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Four features of temporal patterns characterize similarity
among individuals and molecules by glucose ingestion in
humans
Suguru Fujita 1,9, Yasuaki Karasawa2,9, Masashi Fujii 1,3,4, Ken-ichi Hironaka 1, Shinsuke Uda 5, Hiroyuki Kubota5, Hiroshi Inoue6,
Yohei Sumitomo1, Akiyoshi Hirayama 7, Tomoyoshi Soga 7 and Shinya Kuroda 1,3,8✉

Oral glucose ingestion induces systemic changes of many blood metabolites related not only to glucose, but also other metabolites
such as amino acids and lipids through many blood hormones. However, the detailed temporal changes in the concentrations of
comprehensive metabolites and hormones over a long time by oral glucose ingestion are uncharacterized. We measured 83
metabolites and 7 hormones in 20 healthy human subjects in response to glucose ingestion. We characterized temporal patterns of
blood molecules by four features: (i) the decomposability into “amplitude” and “rate” components, (ii) the similarity of temporal
patterns among individuals, (iii) the relation of molecules over time among individuals, and (iv) the similarity of temporal patterns
among molecules. Glucose and glucose metabolism-related hormones indicated a rapid increase, and citrulline and lipids, which
indicated a rapid decrease, returned to fasting levels faster than amino acids. Compared to glucose metabolism-related molecules
and lipids, amino acids showed similar temporal patterns among individuals. The four features of temporal patterns of blood
molecules by oral glucose ingestion characterize the differences among individuals and among molecules.
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INTRODUCTION
Glucose metabolism is an important metabolic system directly
involved in energy production in humans1. After oral glucose
ingestion, through absorption from the small intestine, blood
glucose concentrations increase, which triggers insulin secretion
from pancreatic β cells2. Insulin enhances the uptake of blood
glucose into tissues such as the liver and skeletal muscles and
inhibits hepatic glucose release, and blood glucose concentrations
then return to basal concentration2. Insulin is also involved in the
control of many other metabolites, such as amino acids and lipids.
Changes in the concentrations of various blood metabolites
before and after oral glucose ingestion in healthy human subjects
using metabolomics have been reported3–11. These studies did
not include measurements of hormones other than insulin. In
addition, a few studies investigated changes that occurred more
than two hours after oral glucose ingestion12–14. However, the
detailed temporal changes in the concentration of comprehensive
metabolites and hormones over long periods after oral glucose
ingestion have yet to be examined.
Insulin secretion accompanies C-peptide secretion, which is a

peptide that is cleaved from an insulin precursor (proinsulin) to
produce insulin and secreted at an equimolar ratio with
insulin15,16. C-peptide is used as a clinical marker that reflects
insulin secretion because insulin, not C-peptide, is extracted by
the liver. Insulin secretion is regulated by incretins, which are
hormones secreted from the gastrointestinal tract upon food
ingestion; these hormones act on pancreatic β cells to promote

insulin secretion17. After oral glucose ingestion, gastric inhibitory
polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), which are
types of incretins, are secreted from the digestive tract, and insulin
secretion occurs simultaneously to increase blood glucose
concentration. Hormones other than insulin, such as GIP, mutually
cross-talk and cooperatively regulate systemic glucose metabo-
lism, and measuring these hormones simultaneously together
with blood metabolites are critical for understanding the
mechanism of systemic glucose metabolism. However, the
differences in the temporal patterns of hormones by oral glucose
ingestion among individuals and among molecules have not been
compared with those of blood metabolites because hormones
and many metabolites have not thus far been simultaneously and
comprehensively measured.
The metabolic control by insulin involves the metabolism of

various metabolites, including amino acids, lipids (such as free
fatty acids), and total ketone bodies, which are controlled by inter-
organ communication through the blood after glucose ingestion.
For example, in skeletal muscles, proteins are broken down to
produce amino acids, which are released into the blood during the
fasting state, whereas amino-acid uptake and protein synthesis
occur after glucose ingestion18,19. In adipose tissue, free fatty acids
are released during the fasting state, whereas degradation of
triglyceride is inhibited after glucose ingestion and free fatty acids
are taken up from blood5,20. In the liver, amino acids and free fatty
acids are taken up from blood during the fasting state and used as
an component for gluconeogenesis and synthesis of ketone
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bodies18,21, whereas the synthesis of ketone bodies is suppressed
after glucose ingestion5,22. Also, an increase of bile acid and a
decrease of urea-cycle-related molecules such as citrulline and
ornithine after glucose ingestion have been reported5,6,11.
Differences in the temporal patterns of metabolites among
healthy individuals have been reported3. However, the number
of molecules was limited to only several types (glucose, insulin, C-
peptide, free fatty acids) to study the differences in temporal
patterns of molecules among individuals3. The response to
glucose ingestion of glucose and insulin in type 2 diabetic7,23–25

and obese4 patients is greater than that of healthy individuals,
whereas the response of amino acids and free fatty acids in type 2
diabetic7 and obese4,8 patients is smaller than that of healthy
individuals. However, (1) the differences in the temporal patterns
of blood metabolites and hormones by oral glucose ingestion
among individuals and among molecules and (2) the character-
istics of the temporal patterns have yet to be clarified.
We measured as 601 metabolites and 7 hormones as possible in

20 healthy human subjects in response to glucose ingestion and
targeted 76 metabolites and 7 hormones as a result of data
preprocessing. We characterized the temporal patterns of
molecules among individuals and among molecules by four
features: (1) the decomposability into “amplitude” and “rate”
components, (2) the similarity of temporal patterns among
individuals, (3) the relation of molecules among individuals’
relation over time, and (4) the similarity of temporal patterns
among molecules. For the first feature, we classified the temporal
patterns of 83 blood molecules into clusters with distinct temporal
features (increase or decrease and transient or sustained) and
decomposed features of the temporal patterns into “amplitude”
and “rate” by principal component analysis. Glucose metabolism-
related molecules showed a large amplitude and rapid increase,
amino acids showed a large amplitude and slow decrease, and
free fatty acids and citrulline showed a larger amplitude and more
rapid decrease than amino acids. The amplitude component of
the lipids reflected that of glucose, whereas the amplitude
component of the amino acids reflected that of insulin. No
molecules reflected the rate component of glucose, whereas the
rate component of the lipids reflected that of insulin. For the
second feature, we quantified the similarity of temporal patterns
among individuals. Amino acids and glucose metabolism-related
molecules showed similar temporal patterns among individuals.
For the third feature, we also quantified the relationship of
molecules among individuals’ relation over time. Amino acids
showed the constant relation between individuals at each time
point over time, whereas glucose metabolism-related molecules
and free fatty acids did not. For the fourth feature, we further
quantified the similarity of temporal patterns among molecules.
Amino acids, lipids, and glucose metabolism-related molecules
showed similarity within each group, but they differed from other
groups. The temporal pattern of citrulline was intermediate
between amino acids, lipids, and glucose metabolism-related
molecules. Thus, we demonstrated that blood metabolites have
different features of temporal patterns among individuals and
among molecules, reflecting selective regulation and action of
each group of metabolites and hormones. The point of this study
is to quantify the similarity of temporal patterns among
individuals and among molecules for a comprehensive number
of molecules. For the similarity of temporal patterns among
individuals, an earlier study analysed the similarity of temporal
patterns of a limited number of target molecules3, and we
demonstrated the similarity of temporal patterns of a compre-
hensive number of molecules. For the similarity of temporal
patterns among molecules, an earlier study mainly used average
value to calculate the similarity of temporal patterns among
molecules, and did not take into account individual differences in
temporal patterns among individuals in each molecule. We
quantified the similarity of temporal patterns among molecules

for a comprehensive number of molecules to extend our
discussion to metabolic control among individuals and molecules.

