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Olfactory receptors contribute to progression of kidney fibrosis
Ali Motahharynia 1, Shiva Moein 1✉, Farnoush Kiyanpour 1, Kobra Moradzadeh 1, Moein Yaqubi 2 and Yousof Gheisari 1,3

Olfactory receptors (ORs) which are mainly known as odor-sensors in the olfactory epithelium are shown to be expressed in several
non-sensory tissues. Despite the specified role of some of these receptors in normal physiology of the kidney, little is known about
their potential effect in renal disorders. In this study, using the holistic view of systems biology, it was determined that ORs are
significantly changed during the progression of kidney fibrosis. For further validation, common differentially expressed ORs resulted
from reanalysis of two time-course microarray datasets were selected for experimental evaluation in a validated murine model of
unilateral ureteral obstruction (UUO). Transcriptional analysis by real-time quantitative polymerase chain reaction demonstrated
considerable changes in the expression pattern of Olfr433, Olfr129, Olfr1393, Olfr161, and Olfr622 during the progression of kidney
fibrosis. For localization of these ORs, single-cell RNA-sequencing datasets of normal and UUO mice were reanalyzed. Results
showed that Olfr433 is highly expressed in macrophages in day-2 and 7 post-injury in UUO mice and not in normal subgroups.
Besides, like previous findings, Olfr1393 was shown to be expressed prominently in the proximal tubular cells of the kidney. In
conclusion, our combinatorial temporal approach to the underlying mechanisms of chronic kidney disease highlighted the
potential role of ORs in progression of fibrosis. The expression of Olfr433 in the macrophages provides some clue about its relation
to molecular mechanisms promoted in the fibrotic kidney. The proposed ORs in this study could be the subject of further functional
assessments in the future.
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INTRODUCTION
Olfactory receptors (ORs), belonging to a super-family of G
protein-coupled receptors, are well-recognized for their role in
odor-sensation in the olfactory epithelium1. This family of
receptors was first discovered by Linda Buck and Richard Axel1,
leading to a Nobel prize in 20042. More investigations on ORs
determined that they are not only expressed in the olfactory
epithelium but also non-sensory organs3. The study by Parmentier
et al. determined the functionality of these receptors in sperm
chemotaxis during fertilization4. Furthermore, it was demonstrated
that these receptors have roles in cytoskeletal remodeling,
pulmonary hyperplasia5, angiogenesis6, as well as heart metabo-
lism in the cardiovascular system7. Besides, identification of the
role of these receptors in other parts of the body, such as skin8,9,
gastrointestinal10–12, and the immune system13,14 highlights the
importance of further investigations on their function in the body.
One of the tissues, in which the presence and function of ORs

are investigated, is the kidney15–19. Studies using unsupervised
high-throughput techniques have discovered the existence of
these receptors in the kidney20,21. Nevertheless, few studies have
specifically focused on their role in renal function. The study by
Pluznick et al. determined Olfr78 role in blood pressure regulation
through interactions with the byproducts of gut microbiota22.
Furthermore, Shepard et al. demonstrated that Olfr1393 partici-
pates in glucose transportation in both normal23 and pathologi-
cal24 states of the kidney. Considering the magnitude of this gene
family (around 1000 genes in the mouse and 400 genes in the
human), as well as their role in chemosensation19,25, more
investigations are needed to uncover the role of other OR
subtypes in kidney function and hemostasis. Despite the above-
mentioned few findings on the role of these receptors in the
normal state of the kidney, no remarkable study has focused on

their function in the progression of kidney fibrosis. Renal fibrosis is
the common pathological manifestation of a variety of disorders
leading to chronic kidney disease (CKD)26,27 which causes vast
tubular atrophy and glomerulosclerosis27. Unfortunately, dialysis
and kidney transplantation are the only treatments in the
progressive states of the disease which cause serious complica-
tions27. In this regard, basic studies on the molecular mechanisms
of the disease are crucial for developing new treatment strategies.
In this study, two time-course microarray datasets from a mouse

model of unilateral ureteral obstruction (UUO) were reanalyzed
and the gene interaction networks of differentially expressed
genes (DEGs) were constructed. Experimental evaluation of
common ORs between two datasets determined significant
changes in the expression patterns of these genes during the
progression of kidney fibrosis. Moreover, by analyzing single-cell
RNA-sequencing (scRNA-seq) datasets, we could find some clues
about the localization and function of these ORs.

