the disease, but may also
attenuate the side-effect (competitive pathway effects within
proximate modules in the interactome).
This analysis can, thereby, provide insight into a previously

unrecognized risk (or benefit) of drug repurposing, viz., that a side-
effect may become apparent that was not previously recognized
(positive synergy) or a known side-effect may be attenuated
(negative synergy)—both because the drug target is close to both
the (repurposed) disease module and to the side-effect module.
This situation can highlight a unique risk (or benefit) that reflects
(positive or negative) synergism between the side-effect and the
disease.
Our method produced a list of drug candidates for cardiovas-

cular diseases that are unlikely to produce well-known adverse
effects. This approach predicting repurposable drugs and incor-
porating potential side effects in the process is applicable to other
diseases, as well.

RESULTS
Drug-disease network
In the present study, we applied the SAveRUNNER algorithm16,17

to identify repurposable drug candidates for cardiovascular
diseases. In particular, we studied a panel of nine cardiovascular
diseases or (a) disease-equivalent (i.e., arrhythmia, cardiomyopa-
thies, cardiac arrest, coronary artery disease, coronary heart
disease, angina pectoris, myocardial infarction, cerebral arterial
disease, and diabetes mellitus) and two possible side-effects (i.e.,
long QT syndrome and drug-induced asthma). As input, SAveR-
UNNER requires a list of drug targets and a list of disease genes to
evaluate the extent to which a given drug can be eventually
repositioned to treat a disease. Here, the disease-associated genes
were downloaded from Phenopedia18 and DisGeNet19, whereas
drug-target associations were obtained from DrugBank20 (cf.
Methods).
The rationale behind SAveRUNNER lies in the hypothesis that,

for a drug to be effective for a specific disease, its associated
targets (drug module) and the disease-specific-associated genes
(disease module) should be nearby in the human interactome21.

To quantify the vicinity between drug and disease modules,
SAveRUNNER implements a novel network similarity measure,
called the adjusted similarity measure, rewarding drugs and
diseases that fall in the same neighborhood, and assesses the
statistical significance by applying a degree-preserving randomi-
zation procedure17. As output, SAveRUNNER releases a weighted
bipartite drug-disease network, where a link between a drug and a
disease occurs if the corresponding drug targets and disease
genes are closer in the human interactome than expected by
chance (i.e., z-score normalized values of the network proximity ≤
−1.65), and the weight of their interaction corresponds to the
adjusted similarity measure (cf. Methods)16,17. In this study, the
drug-disease network was composed of 1552 nodes (i.e., 11
diseases and 1541 drugs) connected by 6436 links (Supplementary
Table 1 and Fig. 1).
For elucidating drugs/diseases relatedness in terms of network

similarity, SAveRUNNER performs a cluster analysis on the drug-
disease network to detect groups of drugs and diseases in such a
way that members in the same group (cluster) are more similar to
each other than to those in other groups (clusters). This analysis
highlighted five main clusters: cluster one, which includes angina
pectoris, cerebral arterial diseases, and coronary heart disease;
cluster two, which includes asthma; cluster three, which includes
diabetes mellitus; cluster four, which includes cardiomyopathies,
cardiac arrest, arrhythmia, and the long QT syndrome; and cluster
five, which includes coronary artery disease and myocardial
infarction.
Using both a greedy partitioning clustering algorithm (Fig. 1)

and a complete linkage hierarchical clustering algorithm (Supple-
mentary Fig. 1), we observed that the long QT syndrome fell in the
cluster of cardiomyopathies, while asthma was in a different
cluster well-separated from cardiomyopathies. This finding has
face validity as drug-induced asthma, unlike the long QT
syndrome, is a side-effect not directly linked to cardiovascular
biology or diseases.

Identification of network modules
As well-established by network medicine principles22–24, disease-
associated genes have unique, quantifiable characteristics that
distinguish them from other genes. This observation can be
translated into the verification that disease-associated genes do
not map randomly in the interactome but, rather, agglomerate in

Fig. 1 Drug-disease network. This diagram shows the high-confidence predicted drug-disease associations connecting 11 diseases (labeled
purple circles) with the 1541 FDA-approved drugs (gray circles). The node size scales with the number of disease-associated genes. The edge
color denotes the adjusted similarity between drug targets and disease genes in the human interactome, increasing from blue (less similar) to
yellow (more similar). For the clusters’ identification on the drug-disease network, SAveRUNNER exploits a cluster detection algorithm based
on greedy optimization of the network modularity47. The five clusters identified by SAveRUNNER are highlighted with the corresponding
labels.
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locally dense and topologically well-defined regions of this
network (denoted disease modules), whose nodes show an
increased tendency to interact with each other more frequently
than expected by chance. In order to verify this property, we
mapped the list of genes associated with the 11 analyzed diseases
and side effects to the human interactome, and verified that they
constitute statistically significant disease modules (Table 1).