RESULTS
Measurement of blood metabolites and blood hormones
before and after oral glucose ingestion
We obtained blood samples from 20 human healthy subjects at
13-time steps from fasting to 240min (0, 10, 20, 30, 45, 60, 75, 90,
120, 150, 180, 210, 240 min) after an oral 75 gram (g) glucose
ingestion and measured concentrations of 83 molecules (76
metabolites and 7 hormones) (see the “Methods” section,
Supplementary Data 1). The timed measurements for 18
representative molecules are shown in Fig. 1 and those of all 83
molecules are shown in Supplementary Fig. 1. Of the 83
molecules, we defined glucose-responsive molecules as the 18
molecules that showed significant changes by oral glucose
ingestion. We categorized statistically significant changes into
increased and decreased groups (Supplementary Fig. 3). Of the 18
glucose-responsive molecules that changed significantly by
glucose ingestion, 6 increased and 12 decreased. The molecules
that increased included glucose, insulin, C-peptide, intact-active
GIP (active), pyruvate, and total bile acid (Supplementary Fig. 3).
The molecules that decreased included cortisol, free fatty acids,
total ketone bodies, glutamic acid, citrulline, methionine, iso-
leucine, leucine, tyrosine, 4-methyl-2-oxopentanoate, growth
hormone, and Glu+ threo-beta-methylaspartate (Supplementary
Fig. 3). We also analyzed the response of the molecules to oral
water ingestion as a control, and found that no molecules showed
significant changes by oral water ingestion, confirming that the
changes we detected reflected a physiological response to
glucose ingestion (Supplementary Fig. 2b, Supplementary Data 1).
We selected 18 molecules for each metabolic pathway and

showed them in Fig. 1. For the glucose metabolism-related
molecules, glucose, insulin, C-peptide, and GIP showed a
statistically significant increase by oral glucose ingestion (Fig. 1,
Supplementary Figs. 2 and 3). The lipids, free fatty acids, and total
ketone bodies (sum of 3-hydroxybutyrate and acetoacetate)
significantly decreased, whereas triglycerides and total cholesterol
did not show significant changes (Fig. 1, Supplementary Figs. 2
and 3). For the amino acids, leucine, isoleucine, tyrosine, and
citrulline significantly decreased, whereas arginine and alanine did
not show significant changes (Fig. 1, Supplementary Figs. 2 and 3).
For the hormones, the growth hormone significantly decreased
(Fig. 1, Supplementary Figs. 2a and 3). Inorganic phosphorus and
other metabolites such as carnitine did not show significant
changes (Fig. 1, Supplementary Figs. 2 and 3).
For the molecules where an increase was indicated, glucose and

insulin changed transiently (Fig. 1). For the molecules where a
decrease was indicated, free fatty acids changed transiently,
whereas the amino acids changed sustainedly (Fig. 1). A temporal
pattern of glucose and leucine was similar among individuals,
whereas the temporal pattern of growth hormone largely differed
among individuals (Fig. 1). Furthermore, although the temporal
patterns of both glucose and leucine were similar among
individuals, the relation among individuals of glucose changed
over time, whereas that of leucine was constant over time (Fig. 1).
For the amino acids, the individual temporal patterns of molecules
such as leucine, isoleucine, and citrulline were similar among
molecules (Fig. 1) but differed from that of alanine. For the lipids,
the temporal pattern of citrulline and free fatty acids were similar
(Fig. 1). Taken together, these results indicate that the temporal
patterns of the molecules that responded to the glucose ingestion
have the following four features: The first feature is that some
molecules changed transiently, whereas others changed sus-
tainedly (temporal pattern components). The second feature is
that some molecules had a similar temporal pattern among
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Fig. 1 Time courses of blood molecules by glucose ingestion. Time courses of 18 representative blood molecules by glucose ingestion in 20
healthy human subjects. Gray, each subject; black, the mean with a standard deviation of 20 subjects. Red box, glucose metabolism-related
molecules; green box, lipids; blue box, amino acids; pink box, hormones; purple box, ions; black box, other metabolites. The asterisks indicate
the time points (in minutes, min.) when molecules showed an absolute log2 fold change to the value at fasted state larger than 0.585 (20.585=
1.5) and a false discovery rate- (FDR-)adjusted p-value (q-value) <0.1 (Supplementary Fig. 3). Abbreviations for the molecule as follows:GIP
(active), gastric inhibitory polypeptide (active).
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individuals, but others did not (the temporal pattern similarity
among individuals). The third feature is that some molecules did
not change in the relationships among individuals over time, but
others did change (the temporal variation of relation among
individuals). The fourth feature is that some molecules had a
similar temporal pattern among molecules, but others did not (the
temporal pattern similarity among molecules).

Classification of the temporal patterns of molecules
We examined the characteristics of the temporal patterns
(increase or decrease and transient or sustained) of the molecules
by hierarchical clustering of normalized time courses of 83
molecules (Fig. 2, Supplementary Data 2). We normalized time
courses as a ratio of relative temporal changes to the fasting

values averaged among individuals to the variances among
individuals (see the “Methods” section).
The clusters included 18 glucose-responsive molecules (Supple-

mentary Fig. 3). Cluster 1 showed a large transient decrease in
citrulline (peaking at 150 min) and free fatty acids (peaking at
150min). Cluster 2 showed a large, sustained decrease in
isoleucine, leucine, methionine, and 4-methyl-2-oxopentanoate.
Cluster 3 showed a small transient decrease in total ketone bodies
together with the pancreatic glucagon, citrate and inorganic
phosphorus. Cluster 4 showed a small, sustained decrease in
tyrosine, valine, phenylalanine, and ornithine. For the glucose
metabolism-related molecules assigned to cluster 5, 6 showed a
large transient increase, including C-peptide (peaking at 120min),
GIP (peaking at 20min), glucose (peaking at 45 min), and insulin
(peaking at 60min). Cluster 7 showed a small transient increase in

