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The small world coefficient 4.8 ± 1 optimizes information
processing in 2D neuronal networks
F. Aprile 1, V. Onesto 2 and F. Gentile 3✉

Small world networks have recently attracted much attention because of their unique properties. Mounting evidence suggests that
communication is optimized in networks with a small world topology. However, despite the relevance of the argument, little is
known about the effective enhancement of information in similar graphs. Here, we provide a quantitative estimate of the efficiency
of small world networks. We used a model of the brain in which neurons are described as agents that integrate the signals from
other neurons and generate an output that spreads in the system. We then used the Shannon Information Entropy to decode those
signals and compute the information transported in the grid as a function of its small-world-ness (SW), of the length (4t) and
frequency (f ) of the originating stimulus. In numerical simulations in which SW was varied between 0 and 14 we found that, for
certain values of 4t and f , communication is enhanced up to 30 times compared to unstructured systems of the same size.
Moreover, we found that the information processing capacity of a system steadily increases with SW until the value SW ¼ 4:8 ± 1,
independently on 4t and f . After this threshold, the performance degrades with SW and there is no convenience in increasing
indefinitely the number of active links in the system. Supported by the findings of the work and in analogy with the exergy in
thermodynamics, we introduce the concept of exordic systems: a system is exordic if it is topologically biased to transmit
information efficiently.
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INTRODUCTION
In biological systems, in tissues and organs, and the brain, the
performance of a system depends less on the characteristics of a
single cell and more on how those cells interact collectively to
transport signals, information, or nutrients. The emergent proper-
ties of these systems arise from the cooperation of a great many
elements and cannot be obtained or explained as the sum of the
behaviors of each of their parts taken individually1–6.
Practically, we can gain access to the precious understanding

of those systems by representing them as networks, in which
the cells are the nodes and the interactions between cells are
the links of the network. Since networks are measurable, one
can then establish a relationship between the topology and the
emergent properties of a system derived from the collective
function of its many parts. Among the numerous variables that
can describe the networks’ topology, the small-world coefficient
has particular relevance because both experimental evidence
and numerical simulations suggest that small-world systems can
transport information more efficiently than periodic or random
networks of the same size7–12. A network has a small-world
topology if nodes of the network are separated from each other
by a small number of steps, and very often small-world networks
are characterized by a certain number of clusters with many
node-node intracluster interactions and less intercluster con-
nections13–15.
Nonetheless, while a variety of studies have examined how

systems with a specific small-world topology behave under certain
conditions, none of them illustrates how the information content
of a system varies as a function of its small-world-ness. In this
work, using numerical simulations we show how the efficiency of a

2-dimensional network of neurons changes as a function of its
small-world characteristics.
To do so, firstly we generated a great many configurations (

� 1000) with different topological characteristics. We placed in a
fixed domain 500 points randomly sampled from Gaussian
distributions where the number, mean, and standard deviation
of the distributions were varied over large intervals. Then, we
connected the points of the distributions proportionally to the
inverse of their distance and to the local density of other points in
their neighbors. This wiring algorithm, developed by one of the
authors of this work16, guarantees local and global connectivity,
typical of small-world networks. By varying the parameters of the
algorithm as described in the Methods of the work, we obtained
networks with values of small-world-ness falling in the 0–14
interval.
The small-world-ness or small-world coefficient (SW) is a

quantitative measure of the topological characteristics of a
network relative to an equivalent random graph of that graph. It
is defined in terms of the clustering coefficient (cc) and
characteristic path length (cpl) as17:

SW ¼ ccgraph=ccrand
cplgraph=cplrand

; (1)

thus small-world networks have high clustering and short paths
compared to random graphs of the same size. For a random
graph, SW ¼ 1.
After having generated configurations with different values of

SW, we evaluated how a signal is transported in those networks
where the elements of the networks are artificial neurons that
receive as an input the signal from other neurons and pass it to
the grid upon integration over space and time. This scheme is
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based on the repetition of a leaky integrate-and-fire model in the
network as exhaustively reported in refs. 18,19. In analogy with the
behavior of real neurons, the model generates as an output for
each node of the grid a sequence of action potentials (train of
spikes) that is encoded in the system as a binary sequence of 0
and 1 (Fig. 1a). Then, we used an information theory approach to
decode the information stored in each node of the networks20–23.
We computed for each sequence of 0 and 1 the associated value
of Shannon Information Entropy H:

H ¼ �
XS
i

P log Pð Þ; (2)

where the index i runs over all the possible substates s of the
system, and P is the probability of finding a specific substate i in
the originating sequence. In Eq. (2), the logarithm is taken in base
2. Finally, we calculated for each node of the grid the information
transported through that node as I ¼ H0 � N, where H0 is the
entropy associated with an irregular, accidental stimulus, and N is
the entropy associated with a periodic, repetitive stimulus.
Using this scheme, we derived for each configuration the

information transported in the networks as a function of time and
position in the network (Fig. 1b). The values of information found
for each node of the grid were then used to derive the
information quantity, quality, and density over the entire network
as a function of network topology (SW), and of the length ð4t)
and frequency ðf ) of the originating stimulus.

