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Deep neural network prediction of genome-wide transcriptome
signatures – beyond the Black-box
Rasmus Magnusson 1,2✉, Jesper N. Tegnér 3,4,5 and Mika Gustafsson 1

Prediction algorithms for protein or gene structures, including transcription factor binding from sequence information, have been
transformative in understanding gene regulation. Here we ask whether human transcriptomic profiles can be predicted solely from
the expression of transcription factors (TFs). We find that the expression of 1600 TFs can explain >95% of the variance in 25,000
genes. Using the light-up technique to inspect the trained NN, we find an over-representation of known TF-gene regulations.
Furthermore, the learned prediction network has a hierarchical organization. A smaller set of around 125 core TFs could explain
close to 80% of the variance. Interestingly, reducing the number of TFs below 500 induces a rapid decline in prediction
performance. Next, we evaluated the prediction model using transcriptional data from 22 human diseases. The TFs were sufficient
to predict the dysregulation of the target genes (rho= 0.61, P < 10−216). By inspecting the model, key causative TFs could be
extracted for subsequent validation using disease-associated genetic variants. We demonstrate a methodology for constructing an
interpretable neural network predictor, where analyses of the predictors identified key TFs that were inducing transcriptional
changes during disease.
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INTRODUCTION
Bridging the gap between genome sequences and phenotypes is
a core challenge in genomics and personalized medicine. To this
end, it is essential to characterize intermediate levels, such as cells,
tissues, and organs, using a suite of molecular technologies. For
example, genetic variants associated with diseases exert their
effects through the modulation of these intermediate levels. The
transcribed mRNA expression is one of the most accessible and
important windows into the cell’s regulatory machinery and
changes in tissues and organs. Therefore, the analysis of mRNA
expression is crucial for the study of diseases1. Specifically, the
elucidation of gene regulatory mechanisms is central since gene
regulatory networks maintain cellular identity and mediate
interactions between genetic variants and the environment of
humans.
To reverse-engineer gene regulatory mechanisms, large

amounts of RNA expression data have been generated from
experimental model systems, including cell-lines and tissues from
humans under different conditions. Among others, the recount22,
the Genotype-Tissue Expression (GTEx) project3, and the ARCHS4
database4 have all made great amounts of data available.
Bioinformatics analysis has been instrumental in clustering genes
to make sense of such data and augmenting the power for
hypothesizing putative genes involved in diseases5. Enrichment
and pathway analysis increase the resolution by suggesting
groups of genes or specific pathways associated with the
observed changes in gene expression. Since transcription factors
(TFs) are critical for the regulatory control of genes, a massive
body of bioinformatics tools targets TF binding sites’ predictions,
suggesting key drivers behind pathways, groups of genes, or
clusters6. While useful for descriptive purposes, such as associating
such differentially expressed genes to many diseases, it is

challenging to gain functional and mechanistic insight into the
regulatory machinery from such lists.
To advance beyond lists, clusters, and enrichment analysis, a

complementary strategy, referred to as network science, instead
targets the study of interactions between molecular entities,
genotypes, and phenotypes7,8, For example, gene regulation
effectively acts via a network of interacting genes9. Notably, genes
that interact with dysregulated genes without being differentially
expressed themselves are often overlooked in differential expres-
sion studies10. Consequently, these networks are challenging to
extract from data11. The wisdom of the crowd strategy has turned
out to be useful while not satisfactory12. The limited progress
originates from the fact that the inverse problem of inferring
interactions from observations is statistically under-constrained.
Moreover, these approaches have all struggled with the complex
and non-linear dynamics that shape gene regulation, containing
several saturation effects and abundant negative and positive
feed-backs. These non-linearities impede most of the available
correlation-based methods used to study gene expression13.
Recent progress in machine learning has fueled interest in

whether such methods could facilitate the discovery and analysis
of biological networks14,15, Pioneering applications of deep neural
networks (DNNs) in genomics include prediction of TF binding
sites16) and the effects of non-coding genetic variants17. At the
core of these techniques is the ability to capture non-linear
relationships. The use of DNNs requires substantial amounts of
data, which is now feasible due to the collection of massive
amounts of genetic and RNA-seq data into easily accessible
databases4. Beyond detection of features, recent use of DNN, such
as deep autoencoders applied to transcription data, compresses
gene expression data into a latent space. The original data can
then be reconstructed from the latent space representation18,19,
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DNNs have also been applied to understand the regulation of
mRNA expression. Deep convolutional neural networks could
predict 60-80% of human RNA abundance variation from the
genomic sequence alone20,21, While being the first important step
towards predicting mRNA levels, the regulatory transcription
factors were not separated from the remaining transcriptome,
making a biological interpretation and translation to diseases
challenging.
Here we develop a methodology that goes beyond producing