Side-effects estimation
In order to estimate potential side-effects of the repurposable
drugs predicted by SAveRUNNER for a certain disease, we defined
a new pipeline that relies on the hypothesis that exploring the
network-based relationship between drug targets, disease genes,
and side-effect-associated genes in the human interactome would
help clarify the mechanism-of-action of effective drugs while
minimizing adverse effects. The basic premise of this exercise is
that just as in the network neighborhood of disease modules
there are candidate drug targets25, in the network neighborhood
of drug targets there are possible side-effect modules.
We derived the side-effect information from the SIDER

database26 and/or from the published literature27,28 (cf. Methods).
By doing so, we identified drugs that may likely be harmful and,
thus, should be removed from consideration for repurposing for
the disease of interest (Fig. 2). The pipeline consists of two steps
that, for disease A and side-effect B, are the following:

1. Drug-disease proximity criterion. Removal of the drugs
whose targets have a z-score normalized value for network
proximity >−1.65 with respect to disease A.

2. Drug-side-effect proximity criterion. Removal of drugs
predicted to be repurposable for disease A (i.e., whose
targets have a z-score normalized value for network
proximity ≤ −1.65 with disease A) and whose targets have
an adjusted similarity ≥ 0.5 for side-effect B (Fig. 2A).

The definition of the drug-disease proximity criterion stems
from the observation that the predicted drugs for the diseases
analyzed in this study with a z-score ≤−1.65 showed higher
adjusted similarity values than those with a z-score > 1.65, and,
thus, the corresponding drug targets’ modules and disease genes’
modules are more proximal to each other in the human
interactome (Fig. 3 left and Supplementary Fig. 2). The observed
difference between the two adjusted similarity distributions was
tested to be statistically significant (Student’s t-test p-value < 0.05,
Fig. 3, right). The definition of the drug-side-effect proximity

criterion derives from the following statistical, biological, and
topological analyses, using the long QT syndrome as a serious
adverse side-effect to be avoided:

i. Statistical criterion (Student’s t-test)—Among the pre-
dicted drugs for the long QT syndrome with a z-score ≤
−1.65, those that were known to prolong the QT interval
from the SIDER database26 or literature studies27,28 showed
a higher adjusted similarity value (Fig. 4A left) with respect
to all of the other predicted drugs. Thus, the corresponding
drug-targets’ modules and the side-effect-associated genes’
module are more proximal to each other in the human
interactome. The observed difference between the two
adjusted similarity distributions was found to be statistically
significant (Student’s t-test p-value < 0.05, Fig. 4A, right).

ii. Statistical criterion (hypergeometric test)—Drugs pre-
dicted to prolong the QT interval with an adjusted similarity
value ≥0.5 were statistically enriched in drugs previously
demonstrated to prolong the QT interval (p-value= 8.57 ×
10−7, Fig. 4B).

iii. Biological criterion—Drugs known to prolong the QT
interval shared a higher percentage of other side-effects
with drugs predicted to prolong the QT interval with
adjusted similarity value ≥0.5 (222 of 993 other side-effects,
corresponding to 22%) compared with those with adjusted
similarity value <0.5 (33 of 804 other side-effects, corre-
sponding to 4%) (Fig. 4C).

iv. Topological criterion—Rendering the drug-disease net-
work obtained by using SAveRUNNER as a drug-disease-
adjusted similarity matrix, the hierarchical clustering struc-
ture along the rows (i.e., diseases) is preserved when
considering drugs known to induce long QT syndrome and
predicted drugs with adjusted similarity value ≥0.5 for long
QT syndrome (Fig. 4D top), still remaining different from
those obtained considering predicted drugs with adjusted
similarity value <0.5 for long QT syndrome (Fig. 4D bottom).

In total, our methodology predicts 363 drugs for long QT
syndrome. Among them, 238 have an adjusted similarity value
≥0.5 (Supplementary Table 2), suggesting that they are potentially
adverse and including 36 drugs known to induce long QT
syndrome (true positives). By contrast, 125 of the 363 predicted
drugs have an adjusted similarity value <0.5 (Supplementary Table
3), suggesting that they are likely safe and including 4 drugs
known to induce long QT syndrome (false negatives). To assess
the statistical significance of these results, we performed the

Table 1. Module search results.

Disease LCC size LCC interactions Total interactions

Observation p-value Observation p-value Observation p-value

Angina pectoris 103 2.78E-26 150 2.78E-38 151 2.56E-46

Arrhythmia 179 1.98E-24 276 1.23E-43 293 7.40E-68

Cardiomyopathies 215 2.66E-18 515 3.37E-47 525 1.13E-53

Coronary artery disease 796 3.63E-17 2446 2.47E-123 2469 9.21E-128

Coronary heart disease 4 0.009 3 0.01 3 0.026

Diabetes mellitus 3293 0.006 26029 3.75E-209 26035 1.83E-210

Cardiac arrest 61 1.01E-22 88 1.14E-42 92 4.16E-50

Myocardial infarction 593 5.54E-19 1821 8.62E-92 1832 2.75E-93

Cerebral arterial diseases 172 1.07E-08 371 2.11E-26 377 6.18E-28

Long QT syndrome 16 1.71E-90 16 4.63E-93 17 2.86E-53

Asthma 961 2.66E-10 4447 1.12E-87 4457 1.63E-89

The size of the largest connected component (LCC); the number of interactions in the LCC; and the total number of interactions are reported for each disease,
along with the corresponding p-values resulting from a degree-preserving randomization procedure (cf. Methods).
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receiver operating characteristic (ROC) curve analysis and we
found over 70% accuracy (AUC= 0.72) for identifying drugs
known to induce long QT syndrome (Supplementary Fig. 3A).
Thus, considering the drugs predicted by SAveRUNNER as