RESULTS
Measuring the performance of a network of neurons
We generated �1000 different networks of 500 neurons in which
the small-world-ness was varied between 0 and 14 as explained in
the methods of the paper. In Supplementary Fig. 1a, we show
examples of configurations that we obtained with this method.
For these, the SW value ranges from 1:3 to 4:4: in this interval the
associated graphs transition from uniform (SW ¼ 1:3) to highly
clustered layouts, with elements of the graph compartmentalized
in a few clusters with many links per cluster (SW ¼ 4:4). In
Supplementary Fig. 1b, we report the total number and
distribution of configurations that we have generated for this
study. To test the networks, we analyzed how a stimulus applied
to a randomly selected node propagates in the system. For this
configuration, the input signal was a sequence of 3 ´ 8 letters, i.e.,
random variables that can take only the values 0 or 1. Since each
letter represents a duration of δt ¼ 3ms, the entire input signal
has a length of 4t ¼ 72ms. Moreover, the probability for a letter
of being 1 was fixed as p ¼ 0:4, implying that the sampling
frequency of the initial stimulus is f ¼ p=δt � 133Hz. To increase
confidence in the results, we simulated the propagation of a signal
10 different times for each network topology, thus the total
number of simulations is n ¼ 10; 000 for a fixed 4t and f . We
evaluated the performance of the networks using 3 different
metrics, i.e., the number of nodes in the network through which
the signal propagates (active nodes), the information transported
all over the nodes of the grid scaled to the value of information
contained in the stimulus (Igrid/Iinput), the maximum information

Fig. 1 The neuronal network model. We simulated the transport of information in the networks, with their nodes represented as artificial
neurons that integrate over time the current-pulse trains received as an input and produce, as an output, a discrete pattern of action
potentials: in the model, the signals are represented as arrays of 0/1 (bits) (a). Information is decoded in the patterns of actions potentials:
using information theory approaches and the Shannon information entropy, we obtained the information received and transmitted by each
of the nodes of the networks (b).
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transported in the grid divided by the information of the stimulus
(Ipeak/Iinput). Figure 2a–c are scatter plots of the measured number
of active nodes, of Igrid/Iinput and Ipeak/Iinput against the small-world
coefficient. We observe that the number of active nodes (AN)
steadily increases for increasing values of SW between SW ¼ 0
and SW ¼ 4, in this range AN transitions from AN ¼ 0 to
AN ¼ 200, then, the maximum value of AN decreases with SW,
being AN � 150 for SW � 5, AN � 180 for SW � 6 and SW � 7,
AN � 100 for SW � 11, AN � 70 for SW � 13 (Fig. 2a). A similar
trend is observed for Igrid/Iinput (Fig. 2b) and Ipeak/Iinput (Fig. 2c), for
which the total and peak values of information increase steeply
with SW and reach a maximum at an optimal value of small-world-
ness that is estimated as SWo � 4 for Igrid/Iinput and SWo � 5 for
Ipeak/Iinput. For these values of small-world-ness, the total informa-
tion transported in the network and the peak information are
�160 times and �11 times higher, respectively, than the
information contained in the stimulus.
Since we are interested in understanding to which extent

network topology affects information, it is relevant determining
how AN, Igrid/Iinput, Ipeak/Iinput compare to the values of these
variables found for SW ¼ 1. The non-dimensional variables
ηnodes ¼ AN=ANsw¼1, ηgrid ¼ Igrid=Isw¼1

grid , ηpeak ¼ Ipeak=Isw¼1
peak , indicate

the enhancement of the active nodes, of the total and peak
information in a grid because of the grid topology described by
the SW coefficient. The scatter plot in Fig. 2d illustrates that the
total number of active nodes is up to 4 times higher in a
topologically biased network than in a random network of the
same size. In the same way, Fig. 2e, f indicates that—for these

values of the model parameters—the total information trans-
ported in a grid may be up to 16 times higher, and the peak
information up to 14 times higher, compared to the correspond-
ing values measured in random unstructured graphs.