Fig. 2 Classification of the temporal patterns of molecules. a Heat map of the normalized time course of 83 molecules. Molecules are
ordered by hierarchical clustering using Euclidean distance and Ward’s method. The colours and numbers on the tree diagram indicate the
cluster that each molecule belongs to. The dashed line indicates the threshold for dividing the cluster. The colours assigned to the names of
molecules correspond to the metabolic group (inset). The circles indicate 18 glucose-responsive molecules that showed a significant change
by glucose ingestion (Supplementary Fig. 2). b Averaged time courses (in minutes (min)) of the molecules for all 13 clusters. The panels show
average (thick line) and individual (thin line) time courses of the molecules in a cluster. We performed hierarchical clustering of normalized
time courses of 83 molecules. The time courses were divided into 13 clusters characterized by the difference of the temporal pattern of the
molecules. We defined the amplitude of the temporal changes of the cluster as large (molecules whose absolute values exceed 2.5, even if just
one instance), small (between 1.5 and 2.5), or not clear (<1.5). We also defined transient and sustained patterns of clusters; transient patterns
of clusters included molecules that returned to 50% of their maximum values during the time courses; all others were sustained. Note that
“Normalized concentration” is dimensionless. Abbreviations for the molecules are as follows: GIP (active) gastric inhibitory polypeptide
(active), SM-C IGF-1 somatomedin-C insulin-like growth factor I; ester type Cho ester type cholesterol, HDL cholesterol high-density
lipoprotein cholesterol, LDL cholesterol low-density lipoprotein cholesterol, cholesterol E ratio cholesterol ester ratio, BUN blood urea
nitrogen, hs-CRP high-sensitivity C-reactive protein. Glu glutamic acid.
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pyruvate together with lactate. Cluster 8 showed a small,
sustained increase in other metabolites such as choline, betaine,
creatine, and total bile acid. Cluster 10 showed a small, sustained
decrease in glutamic acid, cortisol, and Glu+ threo-beta-methy-
laspartate. Cluster 11 showed a rapid increase after a sustained
decrease in the growth hormone. Clusters 9, 12, and 13 did not
show clear temporal patterns including for cholesterol, some
amino acids and other metabolites
Both the amino acids and the lipids showed large decreases; the

amino acids showed sustained decreases, whereas the lipids
showed transient decreases. Although the glucose metabolism-
related molecules showed a transient increase, the amplitudes of
glucose, insulin, C-peptide, and GIP were larger than those of
lactate and pyruvate. Taken together, the temporal patterns of
each cluster are characterized by transient or sustained temporal
patterns and by their amplitudes.

Temporal pattern components of molecules
The molecules are characterized by transient or sustained
temporal patterns and by their amplitudes, suggesting that the
temporal patterns of molecules could be decomposed into a few
components. Since clustering analysis alone cannot decompose
the differences in temporal patterns into components, we
performed principal component analyses of the normalized time
courses of 83 molecules to extract the characteristics of the
temporal patterns.
The cumulative explained variance rate of the first principal

component (PC1) and the second principal component (PC2)
(Supplementary Fig. 4A) exceeded 93%, suggesting that the
normalized time courses were characterized by two components,
PC1 and PC2 (Fig. 3). “Factor loading” is the correlation between
the principal component and each variable (time point), and
“scores” are the projections of sample points (molecules) on the
principal component direction. In short, factor loading represents
time dependency in the principal component and scores
represent the contributions of each molecule to the principal
component.
For the factor loadings, PC1 was large in the positive direction at

all time points except for 0 min, and it reached its maximum at
90min (Fig. 3, red lines; Supplementary Fig. 4b). PC2 changed
from a positive to a negative direction over time (Fig. 3, red lines;
Supplementary Fig. 4b). According to the time series for the factor
loading, PC1 captures the “amplitude and direction” of the

temporal pattern, and PC2 captures the “rate” of the temporal
pattern (Supplementary Fig. 4c). The transient temporal pattern
depends on the ratio of PC1 to PC2. When the signs of PC1 and
PC2 are the same (Supplementary Fig. 5, first and third quadrants),
the larger the ratio of PC2 to PC1, the more transient the temporal
pattern, whereas when the signs of PC1 and PC2 are opposite
(Supplementary Fig. 5, second and fourth quadrants), the larger
the ratio of PC2 to PC1, the less transient the temporal pattern.
For the scores, the PC1 of clusters 5 and 6 (glucose metabolism-

related molecules) was positively high (Fig. 3; Supplementary Fig.
5, first quadrant). The PC1 of cluster 2 (amino acids) was negatively
high, and the PC1 of cluster 1 (free fatty acids and citrulline) was
negatively higher than the PC1 of other clusters (Fig. 3;
Supplementary Fig. 5, second and third quadrants). These results
indicate that the molecules in cluster 5 (C-peptide) and cluster 1
had larger positive and negative amplitudes than others,
respectively. Cluster 10 (growth hormone) was close to 0 (Fig. 3;
Supplementary Fig. 5, third quadrant), indicating that growth
hormone showed a small amplitude. For the clusters with a
positively high PC1 (a large positive amplitude), the absolute value
of the PC2 of cluster 6 (glucose, insulin, and GIP) was higher than
that of cluster 5, indicating that the molecules in cluster 6 more
rapidly increased than the molecules in cluster 5 (Fig. 3;
Supplementary Fig. 5, first quadrant). For the clusters with a
negatively high PC1 (a large negative amplitude), the PC2 of
cluster 2 (methionine, isoleucine, leucine, and 4-methyl-2-oxo-
pentanoate) was positively higher than the PC2 of clusters 1,
indicating that the molecules included in clusters 1 more rapidly
decreased than those included in cluster 2 (Fig. 3; Supplementary
Fig. 5, second and third quadrants). For cluster 11, the PC2 of
growth hormone was negatively high (Fig. 3; Supplementary Fig.
5, third quadrant), indicating rapid growth in growth hormone.
The temporal patterns of each cluster indicated by hierarchical
clustering analysis can be explained by two components: (1)
amplitude and direction and (2) rate. The varying composition of
the temporal components of the molecules indicates the
possibility of selective metabolic control of each cluster by
glucose ingestion.

Temporal pattern similarity and relation among individuals
To examine the temporal pattern similarity among individuals, we
defined the temporal pattern similarity among individuals (TPSI) as
an index by calculating the correlation coefficient between the
time courses connecting all the time courses of the combination
of selecting two from all individuals for each molecule (see the
“Methods” section). The higher the index number, the more similar
the temporal pattern is among individuals. For the 18 glucose-
responsive molecules (Supplementary Fig. 3), the molecules
whose temporal patterns were similar among individuals were
the amino acids (citrulline, methionine, isoleucine, and leucine),
and glucose metabolism-related molecules (glucose, insulin, C-
peptide, and GIP), and the lipids (free fatty acids) (Fig. 4a). The
molecules whose temporal patterns were different among
individuals were the hormones (cortisol and growth hormone)
and the lipids (total ketone bodies) (Fig. 4a).
We defined TVRI (the temporal variation of the relationships

among individuals) as an index of the change of the relationships
among individuals over time by calculating an average variation
over time of z-scored values at each time point for each molecule
(see the “Methods” section). The higher the index number,
the more constant the relation is among individuals over time.
For the 18 glucose-responsive molecules (Supplementary Fig. 3),
the relation among the individual amino acids (tyrosine, 4-methyl-
2-oxopentanoate, citrulline, and isoleucine) was constant over
time. For the glucose metabolism-related molecules (glucose,
insulin, and GIP) and the lipids (free fatty acids), the relation
among individuals changed over time.