lists of differentially expressed genes, but not so far as the yet
intractable reconstruction of a complete gene regulatory network.
Instead, we target the regulation exerted by the transcription
factors and ask whether training a DNN on gene expression data
could learn a predictive TF network. The expression of all other
genes could be explained by the combinatorial control induced by
the TFs. Importantly, we constraint the training such that the
resulting predictive model is interpretable. We refer to this as a
methodology for advancing beyond black-box machine learning
models, which in turn is a first step towards what could be
referred to as white-box fully interpretable models. We find that
such models can indeed predict the expression of genes based on
TFs and that the predicted relationships between TFs and their
target genes largely overlap with known TF bindings. We apply
and evaluate this predictive model using human disease

transcriptomes, thus opening the door for a mechanistic and
interpretable machine learning analysis of the human gene
regulation system.

RESULTS
First, we explore the influence of different neural network
architectures, such as the number of layers and hidden nodes,
on predictive performance. Next, we ask how we can inspect the
trained network and disentangle the different predictors’ con-
tributions (TFs). Using a light-up network analysis technique, we
identify a core set of TFs, including some key regulators. The final
section of the results asks whether the prediction model could
analyze disease-derived transcriptional data.

Accurate and robust prediction of the expression level of
target genes using deep neural transcription factor networks
To optimize the applied Deep Neural Network (DNN) performance,
we compared 15 DNN architectures consisting of 1–3 intermediate
layers, each with a depth of 50–1000 hidden nodes. As a reference,
we used a shallow NN without any intermediate layer (Fig. 1). The
rationale is to identify the most compact architecture, measured
by depth and width, capable of predicting most of the target gene
expression with sufficient accuracy. Here, TFs were used
exclusively as input and non-TFs as output target genes. We
extracted TFs using the compendium provided by Lambert et al.
201822, which lists TFs based on several sources, including popular
TF databases such as TRANSFAC, JASPAR, and HT-SELEX. We
trained models using the ARCHS4 database, using more than
100,000 randomly drawn RNA-seq samples to train and evaluate
the models4. The performance was evaluated using the gene-
specific coefficient of determination (presented as 1 - R2) on test
data. We observed median 1 - R2 values between 0.12 and 0.03
depending on the model (Fig. 2a, b). Similarly, the mean 1 - R2

values of all DNNs were in the range of 0.11–0.07, whereas the
shallow model had a notably worse performance (1 - R2= 0.25). A
gene-specific list of the R2-coefficients, together with the
corresponding Spearman correlations, can be found in Supple-
mental Table 1. Since the RNA-seq gene counts contain several
intercept terms, such as sequencing depth and mean gene
expressions, we tested the 1 - R2 when the input data were
randomly permuted and found the mean 1 - R2 to be on the range
of (0.79–0.67). Thus, we observed an increase in the ability to
predict gene expression compared to 80% of the explained
variance when predicting mRNA abundance solely from the DNA
sequence, as Zrimec et al. 202021 reported.
To test the trained models’ generalizability, we applied them to

predict expression from the independent Cancer Cell Line
Encyclopedia resource23, which contains mRNA profiles of 934

Fig. 1 Design of the artificial deep neural networks. The networks
were made to predict the expression of 25,861 genes based on
1,625 gene regulators, i.e. transcription factors (TFs). We used more
than 100,000 randomly drawn RNA-seq samples from the ARCHS4
database to train the models. Moreover, we designed 15 DNNs of
1–3 hidden layers, and one shallow neural network without any
hidden layers. For the DNNs, each hidden layer consisted of either
50, 100, 250, 500, or 1000 hidden nodes using the exponential linear
unit, ELU as activation function.