Effect of signal length
The values of active nodes, total information, and peak informa-
tion efficiency were determined in the previous section for a fixed
value of length of the originating signal, i.e., 4t ¼ 72ms. We have
therefore performed a test campaign where we varied the signal
length in the 4t ¼ 24� 2400ms range to examine how
information is affected by the initial stimulus. In the tests, the
sampling frequency of the input signal was hold fixed as
f � 133Hz. Figure 3a reports the active nodes (ηnodes), the total
information (ηgrid) and the peak information (ηpeak) efficiency of
the network as function of the small-world-ness for different
values of 4t, i.e., 24 ms, 96 ms, 360 ms, and 2.4 s. Diagrams in the
figure show that the smaller the duration of the stimulus, the
higher the values of efficiency associated to the metrics used in
this study. In Fig. 3b, we report the total information enhancement
factor, ηgrid, as a function of 4t for a fixed value of small-world-
ness SW ¼ 4. For this specific configuration, the efficiency in the
grid varies from ηgrid � 12 for 4t ¼ 24ms, to ηgrid � 15 for
4t ¼ 72ms, to ηgrid � 2 for 4t ¼ 2400ms. Thus, excluding the
low-millisecond range, the efficiency in the grid decays with 4t
with a total variation of � 10 points of efficiency over two decades
of 4t. To visualize at a glance the trend of the enhancements—of

Fig. 2 Applying repeatedly a random signal to nodes of the networks, we produced a disturbance that traveled in the system with a pace
and amplitude that depended on the networks’ topology. To quantify the effect of small-world-ness on the information transported by the
disturbance, we measured for each network topology (SW) the number of nodes reached by the signal (active nodes, a), and the total
(Igrid=Iinput , b) and the peak information (Ipeak=Iinput, c) in the network, compared to the same values associated to the initial stimulus. Then, we
found how the number of active nodes (d), the normalized total (e), and peak information (f) behave relative to the values of these system’s
variables determined for the special case SW ¼ 1. The ratios reported in the insets d–f represent enhancement factors (ηnodes, ηgrid, ηpeak) and
indicate how much the information flows in the network are enhanced due to the network topology. These diagrams were determined for a
length and frequency of the initial stimulus of 4t ¼ 72ms and f ¼ 133Hz.
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active nodes, total information, and peak information—we report
in Fig. 3c–e, ηnodes, ηgrid, and ηpeak as a function of the
characteristic SW and 4t of a network. In the plots, SW and 4t
were varied in the 0–14 and the 24–2400 ms range, respectively.

The density plots in the figure indicate that the active nodes
increment (ηnodes) exhibits a moderate sensitivity to SW and 4t,
with high values of enhancement near five within a large space of
the variables, with SW in the 2–8 interval and 4t comprised

Fig. 3 Effect of signal length. Varying the length of the initial stimulus (Δt) in discrete intervals, we observed the efficiency of the networks
(ηnodes, ηgrid, ηpeak) exhibits different sensitivities to the small-world-coefficient (a). Specifically, varying for a fixed SW ¼ 4 4t in the 24–2400ms
interval, we observe that ηgrid ranges from about 2 at 4t ¼ 2400ms to about 12 for 4t ¼ 72ms (b). Density plots of the network enhancement
factors ηnodes (c), ηgrid (d), ηpeak (e). In deriving the plots, we fixed the value of frequency of the originating distubance as f ¼ 133Hz.
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between 24 and ~480 ms (Fig. 3c). In contrast, ηgrid and ηpeak show
a higher sensitivity to SW and 4t. The largest values of efficiency
are measured for values of small-world-ness greater than �2:5 and
smaller than �6, and values of signal length generally lower than
~100 ms. In this interval, the maximum values of efficiency are
found as ηgrid � 16 and ηpeak � 14 (Fig. 3d, e).