repurposable for all of the analyzed cardiovascular diseases, we
removed those with an adjusted similarity value ≥0.5 for the long
QT syndrome arguing that it may likely prolong the QT interval as
predicted by our algorithm (Supplementary Table 3). We obtained
~70% accuracy (AUC= 0.70) for identifying known drug-disease
associations, as shown by the ROC curve analysis (Supplementary
Fig. 3B).
Drug-induced asthma, unlike the long QT syndrome, is not

directly linked to cardiovascular diseases (i.e., its side-effect
module is distant from the cardiomyopathies module, as a model
cardiovascular disease). On this basis, we observed that the
statistical, biological, and topological criteria were still satisfied
(Supplementary Fig. 4). In particular, those drugs predicted to
induce asthma with adjusted similarity values ≥ 0.5 are enriched in
drugs known to produce it (p-value= 6.58 × 10−6) and, thus, we
removed them from the list of drugs to be repurposed for the

diseases analyzed in this study (Supplementary Table 2 and
Supplementary Table 4).
In total, our methodology predicts 704 drugs for asthma.

Among them, 682 have an adjusted similarity value ≥0.5
(Supplementary Table 2), suggesting that they are potentially
adverse and including 85 drugs known to induce asthma (true
positives). By contrast, 22 of the 704 predicted drugs have an
adjusted similarity value <0.5 (Supplementary Table 4), suggesting
that they are likely safe, and including 5 drugs known to induce
asthma (false negatives).

Drugs’ mode of action
According to our pipeline and from a network perspective, we
found that all possible modes of action of a drug can be classified
into four topologically distinct classes (Fig. 5A): the targets of the
drug are in the near neighborhood of the side-effect module, but
far from the disease module in the human interactome (i.e.,
proximal/distal); the targets of the drug are in the near
neighborhood both of the side-effect module and the disease

Fig. 2 Study design. The figure depicts the topological relationships among the drug module (green), the disease module (blue), and the
side-effect module (red) for a drug to be removed from (panel A) or retained for (panel B) consideration. The zAC and zBC denote the z-score
normalized network proximity between the targets of the drug (C) and the genes associated with the disease (A) and with the side-effect (B),
respectively. ASBC is the adjusted similarity between the drug targets (C) and the side-effect-associated genes (B). In the bottom row, the ASBC
value is not reported for drugs with zBC >−1.65 since they are removed independent of their ASBC values.
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module (i.e., proximal/proximal); the targets of the drug are far
from the side-effect module, but in the near neighborhood of the
disease module (i.e., distal/proximal); and the targets of the drug
are far from both the side-effect module and the disease module
(i.e., distal/distal). The proximal/distal mode-of-action corresponds
to a situation in which the adjusted similarity values between side-
effect-associated genes and drug targets are ≥0.5, while those
between disease-associated genes and drug targets are <0.5; the
proximal/proximal (distal/distal) mode-of-action corresponds to a
situation in which the adjusted similarity values between side-
effect-associated genes and drug targets, as well as between
disease-associated genes and drug targets, are ≥0.5 (<0.5); and the
distal/proximal mode-of-action corresponds to a situation in
which the adjusted similarity values between side-effect-
associated genes and drug targets are <0.5, while those between
disease-associated genes and drug targets are ≥0.5 (Supplemen-
tary Table 5). The adjusted similarity values of the drug targets
with respect to the side-effect-associated genes are then plotted
against those of the drug targets with respect to the disease-
associated genes, creating a so-called drug-action map, colored
according to the four modes of drug action (Fig. 5B).
Among the drugs removed from our pipeline owing to

predicted side-effects (shades of red in Fig. 5B), the most adverse
are those whose targets are distal to the disease module and,
therefore, not likely to be beneficial for the disease (dark red in
Fig. 5B); whereas those drugs whose targets are proximal to the
disease module may be considered less adverse owing to
potential concomitant therapeutic benefit (red in Fig. 5B). None-
theless, a drug target near a side-effect module, whether or not it
is close to a disease module, remains potentially adverse clinically
when the side-effect is serious and viewed independent of the
disease process. By contrast, predicted drugs that are likely safely
repurposable for the disease are those whose targets are distal to
the side-effect module (shades of green in Fig. 5B). Among them,
the most beneficial are those whose targets are most proximal to
the disease module (dark green in Fig. 5B); whereas those drugs
whose targets are distal to the disease module have a lower
chance of benefit, while preserving an absence of risk (green in
Fig. 5B).