Fig. 2 Gene expression prediction performance. a We applied the DNNs and the shallow model to previously unseen gene expression
profiles randomly selected from the ARCHS4 database, and calculated the coefficient of determination, R2, for each gene. Shown are the
median (red bar) and mean (gray line) of the R2 values for each model. b The typical prediction of an experiment is shown for the DNN with
two hidden layers and 250 hidden nodes in each layer. c We applied the DNNs to predict gene expression values from 934 human tumor
samples from the Cancer Cell Line Encyclopedia. Shown are the abilities to predict this data set for the respective models, following the same
layout as in a).
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human tumor cell lines. In this out-of-sample prediction, the DNNs
showed a high median 1 - R2 between 0.26 and 0.17, whereas the
shallow model only reached a median R2= 0.60. The mean 1 - R2

values were lower than the medians for all models (0.85–0.56),
which we speculate is due to the inclusive list of target genes,
such that genes with low variance deflate the mean 1 - R2. As a
comparison, the top 25,000 genes had a mean 1 - R2 of < 0.25 in
all deep models. With the input data randomly permuted, we
observed the mean 1 - R2 in the range of (1.41–1.06). The non-
linear DNNs could capture perturbations almost three-fold better
than the shallow NN, suggesting their potential usefulness even in
cancer medicine studies. We continued studying the predictive
power of our approach on expression in individual cell types, and
found a the learning to have captured a broad representation of
human tissues (Supplemental Material 1). With these results, we
concluded that the DNNs could faithfully predict the majority of
the human transcriptome given the expression levels of ∼1600
TFs, both in healthy and disease-affected states.

The node light-up technique revealed enrichment of validated
TF-target associations within the prediction networks
Here we ask whether the trained networks are interpretable, that
is, whether the learned TF target associations are biologically
relevant or not. From a biological standpoint, one could compare
directly with known physical DNA bindings between TFs and their
target genes. However, due to the nonlinear dependencies
embedded in a DNN, such an analysis is not trivial24. For example,
even simple DNNs can have millions of parameters, and all input
values can potentially impact every output value. To approximate
the learned dependencies between TFs and target genes, we,
therefore, reasoned that in the predicted network, the TF
expression perturbations would propagate most effectively to
relevant target genes. In other words, such an analysis captures
the effective gene dependencies, linear or non-linear. To this end,
we used a light-up node analysis, following the implementation
in18. In other words, the numerical value of each input node,

corresponding to a unique TF, was independently perturbed to
either half or double of the mean gene expression. The other TF
expression values were clamped to their average values, while the
responses on the output layer were ranked by the response to
such a TF change (Fig. 3a). To validate the DNNs, we compared the
light-up values to previously known TF-target bindings. Specifi-
cally, we tested whether the light-up responses between such TF-
target pairs were significantly higher than the pairs not annotated
as interactions.
To this end, we used four sources of TF-target interactions.

Specifically, the TF-specific DoRothEA database (nTFs= 94,
ntargets= 2240, nedges= 4498), the ReMap dataset (nTFs= 296,
ntargets= 15,196, nedges= 269,757), and the TRRUST database,
which has a larger TF coverage (nTFs= 481, ntargets= 1,961,
nedges= 6,576). The DoRothEA is based on manually curated TF-
target interactions, and ChIP-seq derived measurements25, the
ReMap interactions are derived only from ChIP-seq measure-
ments26. The TRRUST database is an extraction of small-scale
experimental analyses of TF regulations27. We also included the
RegNetwork database28, which is a compilation of 25 commonly
used TF-target binding databases and thus includes numerous
additional interactions of somewhat less confidence (nTFs= 645,
ntargets= 14,696, nedges= 99,488). We also noted a limited
overlap between these three databases. For example, 927
interactions were shared between the TRRUST and DoRothEA
sets, 1262 between DoRothEA and RegNetwork, 645 between
ReMap and TRRUST, and 751 between RegNetwork and TRRUST.
Strikingly, the light-up responses between known TF-target
associations were significantly higher (26–75%) for all manually
curated databases and DNNs (Fig. 3b–d). The more inclusive
ReMap also displayed higher light-up values but at lower levels
(5-8%). Thus, all models performed better than what was
expected under the null hypothesis (60 of 60, binomial P <
10−19). While the curated databases’ results did not point to a
single best model architecture, we observed the highest overall
performance for the DNN with two hidden layers using 250
nodes in each layer. The highest enrichment rank was obtained