Effect of signal frequency
We then examined how the frequency of the input signal
influences the performance of the system. To this end, we
launched a series of simulations where, for a fixed signal length
4t ¼ 120ms, the frequency f of the initial disturbance was varied
between f ~ 33 Hz and f ~ 333 Hz. Figure 4a reports the total
information efficiency (ηgrid) as a function of f for fixed values of
small-world-ness: sw= 3, 4, 5. For these values of the model
parameters, ηgrid oscillates between a minimum and a maximum
value of efficiency with the maximum occurring for frequencies
generally larger than 200 Hz. This trend is mostly maintained for
the three metrics used in this study. The density plots of ηnodes,
ηgrid, and ηpeak as a function of sw and f in Fig. 4b–d show that the
networks optimize their performance for small-world coefficient
comprised between �2 and �8, and for values of frequency larger
than ~133 Hz. In this range, the maximum enhancement factor is
�6:34 for the active nodes of the graph, �22 for the total
information transported in the grids, �16 for the peak information.
The diagram of ηgrid as a function of sw for fixed values of
frequency—f ¼ 133; 200; 267Hz (Fig. 4e), shows at any rate that
the systems seem to exhibit a higher sensitivity to SW than to f .
The maximum change of efficiency per change of sw is
s � 18=14 � 1:29, calculated for a central frequency of f = 200
Hz over the 1–14 SW range. In contrast, the maximum change of
efficiency per change of frequency in the considered range of
values is s � 10=70 � 0:15 =Hz, calculated for SW ¼ 5 in the
133–200 Hz interval (Fig. 4e).
All the enhancement factors of active nodes (ηnodes), total

information (ηgrid), and peak information (ηpeak) transported in the
grids as a function of the small-world-ness of the networks of
neuronal cells, for different values of length and frequency of the
input signal used in this study are reported in the separate
Supplementary Information section 2.
Furthermore, we have determined the performance of small-

world networks in the 1–14 SW spectrum range quantitatively. To
do this, we have introduced another parameter, the quality factor,
that quantifies how the efficiency of a network, the peak
efficiency, and the active nodes enhancement factor vary as a
function of SW. The quality factor, Qi�f , is the efficiency increment
expressed in terms of percentage, evaluated between an initial (i)
and final (f ) value of small-world-ness. Thus, to make an example,
Q1�4 ¼ η4 � η1ð Þ=η1. The quality factor is non-dimensional, similar
to the efficiency. In the separate Supplementary Information
section 3, we report the values of quality factor associated to ηgrid,
ηpeak, and ηnodes calculated for different combinations of signal
length (4t) and signal frequency (f ), and for values of the small
world coefficient spanning the 1–14 interval. Overall, the results of
the analysis are consistent with previously reported findings. The
maximum increment of efficiency is found for intermediate values
of small-world ness (SW ¼ 4� 5), starting from an initial layout
with either low (1) or high (14) SW coefficients. For certain
combinations of the driving frequency and parameters of the
model, the quality factors reach values as high as �1250% (Q1�4

grid ),�1000% (Q1�5
peak), and �320% (Q1�5

nodes).

The value of small-world-ness that optimizes performance of
the networks
Results of the simulations indicate that the number of active
nodes, the total information transported in a network, and the
peak of information depend significantly on the topology of the

network and are influenced more weakly by the length 4t and
the frequency f of the input signal. For each of the 4t and f used
in the work, it is relevant to determine the value of small-world-
ness at which the efficiency of the network hits a maximum, and
the magnitude of the maximum. Figure 5a–c reports as a function
of f and 4t the values of SW that maximize ηnodes, ηgrid, and ηpeak

in the networks. For these values of SW, Fig. 5d–f shows the
corresponding optimal values of ηnodes, ηgrid, and ηpeak. Diagrams
show that the best values of small-world-ness fall in narrow
intervals: 3–8 for ηnodes, 2.5–6 for ηgrid, 2.5–6.5 for ηpeak. In these
intervals, the number of active nodes, and the total and peak
information transported in a grid, may be enhanced up to �7,
�30, or �20 fold, respectively, because of the network topology.
Notably, these intervals may be still narrower if some fluctuations
are removed from the system’s response. Consider as an
illustration the enhancement factor—ηgrid. For this variable, we
report in Fig. 5g the optimal small-world-ness (swo) for which the
efficiency is maximized as a function of frequency, for different
values of the signal length. Much of the response of the system is
comprised between 4 and 6, with oscillations below 4 only limited
to 4t ¼ 48ms and in any case restricted to values of frequency
lower than 130 Hz. Also considering these variations, the mean
value of swo is �4:8 ± 1, i.e., the optimal value of small-world-ness
for which a system optimizes information flows oscillates weakly
around the mean, suggesting that the optimal topology of a
network is only moderately influenced from f and 4t. Simulations
over a wide variety of configurations and conducted for a broad
spectrum of f and 4t suggest that there exists a specific topology
for which information is maximized, independently from f and
4t—and this topology is described by the sole parameter
SW �4:8 ± 1. The fact that information increments depend less
on f and 4t and more on how neurons are organized (SW) is
confirmed by the diagrams in Fig. 6.
Part a of Fig. 6 is a 3d vector plot from the gradient ηgrid of the