RESULTS
In order to investigate the underlying molecular mechanisms
activated during the progression of CKD, two time-course
microarray datasets, GSE3649628 and GSE9657129 were reana-
lyzed. GSE36496 dataset contains transcriptomics data of the UUO
and sham-operated C57BL/6 mice at days-1, 2, 5, and 9
postoperation28. The results of this study by Wu et al. suggest
CEBPB and HNF4A signaling pathways as important regulators of
kidney fibrosis28. The other dataset, GSE96571 which is also
deposited by Wu et al., comprises the UUO and sham samples at
hours-0.5, 1, 3, 5, 7, 12, as well as days-1, 3, 5, and 7
postoperation29. The single-time point analysis of this dataset by
Wu et al. determined overexpression of stress responder genes in
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the first hours of obstruction besides nephrotoxic damage-related
genes at later time points29. This dataset was used for the
validation of our findings from the first dataset.

Unsupervised evaluation of microarray dataset determined
the quality of datasets
The quality assessment of the GSE36496 dataset by principal
component analysis (PCA) demonstrated the separation of sham
and UUO groups from each other. Furthermore, the UUO samples
were separated based on the times of harvest, which determines
the model quality (Fig. 1a). This result was also validated by the
hierarchical clustering (Fig. 1b). The DEGs were determined using
the linear models for microarray data (LIMMA)30 Package of R
software31, which according to our recent study32 is the most
reliable tool for time-course analysis of microarray data. A
Comparison of the UUO and sham samples determined 2583
DEGs with an adjusted p value < 0.05. The DEGs were used for the
construction of a gene interaction network and further topological
analysis (Fig. 1c).

ORs constitute a dense module in the interactome map of
kidney fibrosis
In order to discover the functional units of the network, module
analysis was performed. Modules are individual units of biological
networks that are similar in physical, chemical, or functional
aspects and supposed to have a specific function in the
networks33,34. Assessment of densely connected network regions,
based on the clustering coefficient, revealed 36 significant
modules. The first and second modules were mainly related to
NDUF and ORs signaling pathways (Fig. 1d, e). NADH:ubiquinone
oxidoreductase supernumerary subunits (NDUF) family of genes
are expressed in the mitochondria and their relation to kidney
fibrosis has previously been demonstrated by Granata et al.35.
Despite evidence on the contribution of Olfr1393 to the
progression of type 2 diabetes24, no study has shown the relation
of ORs to kidney fibrosis. Two non-OR genes, Arrb2 and Grk3, were
also observable in the ORs module. Studies revealed the impact of
these genes on ORs regulation, as Arrb2 inhibits the activation of
ORs36 and Grk3 has a role in ORs desensitization37.
For further investigation on the role of ORs in kidney fibrosis,

another time-course UUO dataset was analyzed. LIMMA results
determined 3176 DEGs (adjusted p value < 0.05), which were
further used for the construction of a gene interaction network
(Fig. 1f). Topological analysis of the constructed network revealed
44 significant modules, of which ORs-related module obtained the
first rank (Fig. 1g). Overlaying the significantly expressed ORs
between two datasets determined Olfr433, Olfr129, Olfr1393,
Olfr161, and Olfr622 as common ORs (Fig. 1h and Supplementary
Fig. 1). These five common ORs were selected for in vivo
expression analysis.

Histopathological analysis of the UUO model validated the
robustness of the constructed model
In order to experimentally evaluate the expression of selected ORs,
a mouse model of UUO was developed. Both UUO and sham-
operated mice were followed over 21 days (Fig. 2a). For validation
of the quality of the constructed model, the histopathological
analysis was performed. Assessment of the sections revealed
significant diffused tubulointerstitial fibrosis along with glomerular
injuries, increased mesangial matrix, and diffused glomerulo-
sclerosis in UUO-operated mice compared to the sham group over
21 days of UUO treatment (p value < 0.05), all of which determined
the robustness of constructed UUO model (Fig. 2b and c).
Furthermore, to show that the developed animal model recapi-
tulates what was reported in both studies by Wu et al., we
assessed the expression of some of the genes by real-time

quantitative polymerase chain reaction (RT-qPCR). In agreement
with the results of study published in 201228, Hnf4a was down-
regulated and Cebpb was up-regulated in our model at day-12.
Also, Serpina3n and Tgfb1 that were shown to be up-regulated in a
more recent study29, were increased in our expression analysis
(Supplementary Table 1).