DISCUSSION
In this study, we emphasize the difference between beneficial
drug effects and (serious) adverse effects in relation to drug
repurposing as guided by network topology. In particular, we
focused on nine cardiovascular diseases or disease-equivalents
and on two possible side-effects (i.e., long QT syndrome, and
drug-induced asthma), which could be induced by the reposition-
ing of approved drugs. In order to predict repurposable drugs for
the diseases of interest, we used SAveRUNNER, a recently
developed network-based algorithm for drug repurposing that
offers a list of candidate drugs by rewarding associations between
drugs and diseases that are located in the same network
neighborhood. SAveRUNNER builds a drug-disease network,
where nodes are drugs and diseases; a link occurs if the
corresponding drug targets and disease genes are closer in the
human interactome than expected by chance, with their
association weighted by the adjusted similarity measure (Fig. 1).
In order to estimate possible adverse effects of the eligible drugs
predicted by SAveRUNNER, here, we developed a novel pipeline
that exploits the adjusted similarity values to quantify the
interplay among drug targets, disease genes, and side-effect-
associated genes in the human interactome.
The basic premise of this exercise is that just as a drug’s target

proteins should be within or in the immediate vicinity of the
corresponding disease module for it to be effectively repurposed
for a specific disease8,17, for a side-effect to be induced by a
specific drug, its associated genes should be within or in the
immediate vicinity of the corresponding drug target module. In
particular, by studying the adjusted similarity values of the drug
targets with respect to the side-effect-associated genes in
combination with those of the drug targets with respect to the
disease-associated genes, four modes of beneficial/adverse drugs
action were identified based on the distance of the drug module
to the side-effect and disease module (Fig. 5A). This pipeline
enables one to exclude as potentially adverse drugs that are
proximal to the side-effect module in the human interactome and
distal or proximal to the disease module, as illustrated in the drug-
action map (Fig. 5B). That is, a proximity relationship between the
side-effect module and drug target predicts an increased
likelihood that the drug induces the side-effect and, thus, a distal

Fig. 3 Drug-disease proximity criterion. Kernel density estimate plots (left) and box plots (right) for the adjusted similarity values of the
statistically significant drugs (pink plot, corresponding to a z-score ≤−1.65) and those not statistically significant (blue plot, corresponding to
a z-score >−1.65) predicted by SAveRUNNER as repurposable for cardiomyopathies. t-test was used to compare the two distributions, and
statistical significance was found (p-value < 0.05). Box-plot elements are so defined: center line, median; box limits, upper and lower quartiles;
points, outliers.
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Fig. 4 Drug-side-effect proximity criterion. A Statistical criterion (Student’s t-test): histogram (left) and box plots (right) of the adjusted
similarity values of the drugs predicted by SAveRUNNER as repurposable regarding their predicted effects on long QT syndrome, of the drugs
known to induce long QT syndrome (pink bar), and of all the other predicted drugs (blue bar). t-test was used to compare the two
distributions. Box-plot elements are so defined: center line, median; box limits, upper and lower quartiles; points, outliers. B Statistical criterion
(hypergeometric test): sketch of the ensembles considered for the hypergeometric test calculation. C Biological criterion: Venn diagram
among the side-effects (SEs) of the drugs known to prolong QT interval (blue ensemble), of the drugs predicted by SAveRUNNER to prolong
QT interval with adjusted similarity ≥0.5 (red ensemble) and with adjusted similarity <0.5 (green ensemble). D Topological criterion:
dendrogram and heatmap of the drug-disease network predicted by SAveRUNNER including drugs known to prolong QT interval (top left),
drugs predicted to prolong QT interval with adjusted similarity ≥0.5 (top right), and drugs predicted to prolong QT interval with adjusted
similarity <0.5 (bottom).
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relationship would be preferred. However, the complex drug/
disease/side-effect interactions (not directly accounted for in the
model) may mitigate this interpretation in some circumstances,
viz., that a side-effect may become apparent that was not
previously recognized (positive synergy) or a known side-effect
may be attenuated (negative synergy), in both cases because the
drug target is close to both the (repurposed) disease module and
to the side-effect module. In this sense, the light red quadrant of
the action diagram (Fig. 5B) corresponding to the proximal/
proximal mode-of-action, can highlight a unique side-effect risk
that reflects (positive or negative) synergism between the side-
effect and the disease. For example, in the case of long QT

syndrome and sudden cardiac death, it is well-known that pre-
existing cardiomyopathy puts one at increased risk of sudden
death from non-cardiac drug-induced QT interval prolongation29

(positive synergism), and network analysis provides a molecular
mechanism by which to explain this synergistic adversity.
The predictions of our pipeline show a very different pattern for

potentially repurposable drugs for cardiomyopathies vs. long QT
syndrome (Fig. 5B, left) or asthma (Fig. 5B, right). In the case of
long QT syndrome, we observed a lack of drugs populating the
proximal/distal mode of action (i.e., dark red region in Fig. 5B, left),
with the distribution of the adjusted similarity values with respect
to cardiomyopathies is less sparse and densified at the top of the