enhancement factor of information calculated with respect to the
length (4t) and frequency (f ) of the traveling disturbance, and of
the small-world-coefficient of the networks—SW. Thus, the
direction of the cones indicates the lines along which the rate
of change of ηgrid is maximum, while the magnitude of the cones
is proportional to the intensity of the rate of change. In the same
way, the vector field plot in Fig. 6b indicates the gradient of ηgrid

with respect to the variables of the problem taken two at the time
(i.e., (i) f and 4t for a fixed SW ¼ 4, (ii) f and SW for a fixed
4t ¼ 48ms, (iii) 4t and SW for a fixed f ¼ 100Hz). The
streamlines in Fig. 6b show the local direction of the vector field
at every point.
In any case, the patterns of maximum variation of ηgrid are

aligned with SW, and correlate very feebly with f and 4t.

DISCUSSION
In several tests in which the small-world-ness ðSWÞ, and the signal
length ð4tÞ and frequency ðf Þ were varied over large intervals, we
found that I shows a very high sensitivity to SW, and a less
relevant sensitivity to 4t and f . Moreover, we found that the
optimal value of small-world-ness for which I is maximized is
SW ¼ 4:8 ± 1. For this value of SW, the total information
transported in the grid is more than 30 times larger than the
information processed in an equivalent random network of the
same size. Moving away from this value of topology, either
downward or upward, the ability of the grid to process
information becomes sub-optimal.
The observation that the increment of information in a network

is mostly imputable to the small-world coefficient is notable: it
suggests that the information gained from a system can be
predicted from its topology. Diagrams that map the information
efficiency of a network to its value of small-world-ness, as those
derived in this work, can serve as a preliminary reference for the
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design and development of complex systems, biological systems,
and the bio-interface for applications in tissue engineering,
neuromorphic engineering, regenerative medicine, the study of
neurodegenerative diseases.

These design maps indicate the maximum useful information
that can be processed by a system due to its shape. In analogy
with exergy in thermodynamics, we propose to designate this
maximum information with the term exorder information: it is

Fig. 4 Effect of signal frequency. As with Δt, for constant values of SW the efficiency of the grid ηgrid varies for varying values of the
frequency of the originating input f (a). The density plots of ηnodes (b), ηgrid (c), ηpeak (d) as a function of SW and f show the combined influence
of topology and frequency on the performance of the grid (4t ¼ 120ms). The diagrams of ηgrid against SW extracted from the density plot in
c for the values of frequency f ¼ 133, 200, 267Hz, and 4t ¼ 120ms (e).
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the maximum available information in a system as determined
by the order or structure of its components (the exergy in
thermodynamics indicates the maximum available work obtain-
able from a system). Thus, a system of many elements is exordic
if it assumes a configuration that guarantees maximum possible
information flows.

The hypothesis that we put forward in the paper and that we
proved using numerical simulations, is that the exorder informa-
tion condition is met for values of small-world-ness falling in
the narrow interval 4:8 ± 1. This is substantiated by the results of
the work and especially by the diagram shown in Fig. 5g, where
the value of the small-world coefficient for which the performance

Fig. 5 Optimal small-world-ness of the networks. For different combinations of f and 4t, we determined the optimal values of small-world-
ness SW for which ηnodes (a), ηgrid (b) and ηpeak (c) are maximum in the networks, and the corresponding maxima (d–f). For the particular case
of ηgrid, we observe that optimal small-world-ness assuring the maximum efficiency in the grid oscillates around the mean value SW ¼ 4:8 ± 1
(g). The white regions in the diagrams indicate values that are out-of-range, i.e., values of the functions that fluctuate either below or above
the minimum (maximum) of the plot range identified through the color legend bar that accompany each diagram. These areas are ascribable
to interpolation errors in the graphical representation of the values as smooth functions of the variables and do not affect to any extent the
findings and conclusions of the study.
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of a system is optimized oscillates around 4:8. Thus, a system is
exordic if it is topologically biased to transmit information
efficiently; moreover, results of the paper indicate that bi-
dimensional systems are exordic for a value of small-world-ness
of about 4:8. This has some consequences.
Firstly, the performance of complex systems is related to the

sole small-world coefficient. Irrespective of the frequency and
length of the originating signal, periodic, disordered, or regular
networks are equivalent from the information perspective if they
have the same SW value. Thus, the scientist or biomedical
engineer in the process of designing a system, should arrange the
components of that system in a fashion to ensure intermediate
values of SW close to 5—if he wants to maximize signaling. This is
especially relevant in neuromorphic engineering, where the
architecture of computing devices is modeled after the shape of
true biological neuronal networks, such as the brain. In this case,
one can achieve maximum computation speed, efficiency, and
power by pursuing the SW � 5 rule.
Further to this end, the results of the paper reinforce the view

that the topology of a system and the information transported
within that system are equivalent. The equivalence principle,
suggested in previous reports24–26, states that the information and
the topology of a system are of a similar nature—with the former
heavily influenced by the latter.