Gene expression patterns demonstrated significant changes
in ORs in the fibrotic kidney
As ORs belong to a highly conserved superfamily which most of
them have a similar sequence, the specificity of designed primers
was checked and validated by sanger sequencing (Supplementary
Data 1).
The expression of Olfr433, Olfr129, Olfr1393, Olfr161, and Olfr622

was evaluated over 21 days in a time-course manner in both UUO
and sham-operated mice (Fig. 3 and Supplementary Data 2).
Except for Olfr1393, other genes demonstrated upregulation over
time in comparison to the sham group. To test whether these
changes between the sham and UUO groups were significant
during time, Friedman’s two-way ANOVA test was applied. The
results of the analysis determined significant changes in patterns
of expression in the UUO group compared to sham for all the
genes (p value < 0.05). Considering the expression patterns over
time revealed that Olfr433, Olfr129, Olfr161, and Olfr622 had a
sharp downregulation from day-3 to 6. Although Olfr433 and
Olfr161 expression continued with a smoother augmenting
response, Olfr129 and Olfr622 had a second sharp peak at day-
12 followed by a reduction in the consecutive days. Furthermore,
the expression of these four genes in the sham group over time
revealed oscillatory patterns, which is an initial clue about the
inherent rhythmic pattern of OR genes in the kidney.

Olfr433 is highly expressed by macrophages of the fibrotic
kidney
To get insight into the kidney cell types expressing the selected
ORs, publicly available scRNA-seq datasets of a normal kidney38

and a mouse model of UUO at day-2 and 7 postinjury39 were
reanalyzed. After data quality control and removing unwanted
cells, findings demonstrated expression of Olfr1393 by proximal
tubular (third segment) cells of the normal kidney. Consistent with
our RT-qPCR results, no expression of Olfr1393 was detected in the
UUO samples. On the other hand, the expression of Olfr433 was
identified in both UUO day-2 and 7 postinjury. Our analysis
showed that in day-2, Olfr433 is mainly expressed by macrophages
and to some extent proliferating proximal tubules. Likewise, in
day-7 postinjury, Olfr433 was shown to be predominantly
expressed by macrophages (Fig. 4).

DISCUSSION
In order to acquire a holistic view of molecular mechanisms of
kidney fibrosis, two time-course microarray datasets were
reanalyzed. Gene interaction map evaluation determined modular
structures of densely connected ORs in both networks. In the next
step, to validate in silico results, the common ORs between two
datasets were selected for further in vivo analysis in the mouse
model of UUO. Additionally, the localization of ORs was inspected
by analysis of kidney scRNA-seq datasets.
Although the relationship between some of the ORs and the

normal physiology of the kidney has been determined in recent
years15,22,23, few studies have focused on the role of ORs in
pathological states of the kidney. The study by Shepard et al.
focused on the role of Olfr1393 in diabetes24. Additionally, our
previous bioinformatic analysis determined a significant change in
the expression of ORs in the rat model of ischemia-reperfusion
injury40. In this study, based on in silico and in vivo investigations,
we identified five ORs which all of them were significantly related
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Fig. 1 Network analysis of two microarray datasets on a mouse model of ureteral obstruction. Principal component analysis (PCA) and
heatmap clustering of GSE36496 dataset demonstrated good quality of samples regarding treatment and times of harvest (a, b). Gene
interaction network created from 2583 differentially expressed genes (DEGs) of GSE36496 dataset (c). The first- (d) and the second-ranked (e)
modules resulted from topological analysis of the network constitute NDUF and olfactory receptor (OR) gene families, respectively. Gene
Interaction network from 3176 DEGs of GSE96571 dataset (f). The top-ranked module from topological analysis of the constructed network is
constituted of ORs (g). The overlap between differentially expressed ORs of GSE36496 and GSE96571 datasets (h).
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Fig. 2 Histopathologic evaluation of unilateral ureteral obstruction (UUO) -operated mice over 21 days. The scheme of experimental
design (a). Trichrome and hematoxylin and eosin (H&E) -stained renal sections in normal, sham (day-21), and UUO-operated mice at days-1, 3,
6, 9, 12, 15, 18, and 21 postsurgery. Yellow, red, and black arrows stand for increased mesangial matrix, mesangial cell proliferation, and diffuse
glomerulosclerosis, respectively (b). The percentages of glomeruli with increased mesangial matrix (p value = 1.1451e-04) as well as cortical
fibrosis (p value = 1.3868e-04) for sham and UUO-operated mice. Data are mean ± SEM (c). * Scale bars: 50 µm.
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to the progression of kidney fibrosis. Analysis of scRNA-seq
datasets determined that Olfr1393 is expressed by proximal
tubular cells of the normal kidney. Similar to RT-qPCR results, no
expression of this gene was detected in the UUO samples. These
findings are in line with the results of the study by Shepard et al.,
which reported expression of Olfr1393 in the proximal tubular cells
of normal kidney23. On the other hand, our findings showed that
Olfr433 is predominantly expressed by macrophages of the injured
kidney and not in normal kidney. The presence of macrophages in
the site of injury is correlated with severity of tubulointerstitial
damages41. It is shown that macrophages are capable of activating
fibrotic pathways through which uncontrolled wound-healing
processes and tissue fibrosis are promoted42. Study by Feng et al.
demonstrated that transforming growth factor-beta (TGF-β)
signaling pathway is activated in M2 macrophages in the injured
kidney43. Also, wingless-related integration site (Wnt) signaling
pathway in renal macrophages promotes their polarization into
M2 phenotype and progression of fibrosis44. Moreover, macro-
phages are a potential source of extracellular matrix components
like collagen45, platelet-derived growth factor (PDGF)46, and matrix
metalloproteinase-9 (MMP9)47. This data provides a clue that this
receptor has a potential role in inflammatory response and
generation of myofibroblasts and is suggestive of the critical role
of ORs in the pathogenesis of renal failure. We also appreciate that
the localization of these ORs must be validated by other
experimental approaches. Activation-inhibition approaches are
also necessitated to determine the ORs function in kidney fibrosis.
In this study, we reanalyzed two qualified time-course microarray