Fig. 3 Node light-up reveals known TF-target associations. a By applying a light-up analysis, i.e. by changing the input values of each TF
independently and subsequently observing the changes on the output layer, we were able to estimate how the TF-to-target mappings
corresponded to TF bindings known from literature. We defined the TF-target covariance fold as the median value of the light-ups for the TF-
target regulations found in a database divided by the respective backgrounds. b The light-up enrichments for the TF-target associations
found in the TRRUST database are shown. Note that the expected value representing no biological relevance between TF-target mapping is 1
and that light-up values are compared to absolute Spearman rank correlation values, labeled ‘control’. We performed the same analysis with
RegNetwork (c), and the interactions annotated with top confidence in DoRothEA (d).
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from TRRUST, while DoRothEA yielded the second-highest, and
RegNetwork the lowest rank.
Since TFs can act as both inhibitors and initiators of

transcription, we asked the extent to which the DNN light-up
analyses also captured the directionality and sign of the TF-target
interactions. Therefore, we compared the light-ups with known
interactions, directions, and signs of TRRUST and DoRothEA. Of
note, RegNetwork does not contain any annotation of interaction
signs. Again, all tested DNNs showed significant overlaps with the
interaction signs of both databases, with accuracies ranging
between [0.62–0.67] (P ∈ [10−120,10−58]) for DoRothEA, and
[0.56–0.58] (P ∈ [10−22,10−11]) for TRRUST. We provide the average
precision- and receiver operating characteristic scores, with the
corresponding figures, in the Supplemental Material 2. We defined
accuracy as the percentage of correctly estimated signs of
interaction. Again, the shallow model performed significantly
worse and could only predict interaction signs compared to
DoRothEA (accuracy= 0.57, P < 10−20), while the comparison to
TRRUST gave insignificant results.
In general, we find that the number of hidden layers or units for

the DNNs has only a limited impact on the performance. All DNN
models showed comparable performance across evaluative
analysis, expression predictions of experiments from the ARCHS4
database, the cancer expression predictions, and the light-up
comparison to TF-target databases. In practice, 250 hidden nodes
in two hidden layers appeared to be a sufficient model size.
Notably, the shallow NN never reached a satisfactory performance.
Thus, the largest gain in explanatory power and overlap with
existing databases came in our hands from adding at least one
intermediate layer, thereby allowing for non-linear transforma-
tions. While these non-linearities turned out to be essential for the
performance, they did not prevent us from inspecting the
predictive network and extract relevant and validated biological
knowledge using the light-up techniques.

Algorithmic extraction of a core set of validated regulator TFs
from the DNN
We next searched for a minimal subset of key TFs required for
predicting the target gene expressions. For this task, we
implemented a backward-selection algorithm to stepwise remove
TFs from the input layer based on their explanatory power
(Methods). We observed highly consistent orders of TF-removal
between the models, again suggesting that the TF-target
relationship is robust to different DNN architectures. Indeed, the
median correlation between different models, estimated from
which step the TFs were removed, was 0.71 (geometric mean P <
10−364). This suggests a high consistency between the indepen-
dently trained models (Supplemental Material 3). This observation,

taken together with the light-up analysis outcome, suggests
robustness of our results in that specifics of a DNN have only a
minor influence on the results. Therefore, we used the model with
two hidden layers and 250 hidden nodes in the analysis’
remaining parts. The step at which each gene was removed is
presented in Supplemental Table 2.
As expected, the explanatory power gradually decreases when

removing predictors, here TFs (Fig. 4a). However, the shape of this
loss of explanatory power exhibited two distinguishing features.
First, the ability to predict mRNA expression remained relatively
unperturbed even as most TFs were removed from the set. Indeed,
for nTFs= 125, the mean 1 - R2= 0.21 compared to that of the full
model of 1,625 TFs, which measured 0.07. Second, there appeared
to be a stratification of TFs based on how important they are to
explain the system, leading to a larger reduction in explanatory
power towards the procedures‘ late stage.
To test whether our predicted core set of TFs could correspond