Fig. 3 Temporal pattern components of molecules. Biplot of factor
loadings and scores of time courses of all molecules. The brown
lines indicate factor loading and numbers indicate time points (in
minutes (min)). The dots indicate the scores of the molecules. The
colours of the dots and ellipses indicate the colours of the clusters
classified by hierarchical clustering analysis (Fig. 2). The + symbol
indicates the centre coordinates of the ellipses. The panels show
average (thick line) and individual (thin line) time courses of the
metabolites in a cluster. Numbers in brackets indicate the explained
variance rate of each principal component (PC1 and PC2).
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These results indicate the following: (1) The temporal patterns
of the amino acids, the glucose metabolism-related molecules,
and free fatty acids were similar among individuals (Fig. 4c); and
(2) for amino acids, the relation among individuals at each time

point was constant over time, whereas for the glucose
metabolism-related molecules and free fatty acids, the relation
among individuals changed over time (Fig. 4c). These results
suggest that the regulation of amino acids is similar and
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conserved among individuals, whereas the regulation of glucose
metabolism-related molecules and free fatty acids are different
among individuals.

Correlation of the values of each molecule between the
fasting state and each time point after glucose ingestion
Some of the amino acids such as leucine, isoleucine, tyrosine,
citrulline, methionine, and 4-methyl-2-oxopentanoate indicated a
higher TVRI value, which may be due to a correlation of values at
fasting state with those at each time point. To study that relation,
we determined whether the high fasting values in some
individuals remained high after oral glucose ingestion. For the
18 glucose-responsive molecules, we correlated the values of each
between the fasting state and each time point after glucose
ingestion (Supplementary Fig. 3).

We performed hierarchical clustering of the Pearson’s correla-
tion coefficients of the 18 molecules (Fig. 5). Cluster 1 (the glucose
metabolism-related molecules such as glucose and GIP) showed a
high correlation only at 240min after glucose ingestion, but not at
other time points (Fig. 5), indicating that the basal blood glucose
at fasting state and at 240min was robustly maintained. Cluster 2
(the other glucose metabolism-related molecules, hormones, and
lipids) showed high correlations at the early time points
(10–60min) after glucose ingestion, but the correlations gradually
decreased at the later time points (Fig. 5). Cluster 3 (cortisol, total
ketone body) showed high correlations for a longer time
(10–120min) than Cluster 2, but the correlations suddenly
decreased at the later time points.
Cluster 4 (the amino acids) showed a high correlation at all time

points (Fig. 5). The amino acids always maintained a higher
correlation among individuals before and after glucose ingestion,
indicating that the amino acids had a constant and small
variability in relative response to fasting values among individuals.
For the glucose metabolism-related molecules, glucose showed a
high correlation only at 240 min, whereas insulin showed high
correlations at earlier time points; these results indicated that,
within each individual, glucose was constantly maintained before
and at 240 min after oral glucose ingestion), whereas insulin was
constantly maintained at the transient phase (20 min) after oral
glucose ingestion. Overall, these results support the idea that the
regulation of amino acids is always conserved among individuals.

The temporal patterns among molecules
The analysis of TPSI revealed that the similarity of temporal
patterns among individuals differs depending on the molecule
(Fig. 3). The similarities of temporal patterns among blood
molecules and among individuals have often separately been
analyzed3,4. Therefore, we quantified the similarity of temporal
patterns among molecules, including information on individual
differences in temporal patterns.
To examine the temporal pattern similarity among molecules,

we defined TPSM (the temporal pattern similarity among
molecules) as an index of the similarity of temporal patterns
among molecules by calculating the correlation coefficient
between the time courses connecting all individuals (see the
“Methods” section). A high positive TPSM value means that
molecules are synchronized in the in-phase, whereas the negative
TPSM value means that molecules are synchronized in anti-phase.
Overall, temporal patterns among molecules in the same

metabolic group were similar to those in the different metabolic
groups (Fig. 6a). For the glucose metabolism-related molecules
(Fig. 6a, red), the temporal patterns of glucose, insulin, C-peptide,
and GIP were in-phase, but the temporal pattern of pancreatic
glucagon was anti-phase, which is consistent with the counter-
action between insulin and glucagon26. For the amino acids
(Fig. 6a, blue), the temporal patterns of citrulline, methionine,

Fig. 4 Temporal pattern similarity and relationships among individuals. a The temporal pattern similarity among individuals (TPSI) of all 83
molecules. b The temporal variation of the relationships among individuals (TVRI) of all 83 molecules. The colour of the bar indicates the
metabolic group (inset). The circles indicate 18 glucose-responsive molecules that showed a significant change after glucose ingestion
(Supplementary Fig. 3). Abbreviations for the molecules are follows: GIP (active) gastric inhibitory polypeptide (active), SM-C IGF-1
somatomedin-C insulin-like growth factor I, ester type Cho ester type cholesterol, HDL cholesterol high-density lipoprotein cholesterol, LDL
cholesterol low-density lipoprotein cholesterol, cholesterol E ratio cholesterol ester ratio, BUN blood urea nitrogen, hs-CRP high-sensitivity
C-reactive protein, Glu glutamic acid. c The distribution of the TPSI and TVRI values of all molecules. The colours of the dots indicate the
metabolic group (inset in (a)). The 18 glucose-responsive molecules that showed a significant change after glucose ingestion (Supplementary
Fig. 3) are labeled. The time courses (in minutes (min); only trends are shown) are examples where the waveform of each individual changes
according to the TPSI and TVRI values. Upper right: Both the TPSI and TVRI values are high. Upper left: The TPSI values are high, but the TVRI
values are low. Lower left: Both the TPSI and TVRI values are low. Abbreviations for the molecules that showed a significant change by glucose
ingestion are as follows: Cit citrulline, Cor cortisol, CPR C-peptide, FFA free fatty acids, GH growth hormone, GIP gastric inhibitory polypeptide
(active), Glc glucose, Glu glutamic acid, Glu+ TBM Glu+ threo-beta-methylasparate, Ile isoleucine, Ins insulin, Ketone total ketone bodies, Leu
leucine, Met methionine, Pyr pyruvate, TBA total bile acid, Tyr tyrosine, 4M2O 4-methyl-2-oxopentanoate.