datasets generated by Wu et al. In both studies, key RNA biomarkers
and molecular mechanisms of obstructive nephropathy were
introduced28,29. Time-course study designs are worth as they would
better demonstrate the dynamism of cellular behavior and also
reduce misinterpretations that may occur in single-point studies48,49.
Unfortunately, due to cost and difficulty, such experiments are less
considered by investigators and most of the gene expression studies
are performed statically50. On the other hand, appropriate analysis of

time-series data is of great importance and should be performed by
suitable mathematical approaches32. Although both studies by Wu
et al. were designed temporally, single time-point analysis prevented
them from finding significant changes in the expression of OR genes
over the course of the disease.
Beside analyzing microarray datasets, we developed a time-course

in vivo model of renal obstruction and followed both sham and UUO
samples over 21 days. Expression analysis of Olfr433, Olfr129,
Olfr1393, Olfr161, and Olfr622 determined differential expression
patterns for these genes during 21 days. For distinguishing real
changes from noisy fluctuations, we compared the patterns in
control and treatment groups. We appreciate that the inclusion of
two mice per group in each time point is not an ideal sample size.
However, based on the criteria discussed in our previous study48, we
believe that this gene expression analysis is reliable as we performed
time-course measurements for both UUO and sham groups.
Considering that the differences were consistently observed in all-
time points for all the examined genes, the alterations in gene
expression were interpreted as real signals. In addition, the
magnitude of fold changes was fairly high and the differences
reached a statistically significant threshold. Moreover, evaluations
determined rhythmic patterns in ORs expression in sham groups
somehow similar to the rhythmic patterns, which is not far from the
oscillatory function of the kidney51,52. These findings are only an
initial clue about the rhythmic expression patterns of OR genes and
further investigations on the relation of ORs expression patterns with
kidney function would be of interest.
Taken together, these in silico and in vivo investigations

validate the expression changes of ORs during the progression
of kidney fibrosis. The time-course evaluations determined
rhythmic and robust patterns of ORs expression and highlighted
the potential role of Olfr433 in the progression of kidney fibrosis.
However, future studies are required for further validation of these
findings. This study is a good example of the potential capacity of
systems biology unsupervised top-down strategy to unravel the
neglected aspects of disease pathogenesis.
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Fig. 3 Expression level of common ORs between two datasets in a mouse model of UUO over 21 days. Statistical analysis (Friedman’s
two-way ANOVA test) determined significant changes between UUO and sham groups for Olfr433, Olfr129, Olfr1393, Olfr161, and Olfr622
(p value < 0.05).
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MATERIAL AND METHODS
Microarray datasets analysis
The GSE36496 microarray dataset deposited by Wu et al.28 was down-
loaded from the gene expression omnibus (GEO) database53. The quality
of the data was assessed by PCA and hierarchical clustering using
ggplot254 and pheatmap55 packages of R software31, respectively. To