to known, important regulatory TFs, we estimated how often or
much they have been studied in the literature domain. First, we
analyzed the average number of scientific publications per input
TF, as annotated by PubMed29, and found that the top predicted
TFs were significantly more frequently studied (Fig. 4b). For
example, the median number of publications was 51 for the top
125 TFs, compared to 24 for all TFs (Mann-Whitney U test P <
8.2*10−9). Second, we analyzed the light-up conformity to the
TRRUST database, but this time for each step in the backward-
selection algorithm. We found that the full model performed
equally well or better at next-to-all steps in the backward-selection
algorithm. This observation indicates that the model predomi-
nantly discovered known TF-target interactions regardless of
model input size. Third, the number of annotated interactions per
TF was significantly larger for the top-ranked TFs in the literature-
based database TRRUST (9.9 for top 125 compared to 4.9, P < 2.4 *
10−6), suggesting that the top explanatory TFs were associated
with more well-known regulatory bindings. We next analyzed the
functional role of the removed TFs and performed enrichment
analysis of their predicted downstream targets from our light-up
technique (Methods). For each set of 100 removed TFs using the
backward-selection procedure, we associated their top 500 target
genes, which were then subjected to a KEGG pathway30

enrichment analysis. In brief, we found that the top 100 TFs (i.e.,
the last removed TFs) were mostly enriched for cellular
metabolism pathways, followed by immune-pathways for the
TFs with rank 100–200 (Supplemental Table 3). Narrowing down
further, we analyzed the 25 TFs preserved in our very last step in
and a Pubmed query using the search term “master regulator”
together with each of the TFs and found that 13 were co-localized
with that search term in 358 unique articles, which supports the

Fig. 4 Functional Hierarchies in Model Input. a We found the explanatory power on test data to decrease as the number of TFs were
removed from the model. Particularly, we found around 500 TFs to carry a greater predictive power, as the explanatory power after that point
more rapidly decreased. b We measured the median number of scientific studies at each iteration of our backward-selection algorithm, and
found that as the number of input TFs decreased, the more studied were those that were left. c The TFs that were identified as more
important also had more recorded interactions in the TRRUST database.
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notion that these are true upstream regulators. Thus, despite
having abundant input variables, the DNN discovered known core
TFs associated with central and well-annotated pathways.

Latent DNN space shows enrichment of functionally related
and disease-associated genes
In addition to assessing the biological relevance of the specific
interactions discovered by the predictive DNN, one may ask
whether the predictor could be informative in a disease context. It
has been demonstrated that compressing mRNA expression data
in deep autoencoders can provide low-dimensional representa-
tions exposing complex characteristics of the input data domain.
Importantly, from such a representation, one can readily extract
sets of functionally related genes, known as modules, which in
turn can be used to study diseases18. To further increase the
resolution beyond the analysis of modules, here we aimed to use
the TF-target gene interactions within the two 250 variables
measuring intermediate latent layers.
Specifically, we tested whether the genes associated with these

hidden variables shared cellular functionality. For this purpose, we
again used a light-up response to associate genes to each hidden
node independently. We annotated the top 500 responding genes to
each node light-up by this procedure and performed a Reactome
pathway enrichment analysis for each node-set. This procedure
identified 175 unique Reactome pathways that significantly over-
lapped with at least one hidden node (using a Bonferroni correction
of 0.05). In detail, 102 hidden nodes of the first and 162 of the second
layer were associated with at least one Reactome pathway. These
results suggested at least a subset of the hidden nodes represented
different cellular pathways. We evaluated the putative agglomeration
of disease-related genes in the hidden-layer light-up responses. To
this end, using each hidden node, we performed a genome-wide
association study (GWAS) enrichment analysis between annotations
in the NHGRI-EBI GWAS catalog31 and the 500 genes with the highest
light-up associations. We found 37 of the 153 diseases associated
with one or several nodes, with 63 nodes in the first and 62 nodes in
the second layer having at least one association. Second, we cross-
checked these results by comparing the light-ups with the DisGeNET
database32, which contains broader profiles of gene-disease associa-
tions. We tested against genes grouped in 26 disease-type categories
and found 22 of these categories enriched with at least one hidden
node. At least one significant overlap with a disease category was
detected in 107 nodes in the first and 138 in the second layer. Thus,
disease-genes appeared to co-occur in hidden-node light-ups in the
DNN. This result suggests that the remaining genes found in such
disease modules could be relevant in analyzing and interpreting
disease-related biomarkers and mechanisms.