Fig. 5 Drug actions as function of distance of drug target to disease module or to serious adverse effect (SAE) module. A Drug target
distance analysis. Four possible modes of action of the drug based on the distance of the drug module (C) to the disease module (A) and the
SAE module (B) are depicted according to the corresponding adjusted similarity value (AS). Stars indicate severe/beneficial effects of the
different drug’s mode-of-action. B Drug-action map. Scatter plot of AS for the disease module (i.e., cardiomyopathies) on the x-axis, and (1-AS)
for SAE module (i.e., [left] long QT syndrome, [right] drug-induced asthma) on the y-axis. The four possible modes of action are colored with
shades of red and green according to their predicted adverse or beneficial effects, respectively.
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graph (i.e., light green region in Fig. 5B left). By contrast, for
asthma, we observed a greater distribution in the adjusted
similarity values of drugs that populated all the four regions,
corresponding to all four possible modes of drug action (Fig. 5B,
right). This pattern still holds even when considering another

cardiovascular disease, such as arrhythmia (Supplementary Fig. 5
and Supplementary Table 6).
This observation reflects a fairly glaring difference in the

intrinsic nature of the two considered side-effects. On the one
hand, the long QT syndrome is a very precise phenotype,
quantitatively measured on an electrocardiogram. In addition,

Fig. 6 Drug-disease network. This illustration shows the high-confidence predicted drug-disease associations connecting 11 diseases
(labeled purple circles) with the 1,541 FDA-approved drugs (gray circles), where drugs are colored according their mode-of-action (MoA) with
respect to long QT syndrome (A) and asthma (B) SAEs. The node size scales with the number of disease-associated genes. The edge color
denotes the adjusted similarity between drug targets and disease genes in the human interactome, increasing from blue (less similar) to
yellow (more similar). For the clusters identification on the drug-disease network, SAveRUNNER exploits a cluster detection algorithm based
on greedy optimization of the network modularity47. The five clusters identified by SAveRUNNER are highlighted with the corresponding
labels. The bars of the histogram next to each network cluster show the count of the node types (i.e., distal/proximal, distal/distal, proximal/
proximal, proximal/distal) within that cluster and are colored according to the MoA color legend.
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the mechanisms by which the QT interval is prolonged are well
integrated with other known mechanisms for other cardiovascular
diseases, including cardiomyopathies. On the other hand, asthma
is not a very quantitative or precise phenotype, characterized by
greater variations in the complexity and diversity of its inducing
causes and phenotypic manifestations or consequences.
This difference between phenotypes leads the long QT

syndrome and drug-induced asthma to fall into two different
clusters in the drug-disease network computed by SAveRUNNER,
with the long QT syndrome located in the same cluster as
cardiomyopathies (Fig. 1). This location is a direct consequence of
the similarity in the distribution of the drug-disease associations
between the long QT syndrome and cardiomyopathies, as distinct
from that of asthma. Rewarding the former and penalizing the
latter, SaveRUNNER paves the way for a different density
distribution of the drug-action map (Fig. 5B).
When the drug-disease network is displayed with the four

possible modes of drug action, we found for the long QT
syndrome an absence of dark red nodes (proximal/distal drugs)
since the targets of potentially adverse drugs that are in its nearest
neighborhood cannot be far from the cardiomyopathies, their
being in the same cluster (Fig. 6A). By contrast, in the case of the
drug-induced asthma, we observed a conspicuous presence of
dark red nodes uniformly distributed among all clusters of the
network except for that containing the long QT syndrome and
cardiomyopathies. This finding is interpreted to mean that the
targets of potentially adverse drugs that are in the nearest

neighborhood of the asthma module are far from the cardiomyo-
pathies module, their being in a different cluster (Fig. 6B).
By considering cardiomyopathies as a disease of interest, our

pipeline identifies 154 potentially adverse drugs predicted to
prolong long QT interval (proximal/proximal mode-of-action) and
404 likely safe ones (139 distal/distal and 265 distal/proximal).
Among the potentially adverse drugs, we focused on pitolisant,
characterized by a proximal/proximal mode-of-action with respect
to the side-effect module and the disease module (Fig. 7). We
investigated the network neighborhood of its target proteins by
highlighting their interactions with the genes associated with
cardiomyopathies, as well as with those associated with the long
QT syndrome in order to identify specific network regions that
may theoretically be altered by the drug’s actions (Fig. 7).
In particular, pitolisant is a potent histamine H3 receptor

antagonist/inverse agonist that is approved for the treatment of
narcolepsy in adults. It has also been reported to inhibit KCNH2,
showing voltage-gated potassium channel activity involved in
ventricular cardiac muscle cell action potential repolarization30.
From the inferred subnetworks, we also observed that KCNH2
indirectly interacts with BRAF via the AKT serine/threonine kinase
1. Clinical studies have correlated the drug class of BRAF inhibitors
with QT prolongation31,32. Moreover, in a QT study of healthy
volunteers, pitolisant (35.6 mg/day) led to a mean increase of
4.2 ms in the QTc interval33.
Again, considering cardiomyopathies as a disease of interest,