determine significantly expressed genes in this time-course dataset, we
applied LIMMA30, a package of R software. Using the multiple comparison
method of LIMMA, the sham and UUO groups were compared with each
other at different time points and DEGs were determined by False
Discovery Rate <0.05 (Benjamini–Hochberg). The second dataset,
GSE96571 deposited by Wu et al.29, was also analyzed similarly, and
DEGs were determined according to the previously mentioned criteria.
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Fig. 4 Localization of Olfr1393 and Olfr433 by analysis of two single-cell RNA-sequencing (scRNA-seq) datasets related to normal and
UUO kidneys. Expression of Olfr1393 in normal kidney (GSE119531) (a). Expression of Olfr433 in UUO samples at day-2 (b) and 7 (c) postinjury
(GSE140023). The left uniform manifold approximation and projection (UMAP) plots represent unsupervised clustering of the scRNA-seq
datasets. The middle UMAP plots show the normalized average expression of ORs genes (yellow and grey color show high and low expression
of genes). The dot plots indicate expression of Olfr1393 and Olfr433 across identified clusters (the circle size denotes percent of cells expressing
OR genes and red and blue colors indicate high and low expression of OR genes, respectively).
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Network construction and topological analysis
The DEGs were used for the construction of a gene-interaction network
using the Cluepedia plugin56 (version 1.5.5) of Cytoscape software57

(version 3.7.2). The interaction data for activation, binding, inhibition, and
post-translational modification with a confidence rate of 0.8, was retrieved
from the search tool for the retrieval of interacting genes/proteins (STRING)
database58 (STRING-ACTION-SCORE_v10.0_10090_09.06.2015). Based on
the clustering coefficient parameter, the densely connected sites of the
network with a cutoff point of 4 were determined by molecular complex
detection (MCODE) plugin59 (version 1.5.1) as structural modules. The gene-
interaction network for GSE96571 microarray dataset was also constructed,
and the structural modules were investigated using the same method.

Animal model of unilateral ureteral obstruction
Male C57BL/6 mice aged 6–8 weeks were obtained from Pasteur Institute
(Tehran, Iran). Animal use and care were according to the guide for the use
and care of animals by National Institutes of Health. Also, this study was
approved by the Iranian national committee for ethics in biomedical research
(Approval ID: IR.MUI.MED.REC.1398.323). For anesthesia, Ketamine and
Xylazine (Alfasan, Woerden, Netherland) were injected at the dose of 115
and 11.5mg/kg intraperitoneally. During surgery, mice were kept on a 37.5 °C
plate. After a mid-abdominal incision, the left ureter was isolated and then
double ligated. Afterward, the incision was sutured. In the sham group, all the
steps were performed except ligation of the left ureter. The kidneys were
harvested 1, 3, 6, 9, 12, 15, 18, and 21 days after surgery. Two UUO and two
sham-operated mice were allocated for each time point. Additionally, three
untreated mice were used as normal controls. After sacrificing with cervical
dislocation, the left kidney was harvested and coronal sections were
prepared. The anterior part was kept in 3.7% formaldehyde in PBS for
histopathological study and the posterior part was sustained in liquid
nitrogen for RNA extraction. As the in vivo study was performed to confirm
the in silico results, we tried to recapitulate our model with the findings of
the two reanalyzed datasets. In this regard, the expression of two prominent
genes from each study was evaluated by RT-qPCR (Supplementary Table 1).

Histopathological evaluation
The formalin-fixed kidney tissues were paraffin-embedded and 5 µm
sections were prepared. Hematoxylin and eosin (H&E), as well as Masson
trichrome (MT) staining, were carried out and histopathological evaluations
were performed in a blinded manner. The existence of diffused
glomerulosclerosis and mesangial cell proliferation were assessed between
two experimental groups in random cortical fields using a X40 objective.
Moreover, the percentage of cortex area affected by fibrosis including
interstitial cortical fibrosis, tubular loss with minimal fibrosis, and
periglomerular fibrosis were determined with the estimation of about five
percent. Also, increased mesangial matrix was assessed by calculating the
percentage of affected glomeruli in MT-stained sections. Measurements
were repeated twice for each section.

Statistical analysis
To compare the significance of histopathological differences between
sham and UUO groups, Friedman’s two-way ANOVA test was applied using
the ‘friedman’ function of MATLAB software (MathWorks, 2020b).