DNN analysis gives insights to human disease mechanisms
involved in gene dysregulation
We finally aimed to test the clinical relevance of the DNN by using it
to study disease-related changes in the expression of target genes,
given the corresponding modifications of TF levels. To this end, we
applied the DNN to independent RNA-seq data from the Expression
Atlas33 using differential expression patterns for diseases from 27
different studies containing 69 expression fold profiles. We tested if
the DNN could predict the differential expression of target genes
given the fold profiles of the TFs. Prediction quality was measured as
the correlation between the predicted and observed fold ranking of
significantly differentially expressed target genes for each disease. In
other words, we set the TFs to their reference expression levels and
applied the fold changes of each respective disease. We next
calculated the correlation between the observed and predicted fold
changes at the output layer. Notably, we observed highly significant
correlations between these predictions and observations, with a
median Spearman rank correlation of 0.61 (median P< 10−216). This
result established that disease mechanisms of dysregulation from TFs

could be faithfully propagated to the target level. Yet, as a correlation
does not imply causation, we assessed whether the DNN could be
used to disentangle which TFs drive the target dysregulation. To rank
the impact of a predicted TFs, we replaced dysregulated genes with
reference expression values independently for each TF. By this, we
could evaluate the impact on the output layer and therefore use the
change in correlation between predicted and observed target
dysregulation (Fig. 5) as a basis for the tanking. Next, we matched
these rankings to known genetic variants from genome-wide
association studies (GWAS) in the 22 applicable cases and measured
the area under the receiver operating characteristics curve (AUROC).
The TF rankings in 10 out of 22 diseases significantly matched the TF
GWAS annotation (false discovery rate = 0.11, 10/22 binomial test
P< 3.6 * 10−8). Furthermore, we found 20 of 22 diseases to have an
AUROC larger than 0.5, i.e., the value expected under the null
hypothesis (binomial test P < 6.0 * 10−8).
Finally, we asked if TFs had to be differentially expressed to carry

predictive power over disease-affected target gene regulation. This
question is particularly important since causative disease-related
changes are not necessarily manifested through dysregulations that
are large enough to be detected in multiple-testing corrected
statistical tests of expression changes. Notably, we found our
approach of causative predictions on a TF level to also give
significant results when only applied to TFs that themselves were not
significantly dysregulated, with seven diseases remaining significant
(Fig. 5, P< 6.8 * 10−5). In other words, the removal of differential
expression of TFs could predict disease-relevant TFs, even if the
change in mRNA levels was modest. This suggests that our approach
is generally applicable to find disease-causative elements at the TF-
level, beyond what a more conventional RNA-seq analysis of gene
expression detects. In summary, the TF-to-target DNN allowed a
simple representation to describe the observed differential expres-
sion between patients of many different complex diseases and
control in terms of TFs, which strikingly also correctly associated a
truly enriched fraction of disease-associated TFs to several diseases.

DISCUSSION
We have presented a biologically interpretable, general machine
learning method for predicting transcriptomic signatures, including
disease signatures. Our learned models predict the expression of
genes from the expression of transcription factors (TFs). The
predicted relationships between TFs and their target genes largely
overlap with known TF bindings. Hence, our DNN method goes
beyond classic descriptive bioinformatic techniques such as cluster-
ing and enrichment analysis. Importantly, we do not address the yet
intractable problem of complete deconvolution of the entire cellular
interactome. Instead, our method does extract a core TF component
out of such complex regulatory architecture. Therefore, the
presented methodology sets the stage for the first step towards
mechanistic and interpretable data-driven machine learning analysis
of the human gene regulation system.
The early success of machine learning techniques targeted

fundamental open bioinformatics problems such as predicting
binding sites of TFs16 or functional prediction of non-coding RNA
in a disease context17). The recent extension has focused on
questions such as if one data type can be predicted from another
datatype. Predicting gene expression from the DNA sequence or
prediction of the 3D genomic structure from open chromatin data
are just two recent examples. Tasaki et al.34 used deep convolutional
neural networks to predict differential expression based on mRNA
features and the promoter regions of the genes. The L1000 project
deals directly with the prediction of gene expression from a smaller
subset of genes, where measurements of 1000 landmark genes are
used to infer 80% of the transcriptome35 computationally. Yet, here
as in the other examples, these impressive modeling advances are
difficult to translate into biological knowledge. As in different
machine learning areas, these systems are useful predictors but act in
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practice as black-box systems. Related to this challenge is that even if
functionally relevant representations can be identified, they can
readily suffer from study-biases of identified prevalent genes. The
remaining core challenges in using machine learning techniques
include the interpretability of the model, large data requirement, and
how to learn biologically meaningful representations within the
machine learning model. A black-box model does not lend itself to
interpretable and meaningful representations, potentially making the
model more susceptible to adversarial attacks36,37, Recently, it has
become increasingly clear that deep neural networks (DNNs) have
the potential to identify biologically meaningful molecular represen-
tations directly from data18,38, and to revolutionize medicine39,40, It is
therefore of critical importance for the field to develop techniques
supporting biological interpretation and insights from such predictive
models.
Our main contribution is to design a constrained machine