Fig. 5 Correlation of values for each molecule. A heat map shows
the correlation coefficients between the fasting and each time point
(in minutes (min)) among individuals. The 18 glucose-responsive
molecules showed a significant change after glucose ingestion was
selected. Molecules are ordered by hierarchical clustering using
Euclidean distance and Ward’s method. The colours and numbers on
the tree diagram indicate the cluster of each molecule. The dashed
line indicates the threshold for dividing the cluster. The colours
assigned to the names of molecules correspond to the metabolic
group (inset). Abbreviations for the molecules are follows: GIP
(active), gastric inhibitory polypeptide (active); Glu glutamic acid.
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Fig. 6 Temporal pattern similarity among blood molecules. a Heat map showing the temporal pattern similarity among molecules (TPSM)
among all molecules. The molecules are ordered by metabolic group and their label colours correspond to the metabolic group list in the
inset in part (b). Abbreviations for the molecules are as follows: GIP (active) gastric inhibitory polypeptide (active), SM-C IGF-1 somatomedin-C
insulin-like growth factor I, ester type Cho ester type cholesterol, HDL cholesterol high-density lipoprotein cholesterol, LDL cholesterol low-
density lipoprotein cholesterol, cholesterol E ratio cholesterol ester ratio, BUN blood urea nitrogen, hs-CRP high-sensitivity C-reactive protein,
Glu glutamic acid. b The upper histogram shows the distribution of absolute TPSM (TPSMAbs) values among all molecules (top). The colours of
the bars on the histogram or graph correspond to the metabolic group (inset). The lower histogram shows the distribution of TPSMAbs values
among the same metabolic group. c The graph shows the cumulative distribution of TPSMAbs among all molecules.
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isoleucine, and leucine were in-phase, but the temporal pattern of
alanine was anti-phase (Fig. 6a).
To examine the differences in temporal pattern similarity

among molecules in the same or different metabolic groups, we
colour-coded the distribution of the TPSM values according to its
inclusion in the same metabolic group or a different metabolic
group (Fig. 6b, upper panel). We defined TPSMAbs as the
calculated absolute value of TPSM to eliminate the distinction
between positive and negative because we focused on the
magnitude of the value. Many of TPSMAbs values within the same
group, such as the glucose metabolism-related molecules (shown
in red), the amino acids (blue), and the lipids (green) exceeded 0.6
(Fig. 6b, top and bottom), whereas those TPSMAbs values in
different metabolic groups were lower than 0.6. Therefore, we set
the threshold of the TPSMAbs at 0.6. Because the total number of
total molecules in each metabolic group is different, we normal-
ized the TPSMAbs values in the same or different metabolic groups
by the total number of total molecules in each group and
obtained the ratio of TPSMAbs value for each group (cumulative
distribution) (Fig. 6c). According to the shape of this distribution,
the different metabolic groups (gray) showed an abrupt increase
with an increase in the TPSMAbs value, whereas the glucose
metabolism-related molecules (red) and lipids (green) showed
gradual increases. The amino acids (blue) showed a more gradual
increase, indicating that the group of amino acids showed more
similar temporal patterns to each other within the group
compared to the other groups.
These results indicated that the temporal patterns among

molecules in the same metabolic group were more similar than
those in the different metabolic groups. In particular, the amino
acids showed the most similar temporal patterns among
molecules rather than other groups.

Connections of molecules exhibiting similar temporal patterns
To understand the overall relations among molecules, we created
an undirected graph with molecules as nodes and temporal
pattern similarities as connections (Fig. 7). We set the threshold of
the TPSMAbs at 0.6 (Fig. 7a) and connected molecules above this
threshold (Fig. 7b). The connections consisted of seven indepen-
dent components (Fig. 7b, i–vii). We defined a component as a set
of molecules that were not connected to any other molecule
(Supplementary Data 3).
The “same” metabolic groups, but not the “different” metabolic

groups, were connected, indicating that the molecules in the
“same” group showed similar temporal patterns, but the patterns
in “different” groups were different. As an example, components ii,
iii (for glucose metabolism-related molecules) and component iv
(for ions) contained only molecules belonging to the same
metabolic group.
The majority of molecules (34 out of 57 molecules)—the

glucose metabolism-related molecules (glucose and insulin),
amino acids, free fatty acids, and total ketone bodies—were
assigned to component v (Fig. 7b). However, the amino acids and
glucose metabolism-related molecules were not directly con-
nected. Importantly, citrulline (an amino acid) mediated the
connections between other amino acids and glucose metabolism-
related molecules through lipids such as free fatty acids and total
ketone bodies. This result indicated that citrulline can be a crucial
molecule for connecting amino acids to glucose metabolism-
related molecules. For the amino acids, only citrulline was
connected to the free fatty acids, which was consistent with the
classification of citrulline into the same cluster as free fatty acids
(Fig. 2).
To quantify the importance of citrulline’s role in connecting

amino acids and lipids, we calculated betweenness centrality, an
index of the degrees to which a node (molecule) is located on the
shortest path between two different nodes27. The higher the

index, the more connectivity the molecule possesses between
nodes. The betweenness centrality of citrulline was 0.1 and was
the highest of all molecules, indicating that citrulline indeed
serves as a crucial molecule of connecting amino acids and lipids.
This result also suggests that the temporal pattern of citrulline is
intermediate between amino acids, lipids, and glucose
metabolism-related molecules.

The four features of temporal patterns characterize individual
differences among molecules
In previous sections, we characterized the four features of
temporal patterns of molecules that respond to glucose ingestion.
We characterized the temporal pattern of the molecule as
increased or decreased, transient or sustained, and rapid or slow
(the first feature). We also characterized the temporal patterns of
molecules by the similarity of temporal patterns among indivi-
duals (TPSI, the second feature), as the change of the relation
among individual magnitude over time (TVRI, the third feature),
and as the similarity of temporal patterns among molecules
(TPSM, the fourth feature). We will discuss the first feature later.
We distinguished the molecules using the values for TPSI, TVRI,
and TPSM. Because TPSM is the index defined for pairs of
molecules, we defined a quantitative value of TPSM for each
molecule, degNormalized, by counting the degrees (deg) in the
graph between molecules with a TPSM value above 0.6. The larger
the value of degNormalized, the more connections.
We plotted the three indices (TPSI, TVRI, and degNormalized) on a

scatter plot (Fig. 8). Because the total number of molecules in each
metabolic group differed, we normalized the degNormalized values
in the same metabolic groups by the total number of molecules in
each group.
The amino acids with high TPSI and TVRI values also had high

degNormalized values (Fig. 8; dotted square). The glucose
metabolism-related molecules and free fatty acids with high TPSI
values but low TVRI values had low degNormalized values (Fig. 8;
dotted circle). Taken together, the amino acids whose temporal
patterns were similar among individuals and whose relation
among individuals was constant over time showed temporal
patterns that were similar. The glucose metabolism-related
molecules and free fatty acids, whose temporal patterns were
similar among individuals but whose relation among individuals
frequently changed over time showed temporal patterns that
were not similar. Also, it is noteworthy that all the essential amino
acids had high TPSI and degNormalized values (Fig. 8; dotted square),
whereas the other amino acids had low TPSI and degNormalized

values (Fig. 8; dotted triangle). These results suggest that essential
amino acids show similar temporal patterns among individuals
and among essential amino acids, whereas other amino acids do
not show the similar temporal patterns among individuals and
among the amino acids.
For the first feature, hierarchical clustering analysis showed

distinct temporal patterns, and principal component analysis
decomposed properties of the temporal patterns into “amplitude”
and “rate” (Figs. 2 and 3). The different composition of temporal
components of molecules indicated that there may be a selective
metabolic control mechanism for each cluster by glucose
ingestion.
After glucose ingestion, the “amplitude” and “rate” of the