our pipeline predicts 286 potentially adverse drugs that can
induce asthma (87 with distal/proximal mode-of-action and 199
proximal/proximal mode-of-action) and 272 likely safely repurpo-
sable drugs (220 distal/proximal mode-of-action and 52 distal/
distal mode-of-action). Among the potentially adverse drugs that
our pipeline led us to exclude, we focused on ramipril,
characterized by a proximal/distal mode-of-action with respect
to the side-effect module and the disease module, respectively
(Fig. 8). We investigated the network neighborhood of its target
proteins by highlighting their interactions with the genes
associated with cardiomyopathies, as well as with those associated
with asthma in order to identify specific network regions that may
theoretically be altered by the drug’s actions. It is worth noting
that whether the disease module is distal from the drug module or
from the side-effect module (i.e., showing low adjusted similarity
values, Fig. 8) does not exclude the possibility that the disease
module shares nodes with the drug or side-effect module, as we
observed from the topological network structure of their
interconnectedness (Fig. 8).
Yet, the interaction network shows that both of the targets of

ramipril (i.e., ACE and BDKRB1) are asthma-associated genes and,
thus, the drug module is directly linked to the side-effect module
(network-based proximity= 0, ASBC > 0.5 in Fig. 8). By contrast,
BDKRB1 is not a cardiomyopathies-associated gene, but reaches
the disease module via the MEP1A gene, thus increasing the
distance between the drug module and the disease module
(network-based proximity= 1, ASAC < 0.5 in Fig. 8).
Ramipril is an ACE inhibitor used for the management of

hypertension and the reduction of cardiovascular mortality
following myocardial infarction in hemodynamically stable
patients with clinical signs of congestive heart failure. Owing to
its ability to increase bradykinin levels (by impairing its degrada-
tion), it is known to induce urticaria, angioedema, cough, and
asthma, as well as anaphylaxis34. Indeed, bradykinin is a peptide
that promotes inflammation, generated by proteolytic cleavage of
its kininogen precursor (KNG1). Nonetheless, bradykinin may also
regulate many of the beneficial effects of ACE inhibitors35.
Activation of the kinin system-bradykinin is important for
regulating blood pressure and inflammatory reactions via
bradykinin’s ability to cause vasodilation and to increase vascular
permeability, respectively36.

Fig. 7 Interaction network of drug targets inducing severe
adverse side-effects. Inferred mechanism-of-action network for a
selected triplet: cardiomyopathies (disease A), long QT syndrome
(side-effect B), and pitolisant (drug C). The zAC, and zBC denote the z-
score normalized values of network proximity between the targets
of the drug (C) and the genes associated with the disease (A) and
with the side-effect (B), respectively; while zAB denotes the z-score
normalized value of network proximity between the genes
associated with the disease (A) and with the side-effect (B). ASAC,
ASBC, and ASAB are the corresponding adjusted similarity values. In
the interaction network, red circles refer to side-effect-associated
genes, blue circles refer to disease-associated genes, squares refer to
drug targets (blue and/or red colored if they are shared with the
disease and/or side-effect module), and violet circle refers to a first
nearest neighbor (that is not disease or side-effect-associated gene)
of the drug targets able to connect the drug module to the disease
module in the human interactome. Green edges refer to connec-
tions between the drug targets and their first nearest neighbors in
the human interactome.
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This mechanism of action of ramipril was recovered in the
topological structure of the interactions network, where one
target of ramipril (BDKRB1) is directly linked to KNG1 and GNAQ
proteins (Fig. 8). Both of these genes/gene products are involved
in the inflammatory regulation of the transient receptor potential
(TRP) channel, which orchestrates various cellular processes,
including cell differentiation, cytokine production, and cytotoxi-
city. The involvement of the TRP channel in the transition of
immune and inflammatory responses from an early defensive
response to a chronic pathological condition is also emerging as a
putative underlying mechanism in several (cardiovascular and
other) diseases37.
In summary, we proposed a pipeline to unveil a list of drug

candidates for a particular disease (e.g., cardiovascular diseases)
that are unlikely to produce specific adverse side-effects (e.g., long
QT syndrome). The rationale underlying the study is that drugs
whose targets are proximate to the network neighborhood of the
side-effect module are more likely to trigger the side-effect, and,
thus, a distal relationship between drug targets and side-effect
modules is preferred. This assumption has been computationally
supported by different criteria, i.e., statistical, biological, as well as
topological criteria (Fig. 4 and Supplementary Fig. 4) for two
analyzed side-effects (e.g., long QT syndrome and asthma).
However, the intrinsic nature of these computational criterion
necessarily leads to the presence of false positives that in this
context would be those drugs that, while classified as drugs
inducing a severe side-effect, actually modulate gene expression
or protein function in the side-effect module so as to attenuate
the side-effect. Unfortunately, there is currently no way to reduce
the number of these false positives. Doing so would require: (i)
knowledge about the directional changes in gene expression or