learning approach such that the predictor is interpretable from a
biological standpoint. Using two hidden layers with 250 hidden
nodes each was sufficient to capture well-known TF-target pairs.
These results suggest that the learned representation has
significant architectural overlap compared to a proper cellular
control system, which is essential for the good generalizability of
DNNs. By developing a back-tracking algorithm, we could uncover
a minimal core set of 125 TFs sufficient to account for ∼80% of the
transcriptomics signature. Interestingly, these TFs represent the
TFs being studied most frequently, which makes further studies
linking prior structural information from other data types a logical
next step to increase generalizability.

Our focus on TFs originates from the observation that TFs have
been at the forefront in analyzing cellular reprogramming and
converting cell-types41,42, Our findings suggest that the presented
DNN methodology could be useful as a general method for
predictive but yet interpretable studies. In particular to pinpoint
key candidate TFs for cellular reprogramming using large
transcriptomics data43. One of the most common approaches to
analyzing disease mechanisms is studying gene expression
changes between healthy and disease-affected individuals.
Traditionally, a suite of bioinformatics descriptive mining techni-
ques is applied to extract putative candidates of interest5.
Nevertheless, it has proven challenging to pinpoint molecular
mechanisms with high precision using such data-mining
approaches. Consider a scenario where the impact of a perturba-
tion on the gene regulatory system is of interest. Such cases are a
common end-goal of analyzing transcriptomics and pivotal to
understanding mechanisms such as drug perturbations or cancer
impacts44. Using our light-up analyses could help predict specific
regulatory interactions and their effect on the transcriptome. This
could be useful both for cellular reprogramming experiments as
well as in the analysis of diseases. In contrast, a machine learning
model using only gene sequences would not readily consider such
changes.
Lastly, since our predictor’s architecture has a biological

interpretation, it could be used as a first approximation – like a
blueprint – of the regulatory networks controlling the cell-identity
and filtering effects of genetic variants. This problem has been at
the forefront in systems biology since sequencing the human
genome12,45, Yet, despite two decades of brilliant work on reverse-

Fig. 5 Predicting gene dysregulations in disease using a DNN. a We tested if the DNN with two hidden layers of 250 hidden nodes each
could be used to predict causative changes in disease states. We did this by analyzing gene expression changes from known diseases, as
available in the Expression Atlas repository. By applying the disease changes to the transcription factor input layer, we could observe how
these changes projected down to the target genes. Next, we removed the disease-fold changes of each TF independently and observed the
changes in correlation between predicted and observed dysregulation of the target genes. Thus, we could rank the TFs on predicted causative
disease changes on the target genes. b TF rankings significantly overlapped with GWAS in 10 of 22 diseases. (−log10 P values shown as red
bars). The test was repeated with significantly differentially expressed TFs removed from the set, leaving 7 TF rankings to overlap with GWAS.
(−log10 P values shown as teal bars). The corresponding area under the curves for the TF rankings (all TFs) are shown to the right, with 20 of 22
diseases having an AUROC greater than the expected, as generated under the null hypothesis.
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engineering gene regulatory networks from data, it remains an
open challenge46. The combinatorial complexity of such a network
exceeds the amount and quality of available data given the
current suite of models12. As network predictions vary between
methods, new tools have been developed to control the
abundance of false interactions47, illustrating that the problem is
still outstanding. Yet, if robust methods, such as our proposed
DNN technique, could elucidate the TF part of such a network, we
could potentially approach the problem in a step-wise manner.
Hence, in summary, a TF-centric reverse-engineering technique
could therefore be a stepping stone for renewed systems biology
efforts in elucidating the cellar regulatory machinery at scale.