metabolism of amino acids and lipids was controlled by glucose
and insulin. We examined the relation between the “amplitude”
and “rate” of glucose and insulin and the “amplitude” and “rate” of
other molecules. Here, we targeted only glucose-responsive
molecules classified in cluster 1–6 (Fig. 2). The scores of principal
component analysis captured the features of the ‘averaged’
temporal patterns of each molecule. We needed to calculate the
feature values corresponding to the scores for each individual to
examine the relationship between the “amplitude” and “rate” of
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glucose and insulin and the “amplitude” and “rate” of other
molecules. We defined the amplitude of the temporal pattern of
the molecule as the area under the curve (AUC) (Fig. 8b), because
AUC was correlated with the score of PC1 of each molecule
(Supplementary Fig. 9A). We also defined the rate of the response
of the temporal pattern of the molecules as TAUC1/2 (the time to

reach half of AUC) because TAUC1/2 was correlated with the ratio of
the score of PC1 to PC2 of each molecule (Supplementary Fig. 9B).
AUC and TAUC1/2 are simple and useful because it can be directly
calculated from experimental data, and are an indices that can be
used for other different experimental data. The fact that AUC and
TAUC1/2 were correlated with PC1 and the ratio of the score of PC1

Fig. 7 Connections of molecules exhibiting similar temporal patterns. a The distribution of absolute temporal pattern similarity (TPSMAbs)
values among all molecules. The dashed line indicates the threshold of TPSMAbs at 0.6. The colours of the histogram bars correspond to the
metabolic group (top left in part b). b Connections of molecules exhibiting similar temporal patterns. Molecules above the threshold (0.6 in
part a) are connected. The colours of the molecules correspond to the metabolic group (top left). The colours of the lines indicate positive or
negative TPSM values, and the thickness of the lines corresponds to the magnitude of TPSMAbs, whereby the thicker the line, the greater the
value (top centre). Components (i–vii) are defined as a set of molecules that are not connected to any other molecule. Abbreviations for the
molecules are follows: ester type Cho ester type cholesterol, HDL cholesterol high-density lipoprotein cholesterol, LDL cholesterol low-density
lipoprotein cholesterol, cholesterol E ratio cholesterol ester ratio, BUN blood urea nitrogen, Glu glutamic acid. c Betweenness centrality for the
molecules shown in part b.
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to PC2, respectively (Supplementary Fig. 9), supports the idea that
PC1 and PC2 captured amplitude and rate, respectively.
We calculated the correlation coefficient (r) of individual AUC

and TAUC1/2 between glucose, insulin, and other molecules and
−log10 false discovery related- (FDR-) adjusted p value
(q value). The q values were calculated by Storey’s procedure28.
Note that the transient or sustained and the rapid or slow
temporal pattern depends on the ratio of the score of PC1 to
the score of PC2 (Fig. 3).
For the AUC, glucose was significantly (q < 0.1) correlated with

C-peptide (r= 0.74), free fatty acids (r=−0.61), and total ketone
bodies (r= –0.54), and insulin was significantly correlated with
C-peptide (r= 0.71) and amino acids such as isoleucine (r= –0.73),
leucine (r= –0.73), methionine (r= –0.65), and tyrosine (r= –0.63).
These results indicate that glucose has an amplitude component

that is similar to that of C-peptide, free fatty acids, and total
ketone bodies, whereas insulin has an amplitude component
similar to that of C-peptide and amino acids. For TAUC1/2, glucose
was not significantly correlated with any molecule, and insulin was
significantly correlated with C-peptide and free fatty acids (r=
0.93 and r= 0.65, respectively). These results indicate that only
insulin has a rate component similar to that of C-peptide and free
fatty acids. The correlation of the amplitude between glucose and
insulin is consistent with an earlier study6. Similarly, the correlation
between the amplitude of the insulin and C-peptide is consistent
with the result in an earlier study29. In addition, a correlation
between the rate of C-peptide and insulin was appropriate from
the viewpoint of their metabolism.
Taken together, these results indicate that, in the amplitude

component, the lipids reflect glucose, whereas the amino acids
reflect insulin. In the rate component, no molecules reflect
glucose, whereas lipids reflect insulin.

DISCUSSION
In this study, we demonstrated that blood molecules have
different temporal patterns among individuals and among
molecules by measuring 76 blood metabolites and 7 blood
hormones after oral glucose ingestion in 20 human subjects over
13 time steps. Of the 83 molecules, 18 glucose-responsive
molecules showed significant changes before and after glucose
ingestion. For the glucose metabolism-related molecules, glucose,
insulin, C-peptide, and GIP showed a statistically significant
increase (Fig. 1, Supplementary Figs. 2 and 3). For the lipids, free
fatty acids and total ketone bodies significantly decreased (Fig. 1,
Supplementary Figs. 2 and 3). For the amino acids, leucine,
isoleucine, tyrosine, and citrulline significantly decreased (Fig. 1,
Supplementary Figs. 2 and 3). For the 18 glucose-responsive, the
results were consistent with earlier observations3–11,30,31.
We further classified the temporal patterns by hierarchical

clustering analysis and decomposed the properties of the
temporal patterns into “amplitude” and “rate” by principal
component analysis (Figs. 2 and 3). Amino acids including leucine
and isoleucine indicated a slow decrease, while free fatty acids
and total ketone bodies indicated a rapid decrease (Figs. 2 and 3),
both of which are consistent with an earlier study5. This result
suggested that the suppression of the degradation of triglycerides
and the suppression of ketogenesis occur more rapidly than the
suppression of proteolysis in response to oral glucose ingestion5.
In this study, citrulline showed a greater and more rapid decrease
than other amino acids, which was similar to the response of free
fatty acids. (Figs. 2 and 3), suggesting that the reduction of urea
synthesis is also more rapid than the suppression of proteolysis.
Citrulline and lipids returned to fasting levels faster than amino
acids. This result suggests that the duration of the suppression of
the degradation of triglycerides and the suppression of ketogen-
esis and the reduction of urea synthesis are shorter than that of
the suppression of proteolysis. In this study, long time measure-
ments of comprehensive molecules enabled us to discuss the
duration of metabolic control.
Glucose metabolism-related molecules (glucose, insulin, C-

peptide, and GIP) were classified into clusters 5 and 6, which
showed a large increase (Figs. 2 and 3). The temporal patterns of
glucose and insulin reached the peak 30 to 60min after glucose
ingestion (Figs. 2 and 3). These results were consistent with earlier
observations5,6,32–34. C-peptide gradually increased and reached a
peak at about 60 min, which was also similar to an earlier study34.
C-peptide could show a larger increase than insulin because
C-peptide was not extracted by the liver15,16. GIP reached the peak
faster than glucose and insulin (Figs. 2 and 3). This is reasonable
because GIP is secreted from the digestive tract with food
ingestion and triggers insulin release and subsequent glucose
absorption, which are consistent with earlier observation17,33.