Among the many several possible applications of this criterion,
we may enumerate the study of neurodegenerative diseases and
neural tissue repair and regeneration. In one and the other case,
one can estimate the behavior and status of the system (i.e.,
neuronal tissue, regions of the brain or of the nervous system)
from its shape without the burden of recording the activity from
numerous neurons with single-cell resolution, identify the location
of recorded neurons, or detect non-active neurons during the
observation period. For these reasons, in perspective the concept
devised and developed in this study can be used as an instrument
in neurology and used in concert to other assessed techniques,
such as nMRI, fMCI, or single-cell recording, to decode the intimate
nature of the brain.
However, despite the far-reaching consequences of the results,

the extent of validity of the model has to be discussed. The small
world coefficient 4:8 that we found to optimize the network
performance is based on some assumptions.
The first and foremost is that the networks that we have

examined are 2d. This simplification enabled to examine a great
many of network topologies and configurations, but at the same
time inevitably limits the field of applicability of the results to two-
dimensional systems, such as 2d cell cultures; and if results are
instead applied to 3d systems, such as cellular spheroids,
neuroblastoma in vitro models, or other similar systems, this is
done at the cost of, at best, an approximation.

Fig. 6 The enhancement factor of total information in the grid ηgrid is a function of the model parameters: Δt, f, and SW. To show that
ηgrid exhibits a greater sensitivity to SW than to 4t or f , we report in a the gradient of ηgrid ∇ηgrid

� �
as a function of 4t, f , and SW, and in b

∇ηgrid as a function of those variables taken two at the time.
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The dependence of the results on the model used to generate
random graphs is, to the opinion of the Authors, less a limitation
of the model and more linked to the very definition of small-
world-ness (see the “Methods” of the article for further details).
The 4:8 figure that emerged from the simulations is tightly
connected to the fact that the networks used as a reference to
measure the topology of our structures are random, uniform
Erdos–Renyi graphs. This lies at the basis of the notion of small-
world coefficient, for how it has been conceptualized by
Humphries17 and other scholars who first studied the argument
in detail.
In the last place, the results of the study rely on the generalized

version of the leaky integrate and fire (LIF) model and the
differential Eq. (6), which is described in the “Methods” of the
article. The equation and the voltage discharged by the neurons
depend on the model parameters Cm and gl, i.e., the capacitance
and conductance of the cell membrane, and on Vo, that is the
potential at the rest of the system. Other parameters that
influence the solution are the time constant τ and Istim, which in
turn depends on how a neuron is connected to other active units
of the system and ultimately to the topology of the network. In
our study, we have used the following values for the model
parameters: Cm ¼ 300 pF, gl ¼ 0:1 μS, τ ¼ 3ms, Vo ¼ 6mV,
adopted from previously reported studies18,19. While it is possible
that the optimal value of small-world-ness of the networks may
vary by changing the constant of the LIF model—and future
studies are necessary to investigate further this aspect—none-
theless it is the opinion of the authors that the results of this study
are robust to changes of the variables of the neural model. The
values assigned to Cm, gl, τ, and Vo, modulate the time-response of
a neuron through a differential equation: thus, in the final
instance, they influence the pattern of action potentials (signals)
that are generated by a neuron and passed to other units in the
net. In numerical simulations (as for some examples, those
reported in Figs. 3–6) we have shown that the information
quantity, quality, and density transported in the systems show a
very low sensitivity to the length and frequency of the traveling
disturbance. Supported by these results and in the same way, we
suppose that the enhancement of information in the grids is only
marginally influenced by the parameters of the LIF models, and
that the small-world coefficient of 4:8 that emerged from this
study maintains the character of generality.