MATERIALS AND METHODS
Data processing
We trained the models on gene expression data from ARCHS4, a database
of >130,000 human RNA-seq gene expression measurements from GEO
and SRA. We first separated the data into two sets, one of the genes
annotated as TFs and one containing the rest of the genes, which were
assumed to be regulated downstream of the TFs. We defined a TF as genes
identified by Lambert et al.22, The Human Transcription Factors, which lists
TFs based on TF databases such as TRANSFAC, JASPAR, and HT-SELEX. We
defined the target genes, such as all the remaining genes, excluding
pseudo-genes.
Next, we divided the data into 100 comma-separated files to be

randomly accessed during the subsequent model training. Moreover, we
removed 1200 gene expression profiles from the training set to use as
validation of the model predictions. We normalized the data by applying
the natural logarithm to the expression counts, annotated as x in Eq. (1).

xnormalized ¼ lnðx þ 1Þ (1)

Model design
We next aimed to predict the expression levels of the target genes using
the TF levels. To this end, we designed the models to be feed-forward, fully
connected neural networks. We built the models to have one input node
for each TF, totaling 1525 input nodes and one output node for each target
gene in the data, totaling 25,861 output nodes. Moreover, we opted to use
the exponential linear unit (ELU) activation function on all nodes and
across all layers. We used the Adam algorithm to minimize the mean
squared error, with a learning rate of 0.001, parameter beta1= 0.9, beta2=
0.999, and decay of 0.01. The models were trained in the Keras package for
Python 3, where we used a batch size of 50 experiments and with a
validation split of 0.1. The code is available at https://github.com/
rasma774/tf_target_white_box_dl.

Model light-up analysis
NNs are complex, non-linear models, and mapping input to output is not
trivial. Here, we aimed to extract TF-target relationships TF-by-TF via
comparing the model output between I) the output when the mean TF
expression is given as input and II) when each TF has a doubled and halved
expression. The rationale behind this approach is that targets that are
dependent on a particular TF will have a greater response when the input
value of this TF is altered, as compared to unrelated TFs. We next
compared these responses to databases of known TF-target interactions,
such that for each target, we divided the median of the light-up values for
TFs that were known to regulate the target with the median of the rest of
the TFs. In other words, we normalized the median light-up value with
respect to the background. This metric is referred to as the TF-target
covariance-fold in the manuscript.

The backwards-selection algorithm
We used a backwards-selection algorithm to identify the core set of TFs,
i.e., the minimal set of TFs that could predict the target genes. The
algorithm operated according to the following three steps. First, each input
node, corresponding to one TF, was independently set to zero, and the
corresponding 1 - R2 values were calculated. Second, the 100 TFs with the
lowest explanatory power, identified as the ones where the 1 - R2 changed
the least, were removed from the input layer of the DNN. Thirdly, we
retrained the new and smaller model to explain the rest of the gene

expressions. For each iteration, we tested the model on the same test data
from the ARCHS4-database as in the first validation experiment.

Disease analyses
To analyze diseases, we searched the Expression Atlas33 to download
all data according to the following criteria. I) The data was to come
from a study carried out in human material. II) We only considered RNA-
seq experiments. III) The data sets had the term ‘disease’ listed as an
experimental variable and be of the ‘differential’ type. This query
yielded data from a total of 27 studies, which together contained 69
expression fold profiles. Of these 69 comparisons, 56 were between a
disease-affected and a healthy state, as opposed to between two
disease-states, and we continued with these 56 studies. The 56 studies
contain fold-changes between the healthy and disease-affected states,
and by adding these changes to the mean expression values from the
ARCHS4 database we could predict the fold changes on the target gene
level. Furthermore, we chose only to study the correlation between the
genes that were differentially expressed at a false discovery rate
of 0.05.
The predictions of TFs causative of disease were made by adding the

fold changes to the TFs as described above, followed by removing the
dysregulation of each TF independently. This resulted in 1625 predicted
changes in correlation between predicted and measured target expres-
sions as compared to that from the full TF profile. We ranked the TFs on
change in correlations and calculated the area under the receiver
operating characteristics curve, i.e., the AUROC, for this ranking. A true
positive identification was defined as the TF being associated with the
respective disease, as manually curated from the GWAS catalog31. We next
Monte Carlo sampled 10,000 random TF permutations and estimated the P
value from the random AUROC distribution.

DATA AVAILABILITY
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