Fig. 8 The Four Features of Temporal Patterns That Characterize
Individual Differences Among Molecules. a The distribution of TPSI,
TVRI, and degNormalized of all molecules. The colours of the dots
correspond to the metabolic group (inset). The names of the 18
glucose-responsive molecules that showed a significant change
after glucose ingestion (Supplementary Fig. 3) are labelled and their
abbreviations are as follows: Cit citrulline, Cor cortisol, CRP C-
peptide, FFA free fatty acids, GH growth hormone; Glu+ TBM Glu+
threo-beta-methylasparate, GIP gastric inhibitory polypeptide
(active), Glc glucose, Glu glutamic acid, Ile isoleucine, Ins insulin,
Ketone total ketone bodies, Leu leucine, Met methionine, Pyr
pyruvate, TBA total bile acid, Tyr tyrosine, 4M2O 4-methyl-2-
oxopentanoate. b Properties of temporal patterns. AUC is the area
under the curve, TAUC1/2 is the time to reach half of AUC.
c Connections of molecules showing significant correlation (q <
0.1). The colours of the molecules correspond to the metabolic
group (middle right). The colours of the lines indicate a positive or
negative correlation coefficient, and the thickness of lines corre-
sponds to the magnitude of the correlation coefficient (middle
right). Note that |correlation| is an absolute value of the correlation
coefficient. The thicker the line, the greater the |correlation|. No pair
of the molecules had a 0.8 < |correlation| ≤ 0.9.
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We quantified the similarity of temporal patterns among
individuals by defining TPSI and TVRI. An earlier study classified
the temporal patterns of each of the limited molecules according
to individual differences, and compared and discussed age,
gender, BMI, and glucose tolerance indices among the classified
groups3. However, comprehensive analysis among molecules and
among individuals have not been conducted. In this study, we
defined TPSI and TVRI for each molecule, and compared across
comprehensive molecules to extend our discussion to individual
differences in metabolic control. The temporal patterns of amino
acids, glucose metabolism-related molecules, and lipids (free fatty
acids) were similar among individuals (Fig. 4). For amino acids, the
relations among individuals were constant at each time point,
whereas those for the glucose metabolism-related molecules and
the free fatty acids were different. This result suggested that the
metabolic control of amino acids was similarly conserved among
individuals, but that of the glucose metabolism-related molecules
and free fatty acids differed among individuals, although all
individuals were healthy.
Amino acids were always highly correlated with fasting values

at each time point after glucose ingestion (Fig. 5), suggesting that
amino acids are controlled by relative value, rather than absolute
concentration, within each individual. For the glucose
metabolism-related molecules, glucose was highly correlated with
fasting values only at 240 min, whereas insulin was highly
correlated with earlier time points, suggesting that glucose
controls concentrations at 240 min and insulin controls the
response during the transitional period (20 min) after oral glucose
ingestion.
We quantified the similarity of temporal patterns among

molecules by defining TPSM. An earlier study mainly used average
value to calculate the similarity of temporal patterns among
molecules, and did not take into account individual differences in
temporal patterns among individuals in each molecule. Our
analysis of TPSI revealed that the similarity of temporal patterns
among individuals differs depending on the molecule. Therefore,
we quantified the similarity of temporal patterns among
molecules, including information on individual differences in
temporal patterns. The temporal patterns among molecules in the
same metabolic group were more similar than those in the
different metabolic groups (Fig. 6). In particular, the amino acids
showed the most similar temporal patterns among molecules
rather than other groups (Fig. 6). This result is consistent with
earlier studies, which indicated that the response before and after
glucose ingestion was correlated in the same metabolic group,
particularly in the amino acid group6. In this study, we confirmed
that the correlation of detailed time patterns over 4 h also showed
the same result.
Among molecules that showed highly similar temporal patterns,

the temporal pattern of citrulline was intermediate among the
amino acids, lipids, and glucose metabolism-related molecules
(Fig. 7). This result suggests that citrulline shows an intermediate
response to these different responsive molecular groups, which is
reflected by the suppression of proteolysis (amino acid) and the
suppression of degradation of triglyceride (free fatty acids); this
response is known as insulin action. The decrease in citrulline by
glucose ingestion reflects a reduction in urea synthesis5. A
sensitivity to glucose ingestion might be similar among citrulline
and lipids. The similar responses among different metabolic
pathways will be studied in the future.
An earlier but similar study performed correlation analysis using

calculated features such as AUC among molecules and showed
that some amino acids formed correlation clusters depending on
whether ingestion was of glucose alone or glucose+ protein-
hydrolysate13. In this study, we focused on the relation between
the amplitude and rate of glucose or insulin and the amplitude
and rate of the temporal pattern of other molecules and
determined the following: For the amplitude component, the

lipid reflected glucose and the amino acid reflected insulin. For
the rate component, no molecule reflected glucose and the lipid
reflected insulin. After glucose ingestion, the amplitude and rate
of the metabolism of amino acid and lipid were controlled by
glucose and insulin. For the amplitude component, glucose
controlled the lipid, and insulin controlled the amino acid. For
the rate component, glucose controlled no molecule, but insulin
controls the lipid. The selective reflection of the amplitude and
rate components of the lipid and the amino acids with those of
glucose and insulin suggested that lipids and amino acids were
controlled by the selective temporal components of glucose and
insulin.
Temporal patterns may differ depending on demographics of

individuals. We conducted linear regressions for difference to
fasting value of molecules that changed significantly by glucose
ingestion against characteristics of individuals (BMI, Age, Gender)
(Supplementary Data 4). Among 18 molecules, only two mole-
cules, GIP and GH, showed significant correlation with gender.
Therefore, the temporal patterns of these molecules differ
significantly by gender. Other glucose metabolism-related mole-
cules (glucose, insulin, C-peptide), amino acids (leucine, isoleucine,
citrulline), and lipids (free fatty acid, total ketone, body) did not
show significant correlation with individual characteristics. There-
fore, we concluded that the individual differences in the temporal
patterns of these molecules were independent of individual
characteristics except for GIP and GH.
Main limitations in this study are the sample size and

population. However, even in 20 only Japanese subjects, some
blood molecule responses were observed after glucose ingestion,
and these responses were consistent with previous studies3–11,33.
The number of men and women were 6 and 14, respectively, in
this study, and the similar numbers of men and women would be
desirable to draw the conclusions of the effect of gender
difference. Further studies are needed to determine whether
these findings can be replicated in larger samples. The principal
component analyses in this study showed that the temporal
patterns of many molecules were decomposed into “amplitude”
and “rate”. However, growth hormone showed a rapid increase
after a sustained decrease. This means that the temporal pattern
of growth hormone cannot be explained by only two compo-
nents, amplitude and rate. In the future, analysis that can classify
such temporal patterns will be necessary.
In conclusion, we quantified the four features of the temporal