METHODS
Generating small-world networks
To examine how signals propagate in topologically biased networks, we
generated �1000 configurations of 500 nodes with values of small-world-
ness varying between 0 and 14. Firstly, we sampled 500 points in a plane
from Gaussian distributions of the type:

g x; yð Þ ¼ 1

σ
ffiffiffiffiffiffi
2π

p e�
x�xoð Þ2þ y�yoð Þ2ð Þ0:5

2σ2 ; (3)

where x and y designate the spatial coordinates, o ¼ xo; yoð Þ is the center
of the distribution, and σ2 is its variance. To generate the configurations,
we sampled points from 6 different distributions with centers randomly
picked in a 10 ´ 10 interval, and values of standard deviations oscillating
around the central value σ ¼ 0:2 with an amplitude 4σ ¼ 0:1. Then, we
routed the nodes using an algorithm developed by us16. The code makes a
decision on whether two points i and j are connected based on a mixed
rule that combines two wiring probabilities.
The first probability (distance rule) is proportionate to the inverse of the

distance between i and j: pij1 ¼ α exp �βdij=l
� �

, where l is the maximal
inter-nodal distance and α and β are model parameters. This rule generates
short-range connections and is a variation of the celebrated Waxman
algorithm27. According to this rule, a link between i and j is established if
pij1 > Pw, where Pw is a constant.
The second probability (density rule) evaluates whether both i and j

have high local density and relatively high distance from other nodes with

higher density. Inspired by the work of Rodrigueze and Laio28, who
developed an algorithm that spots cluster centers even in distributions
without spherical symmetry, we associated to each node of the dataset (k)
the number p2ðkÞ ¼ exp � Γmax=Γ� 1ð Þð Þ, where Γ ¼ ρdmin. In this identity,
ρ is the local density of k, determined as the number of points falling
within a cutoff distance δco from k; dmin is the minimum distance to other
points with higher density than k; Γmax is the maximum Γ over all the k.
Thus, the larger p2ðkÞ, the higher the probability of k being a cluster center,
with high local distance and relatively high distance from other cluster
centers. With these premises, the condition of existence of a link between
each node pairs is defined as pi2 >Pd ^ pj2 > Pd, where Pd is a constant. This
rule generates long-range interactions.
The mixed rule combines the distance and the density rule to determine

whether nodes i and j are connected as linkij ¼ pij1 > Pw _ pi2 > Pd ^ pj2 >Pd
� �

.
Thus, two nodes are connected if they pass the distance or the density rule
test. To generate the configurations used in this study, we varied the values of
the model parameters in the following intervals: Pw ¼ 0:90� 1:0,
Pd ¼ 0:90� 1:0, β ¼ 0:2� 0:8, δco ¼ 0 ± 0:4, and fixed α as α ¼ 1.

Network analysis
The topological characteristics of the networks, such as the adjacency
matrix, containing the information about the connectivity among node
pairs in the network, the mean clustering coefficient, and the characteristic
path length of the networks, were determined using the methods reported
in a separate Supplementary Information section 4.

Measuring the small world coefficient of the networks
We measured the small-world coefficient of the graphs using the
formula17:

SW ¼ γ=φ; (4)

with

γ ¼ Ccgraph=Ccrand; φ ¼ Cplgraph=Cplrand: (5)

Ccgraph and Cplgraph are the mean clustering coefficient and characteristic
path length, respectively, of the graphs under examination, Ccrand and
Cplrand are the same measures on random graphs of the same size of the
originating graphs. In particular, we have used uniform random graphs
generated by the Erdos–Renyi (ER) model. The ER model that we have used
has two parameters, the number of vertices n and the number of edges m,
where 0 � m � n n� 2ð Þ=2. For this study, the values of n and m that we
have passed to the random-graph generator were the same as for the
networks for which we wanted to determine the small-world-coefficient. In
doing so—remarkably—the originating networks were compared to
equivalent ER graphs with the same size and mean network degree, and
the small-world-coefficient was determined on the basis of the differences
ascribable to the sole network topology. The choice of using uniform ER
random graphs within Eq. (5) for the derivation of the small world
coefficient of the networks is not arbitrary, but is motivated by the seminal
study reported in ref. 17, in which the Authors for the first time defined a
precise measure of “small-world-ness” based on the trade-off between
high local clustering and short path length. In their studies, they
determined quantitatively (rather than through a categorical distinction)
the small world status of a network G by comparing its topology metrics
(i.e., the clustering coefficient and the characteristic path length) to the
same measures performed on random ER graphs with the same size as G.
Thus, the optimal value of small-world-ness of 4:8 that we have
determined in our study is valid under the null hypothesis of uniform
Erdos–Renyi graphs used as a comparative sample. The use of different
definitions for the random graphs in Eq. (5) would lead to different values
of small-world-ness that optimize the network’s performance—similarly to
the uncertainty that arises when estimating “network motifs”, as described
in the beautiful comment reported in ref. 29.
Thus, Eqs. (4) and (5) provide a quantitative measure of the small-world-