Real-time quantitative polymerase chain reaction
Total RNA of the lower part of the left kidney was extracted using RNX-plus
(CinnaGen, Tehran, Iran) according to the manufacturer’s instruction.
Afterward, the concentration of the extracted RNA was measured by Epoch
microplate spectrophotometer (BioTek, Winooski, Vermont). Since ORs
sequence contains only the exon coding region, to eliminate DNA
contamination, the samples were treated with DNase I (Thermo Fisher,
Waltham, Massachusetts). To validate this procedure, mock controls were
also employed (Supplementary Fig. 2). Subsequently, random hexamer
primered cDNA synthesis was done using the first-strand cDNA synthesis kit
(YektaTajhiz, Tehran, Iran). Specific primers for Olfr433, Olfr129, Olfr1393,
Olfr161, Olfr622, Hnf4a, Cebpb, Serpina3n, Tgfb1, Hprt, and Tfrc were designed
using AlleleID software60 (version 6.2) (Supplementary Table 2). RT-qPCR was
performed using RealQ Plus 2x Master Mix Green with high ROXTM

(Ampliqon, Odense, Denmark) by Rotor-gene 6000 cycler (Qiagen, Hilden,
Germany). The expression of genes was normalized by considering Hprt and
Tfrc as internal control genes. The results of RT-qPCR were analyzed using the
Pfaffl method by relative expression software tool (REST) version 161.

Statistical analysis
To compare gene expression patterns in UUO and sham groups,
Friedman’s two-way ANOVA test was applied using the ‘friedman’ function
of MATLAB software (MathWorks, 2020b).

Sequencing of polymerase chain reaction products
PCR was performed by T100™ Thermal Cycler (Bio-Rad, Hercules, California)
using Taq DNA Polymerase 2x Master Mix RED (Ampliqon, Odense,
Denmark). The PCR products were cloned into the PTZ57R vector using TA
Cloning™ kit (Thermo Fisher, Waltham, Massachusetts). Cloned products
were transformed into competent TOP10 E. coli by incubating on ice with a
subsequent heat-shock at 37 °C. Transformed colonies were cultured on
LB-Agar (Sigma-Aldrich, St. Louis, Missouri) plate treated with ampicillin
followed by overnight incubation at 37 °C. Afterward, plasmid extraction
from bacteria was performed using Solg™ Plasmid Mini-prep Kit (SolGent,
Daejeon, South Korea). Sanger sequencing of samples was done using
both forward and reverse universal M13 (−40) primers by Bioneer biotech
company (Daejeon, South Korea) (Supplementary Data 1).

Single-cell RNA-sequencing datasets analysis
The gene barcode matrix of each dataset was downloaded using accession
numbers GSE11953138 and GSE14002339 from GEO database53 and used as
raw data to work using Seurat (version 3) package62. All downstream
analysis was performed in Seurat package and each dataset was analyzed
separately. To preprocess the data, including removing bad quality cells,
the instructions provided by reference papers were followed. Briefly, for
Wu et al., 2019 study38, the cells that contained more than 200, less than
4000 identified genes, and also contained less than 5 percent of
mitochondrial genome were kept. For Conway et al., 2020 study39, these
parameters were set as minimum of 300 genes, maximum of 3000 genes,
and mitochondrial genes as less than 50 percent (according to the main
paper settings). Subsequently, the gene expression level of cells was log-
normalized and scaled. Downstream analysis was limited to 2000 highly
variable genes to uncover more detailed differences between captured
cells. PCA was performed on the highly variable genes to reduce the
dimensionality of the data and the first 20 principal components were
selected for the clustering purpose. Louvain clustering algorithm was used
several times to identify clusters at multiple different resolutions and the
optimum resolution was obtained according to distribution of DEGs.
Finally, the uniform manifold approximation and projection (UMAP)
algorithm was used to visualize the clusters in two-dimensional space.
The cell type annotation was performed based on the expression of
lineage-specific markers retrieved from related articles39,63–66 (Supplemen-
tary Fig. 3).

DATA AVAILABILITY
The UUO datasets analyzed during this study are available from GEO database using
accession numbers GSE36496 and GSE96571. The results of PCR products sequencing
are available at figshare repository (https://doi.org/10.6084/m9.figshare.12753749.
v11). The expression value of ORs can be downloaded from figshare repository
(https://doi.org/10.6084/m9.figshare.16755340.v2). ScRNA-seq datasets of normal and
UUO samples are available in GEO database with the accession numbers GSE119531
and GSE140023.

CODE AVAILABILITY
The source code for LIMMA and scRNA-seq datasets analysis are available on GitHub:
https://github.com/alimotahharynia/ORs-article/tree/analysis-code.
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