protein function caused by drugs known to induce the side-effect
in a specific cell line or tissue (gene signature); (ii) knowledge of
the effect of the drug on the expression or function of these
genes/gene products in the same cell line or tissue (drug
signature). If a drug was to revert the side-effect-associated gene
signature, it could prevent or mitigate the side-effect (negative
correlation between drug signature and disease signature). By
contrast, if the drug modulated the side-effect-associated gene
expression or protein function in the same direction of the gene
signature, it could trigger the side-effect (positive correlation
between drug signature and disease signature). Put another way,
without knowledge of the (weighted) directionality of the drug’s
effect on side-effect module pathways and function, we must
consider the possibility that the drug may also attenuate the side-
effect (risk). Again, this corollary to the side-effect module
proximity hypothesis is analogous to the drug-target-disease
module proximity hypothesis: without knowledge of the
(weighted) directionality of the drug’s effect on disease module
pathways and function, we must consider the possibility that a
repurposed drug may also adversely affect disease manifestations.
This shortcoming is a reflection of the lack of adequate a priori
information on the (net) directional effects of a drug on disease- or
side-effect-module function, which can only be ascertained by
in vitro experimentation owing to the incomplete nature of
available databases (e.g., CMap38 and GEO39) in terms of the cell
types and signaling pathways that have been reported.
In conclusion, although future work is needed to explore the

generalizability of our findings to other diseases, our pipeline
offers a powerful, network-based strategy for rational drug
repurposing and pave the way for in-silico prediction of side
effects of a drug by knowing its targets on the interactome.

METHODS
Data retrieval
Human interactome. The human protein–protein interactome was down-
loaded from21, where the authors assembled their in-house systematic
human protein–protein interactome with 15 commonly used databases
supported by several types of experimental evidence (e.g., binary PPIs from
three-dimensional protein structures; literature-curated PPIs identified by
affinity purification followed by mass spectrometry; Y2H, and/or literature-
derived low-throughput experiments such as BioGRID40, HPRD41, MINT42,
IntAct43, InnateDB44, signaling networks from literature-derived low-
throughput experiments; and kinase-substrate interactions from
literature-derived low-throughput and high-throughput experiments). This
version of the interactome comprises 217,160 protein–protein interactions
connecting 15,970 unique proteins.

Disease–gene associations. Disease-associated genes were downloaded
from Phenopedia18, which collects gene associations for 3255 diseases (last
version 6.5.1 released on April 27, 2020). For some diseases of interest for
which no associated genes were found in Phenopedia, we integrated
disease–gene associations available from DisGeNet19, which includes
1,134,942 gene-disease associations between 21,671 genes and 30,170
diseases and traits (last version 7.0 released on June 2020). Genes associated
with long QT syndrome were obtained from ref. 27. A total of 5476 genes
associated with 11 diseases/side effects (i.e., arrhythmia, diabetes mellitus,
cardiomyopathies, heart arrest, coronary artery disease, coronary heart
disease, angina pectoris, myocardial infarction, cerebral arterial diseases, long
QT syndrome, drug-induced asthma) were obtained (Table 2).

Drug–target interactions. Drug–target interactions were acquired from
DrugBank20, which contains 13,563 drug entries, including 2627 approved
small molecule drugs, 1373 approved biologics, 131 nutraceuticals, and
over 6370 experimental drugs (version 5.1.6 released on April 22, 2020).
The targets’ Uniprot IDs provided by DrugBank were mapped to Entrez
gene IDs by using the Ensembl BioMart tool (https://www.ensembl.org/),
yielding a total of 2165 genes interacting with 1873 drugs.

Drug medical indications. The original approved medical indications for
the drugs were acquired from the Therapeutic Target Database (TTD)45

Fig. 8 Interaction network of drug targets inducing severe
adverse side-effects. Inferred mechanism-of-action network for a
selected triplet: cardiomyopathies (disease A), asthma (side-effect B),
and ramipril (drug C). The zAC and zBC denote the z-score normalized
values of network proximity between the targets of the drug (C) and
the genes associated with the disease (A) and with the side-effect
(B), respectively; while zAB denotes the z-score normalized value of
network proximity between the genes associated with the disease
(A) and with the side-effect (B). ASAC, ASBC, and ASAB are the
corresponding adjusted similarity values. In the interaction network,
red circles refer to side-effect-associated genes, blue circles refer to
disease-associated genes, squares refer to drug targets (blue and/or
red colored if they are shared with the disease and/or side-effect
module), and violet circle refers to a first nearest neighbor (that is
not disease or side-effect-associated gene) of the drug targets able
to connect the drug module to the disease module in the human
interactome. Green edges refer to connections between the drug
targets and their first nearest neighbors in the human interactome.
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(last version released on June 1, 2020), which includes information about
5059 drugs associated with 1136 disease classes.