ness of a network based on the knowledge of Cc and Cpl17. Based on this
definition, a graph G has the attributes of small-world-ness if it has shortest
paths and higher clustering than a random analog with the same size of G.
The categorical definition of small-world network implies φ � 1, γ � 1,
which, in turn, yields SW> 1.
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Simulating the propagation of a signal in the networks
To examine how a disturbance propagates in the systems, we modeled the
networks as sets of artificial neurons. Each neuron is topologically and
physically connected to a number of other neurons in consonance with the
adjacency matrix of the network. When the initial stimulus, i.e., a sequence
of current pulses (Istim), is applied to a node randomly picked from the
network, it stimulates the neuron associated with that node causing over
time a variation of its membrane potential (V ) as:

Cm
dV
dt

¼ �gl V � Voð Þ þ Istim; (6)

where Cm, gl ¼ Cm=τ, and Vo are the capacitance, the conductance, and the
resting potential of the membrane, and τ is the time constant of the system.
In the simulations, we assigned the following values to the model parameters:
Cm ¼ 300 pF, τ ¼ 3ms, Vo ¼ 6mV. Moreover, Istim was modeled as the
repetitions of N words, i.e., arrays of 8 letters, where each letter is a binary
variable of 0 or J, with the probability of being J, p. Moreover, J is the signal
strength and is such that J=Cm ¼ 0:25mV. In this study, N was varied
between 1 and 100 (N ¼ 1; 2; 3; 4; 5; 10; 20; 50; 100), and p between 0:1 and
1. N and p are proportional to the length and the frequency of the signal.
Equation (6) is a version of the generalized leaky integrate and fire model30,31,
and describes how the potential at the postsynaptic sites of a neuron varies
with time following an intermittent stimulus.
Each time that the neuron response exceeds a value of threshold (Vth = 9

mV) the neuron produces an action potential (AP). The sequence of action
potentials that the neuronal unit (i) produces over time represents the output
signal of that unit and takes the form: J

PAPN
k δ t � tki

� �
. Where: J is the

amplitude of the output current, δ is Kronecker delta, being 1 when the time of
the process (t) matches the characteristic pattern of AP events of the neuron (
tki ), and 0 otherwise. APN is the total number of action potentials produced by
the neuron. Thus, the response of a neuronal unit is quantized in time.
Individual neuronal responses then converge into the unit (j) to which

they are connected, producing in turn a current of stimulus:
Istim tð Þ ¼ PB

i ζ dij
� �

J
Prel

k δ t � tki
� �

. In this equation, Istim is the sum of
currents J over all the neurons i insisting on neuron j (B), and ζ is a
damping factor that accounts for the attenuation of a signal traveling from
i to j through the distance dij . The response and behavior of the target
neuron j (at any time at the leading edge of the perturbation) is
determined again using Eq. (6). Thus, the output of a unit is passed
repeatedly as an input to the other units with which it has established
some connections. The repetition of this mechanism generates a wave of
signals that travels in the grid depending on the grid characteristics.
Equation (6) was solved numerically using forward Euler integrations of the
finite-difference equations resulting from the discretization of the
derivative operators. The time integration uses an explicit trapezoidal
scheme and we assume null initial conditions. The initial mesh consists of
400 grid points. The time step used is Δt ¼ 0:01ms.

Measuring the information transported in the networks
The patterns of action potentials produced at each node of the network
are represented in our model as sequences of 0 and 1 (bits). We used the
methods of information theory to decode the information contained in
these arrays20,21,23. To do so, we partitioned lists of values in subsets called
words. A word is a finite sequence of 8 bits. Thus, each word can represent
a signal in 28 ¼ 256 independent combinations. Then, we found for each
word the number of times it is represented in the originating list, from
which we derived the frequency distributions of words, or substates, in the
system’s response, sorted in order of decreasing frequencies: PðsÞ. At this
point, we found the Shannon information entropy H be associated to
PðsÞ20 as H Sð Þ ¼ �P

S PðsÞlog2PðsÞ, where s stands for state and S for
stimulus. H quantifies the average amount of information gained with each
stimulus presentation. To calculate the net information transported in the
networks, we applied H to a random input signal (T ) and a periodic
stimulus (N), and calculated the difference: I ¼ T � N. Exhaustive details on
the methods are reported in ref. 18.

DATA AVAILABILITY
All data and related metadata underlying reported findings and the algorithm
utilized in the study are deposited in the public data repository OSF under the name
“Small World Information” (https://doi.org/10.17605/OSF.IO/AS65R).
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