Drug-induced side-effects. The known drug-induced side-effects were
acquired from SIDER (last version 4.1 released on October 21, 2015)26,
which includes aggregated information from public resources and package
inserts of 5868 side-effects for 1430 drugs. Only drug-side-effect pairs
associated with preferred terms (PT) according to the MedDRA dictionary46

were retained, yielding a total of 141,100 associations of 4251 side-effects
with 1344 drugs. In addition, drugs known to induce long QT syndrome
were also acquired from27,28 and integrated with the information provided
by SIDER, as were drugs known to induce asthma.

SAveRUNNER algorithm
Recently, we developed a novel network-based algorithm for drug
repurposing called SAveRUNNER (Searching off-lAbel dRUg aNd NEt-
woRk)16,17, with the aim of screening efficiently novel potential indications
for currently marketed drugs against diseases of interest, and optimizing
the efficacy of putative validation experiments. Taking as input the human
interactome network, the list of disease–gene associations, and the list of
drug–target interactions, SAveRUNNER predicts drug-disease associations
by quantifying the interplay between the drug targets and disease-
associated proteins in the human interactome via a novel network-based
similarity measure (denoted adjusted similarity) defined as follows:

ASðpÞ ¼ 1

1þ e�c ð1þQCÞðm�pÞ
m �d½ � (1)

where p is the network proximity measure defined in21:

p T ; Sð Þ ¼ 1
Tk k

X
tϵT

min
sϵS

dðt; sÞ (2)

p(T,S) represents the average shortest path length between drug targets t in
the drug module T and the nearest disease genes s in the disease module S;
QC is a quality cluster score that rewards associations between drugs and
diseases located in the same network cluster; m is max(p); c and d are the
steepness and the midpoint of AS(P), respectively. A comprehensive
description of SAveRUNNER methodology can be found in16,17.

Identification of network modules
In order to test whether the analyzed diseases form a statistically
significant disease module for each analyzed disease or side-effect, the
lists of disease/side-effect-associated genes were mapped onto the human
interactome, the corresponding subnetwork was extracted, and the
following three metrics were computed: (1) the size of the largest
connected component (LCC); (2) the number of interactions in the LCC;
and (3) the total number of interactions (edges). In order to complement
these metrics with a measure of statistical significance, we evaluated the
probability that a given list of disease/side-effect-associated genes was
localized within a certain network neighborhood greater than expected by
chance25. Specifically, we randomly selected groups of proteins in the
human interactome network with the same size and degree distribution as

the original list of disease/side-effect-associated genes and we computed
the three above-mentioned metrics. This procedure was repeated 1000
times, and we derived three distributions for all three metrics correspond-
ing to the subgraph induced by the random gene set. The three metrics
calculated for the original list of disease genes were z-score-normalized
with respect to the corresponding reference random distribution.
Subsequently, the p-value for the given z statistic was calculated, expecting
a p-value ≤ 0.05 for genes forming a statistically significant disease
module25. We found that all of the analyzed sets of disease genes form
statistically significant modules (i.e., all three metrics were statistically
significant) in the human interactome (Table 1).

Statistical analysis
In order to test if the drugs predicted by SAveRUNNER to be associated with a
side-effect were enriched in drugs that are known to produce it, we
performed a hypergeometric test computing the following statistic (Fig. 4B):

p ¼
XS

i¼X

K

i

� �
U � K

S� i

� �

U

S

� � (3)

where U is the universe dimension, i.e., the number of drugs (1344)
retrieved from SIDER; K is the property, i.e., the number of drugs previously
reported to induce the side-effect of interest; S is the selection, or the
number of drugs predicted by SAveRUNNER for the side-effect of interest
with adjusted similarity ≥0.5; and X is the intersection, that is the number
of drugs predicted by SAveRUNNER for the side-effect of interest with
adjusted similarity ≥0.5 intersecting with those that are known to induce it.

ROC curve analysis
The performance of our pipeline in predicting drugs known to induce a side-
effect as well as known drugs–disease associations was evaluated in terms of
the receiver operating characteristic (ROC) curve analysis. In both cases, the
predictions were ranked according to decreasing adjusted similarity values,
and a truth table was built by considering the “real association” according to
SIDER26 or TTD database information45:1 if the prediction (i.e., drug-induced
side-effect or drug-disease association) is known, 0 otherwise. For a specified
adjusted similarity threshold, the true-positive rate (i.e., sensitivity) was
computed as the fraction of known associations that are correctly predicted,
while the false-positive rate (i.e., 1-specificity) was computed as the fraction of
unknown associations that are predicted. The ROC probability curve was
defined based on these measures at different thresholds and the
corresponding area under the curve (AUC) was computed. The greater the
AUC, the better the algorithm is at distinguishing between the two analyzed
classes (i.e., drugs known to induce the side-effect versus drugs unknown to
induce the side-effect or known drug-disease associations versus unknown
drug-disease associations).
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