pattern of molecules that respond to glucose ingestion. The first
feature was the decomposability into temporal components. We
succeeded in characterizing the temporal patterns of 83 molecules
by “amplitude” and “rate.” The second feature was the similarity of
temporal patterns among individuals. Amino acids and glucose
metabolism-related molecules were similar among individuals.
The third feature was the relation among individuals over time.
Amino acids did not change the relation among individuals over
time, but glucose metabolism-related molecules and free fatty
acids did. The fourth feature was the similarity of temporal
patterns among molecules. The temporal pattern of citrulline was
intermediate between amino acids, lipids, and glucose
metabolism-related molecules. The features among individuals
and molecules revealed that the amino acids whose temporal
patterns were similar among individuals and whose relation
among individuals was constant over time showed similar
temporal patterns among the amino acids. The glucose
metabolism-related molecules and free fatty acids, whose
temporal patterns were similar among individuals but whose
relation among individuals frequently changed over time did
show similar temporal patterns among them. The relationship
among the fasting values and the values at each time point after
glucose ingestion revealed that amino acids are controlled to
maintain the relative value among individuals throughout
response to glucose ingestion, insulin is controlled to maintain
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the concentrations at the transient phase (20 min) after oral
glucose ingestion among individuals, and glucose is controlled to
maintain the concentrations at 240min after the response among
individuals (Fig. 5).The relation among the amplitude and rate of
glucose and insulin and those of other molecules revealed that
glucose and insulin controlled amino acid metabolism and lipid
metabolism selectively by their temporal components. This study
provides new insights into how the metabolism of each molecule
among individuals is controlled and what is controlled in the
metabolism of each molecule among molecules after glucose
ingestion in healthy subjects. The features of the temporal pattern
of molecules after glucose ingestion that reflect differences in
metabolic control among individuals would be new features for
physiological and pathological mechanisms of human systemic
glucose metabolism among individuals and for personalized
medicine in the future.

METHODS
Subjects
The study included 20 healthy subjects. The subjects’ profiles are shown in
Table 1, and all subjects provided written informed consent.

Blood sampling experiment
After 10 h overnight fast, subjects underwent oral glucose tolerance test
(OGTT) in the morning. An intravenous catheter was inserted into vein of
the forearm and fasting samples were drawn twice, and then a glucose
solution containing 75 g glucose (TRELAN-G75 (AJINOMOTO)) or the same
amount of water was orally ingested within a few minutes. Blood samples
were obtained at 10, 20, 30, 45, 60, 75, 90, 120, 150, 180, 210, 240 min after
ingestion as described previously35. Subjects remained at rest throughout
the test. Blood samples were rapidly centrifuged.

Sample preparation and measurement
Plasma (40 microliters [μL]) was extracted with the addition of 400 μL of
ice-cold methanol containing the internal standards (10 millimolars [mM] L-
methionine sulfone [Wako], 100mM 2-morpholinoethanesulfonic acid
[Dojindo], 100 mM D-10-camphorsulfonic acid [Wako]), 400 μL of

chloroform, and 120 μL of water. After centrifugation at 10,000 × g for
3 min at 4 °C, the separated aqueous layer was filtered through a 5
kilodalton (kDa) cutoff filter (Millipore) to remove protein contamination.
The filtrate (300 μL) was lyophilized and dissolved in 20 μL water
containing the 2 types of reference compounds (200 μM each of trimesate
[Wako] and 3-aminopyrrolidine [Sigma-Aldrich]) for migration time and
then injected into the capillary electrophoresis time-of-flight mass
spectrometry (CE-TOFMS) system (Agilent Technologies)36–38. Among the
measured molecules, GIP (active) was measured using an ELISA kit. Blood
hormones and some metabolites were measured according to methods
developed by LSI Medience Co., Ltd. The methods used to measure each of
these molecules are listed in Supplementary Data 5; among these, the
amino acid fractions measured by liquid chromatography–mass spectro-
metry (LC–MS) are listed in Supplementary Data 6, and the metabolites
measured by CE-TOFMS are listed in Supplementary Data 7.

Ethics Committee certification
We complied with Japan’s Ethical Guidelines for Epidemiological Research,
and the study as approved by the Institutional Review Board and the Ethics
Committee of Tokyo University Hospital. (10264-(4)). Subjects were
recruited by the snow-ball sampling.

Exclusion of blood molecules with a large percentage of
missing values
We calculated missing points for each blood molecule by using the time
series of all subjects. We excluded the molecules from an analysis target
whose percentage of missing points exceeded the top 5% (all 20 subjects ×
14 time points × 5%= 14 time points). Supplementary Data 8 shows the
percentage of missing points of 25 molecules, including at least one or
more missing points among the 83 molecules as an analysis target. In this
study, we considered the mean value to be −10, and the fasting value to
be 0 min.

Classification of blood molecules
We classified the 83 blood molecules selected as analysis targets into
glucose metabolism-related molecules, lipids, amino acids, ions, hormones,
and other metabolites (Supplementary Fig. 2A, Supplementary Data 9). In
this study, the classification and colour coding of each molecule is found in
Supplementary Fig. 2A.

The temporal variation of relation among individuals
We defined the temporal variation of relation among individuals (TVRI) as
an index of the change of the relation among individuals over time by
calculating an average variation over time of z-scored values at each time
point.

xk;t ¼
PNindividual

j¼1 xj;k;t
Nindividual

; Sxk;t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNindividual

j¼1 ðxj;k;t � xk;tÞ2
Nindividual � 1

;

s
(1)

zj;k;t ¼ xj;k;t � xk;t
Sxk;t

; zj;k ¼
PNtime

t¼0 zj;k;t
Ntime

; (2)

Szj;k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNtime

t¼0 ðzj;k;t � zj;kÞ2
Ntime � 1

;

s
(3)

Szj;k ¼
PNindividual

j¼1 Szj;k
Nindividual

; TVRIk ¼ 1� Szj;k : (4)

where xj,k,t indicates the concentration of individual j for blood molecule k
at time point t, Nindividual indicates the number of individuals, and Ntime

indicates the number of time points. xk;t is the individual mean of xj,k,t of
each molecule and each time point, and Sxk;t indicates the standard
deviation (Eq. (1). zj,k,t is a value obtained by normalizing xj,k,t by mean
centering and variance scaling, and zj;k is the mean of zj,k,t in the time
direction (Eq. (2)). zj;k indicates the time-mean of the relative concentration
temporal changes among individuals. Similarly, Szj;k indicates the standard
deviation of zj,k,t in the time direction (Eq. (3)), which is a measure of how
much the relation of individual j of molecule k changes. We defined TVRIk
(the relation among individuals over time) by subtracting Szj;k from 1, which
is the mean of Szj;k for all individuals (Eq. (4)). Thus, TVRIk indicates how the

Table 1. Characteristics of subjects.

Characteristics N= 20

Age (years) 29 ± 9 (20–54)

Gender 6 women, 14 men

Height (cm) 168 ± 8 (153–178)

Weight (kg) 59 ± 9 (41–76)

Waist (cm) 74 ± 8 (60–87)

BMI (kg/m2) 20.8 ± 2.2 (17.5–25.7)

Fasting glucose (mg/dL) 96 ± 8 (82–115)

2-h glucose (mg/dL) 131 ± 35 (75–238)

Fasting insulin (µU/mL) 5.7 ± 2.1 (1.8–10.8)

2-h insulin (µU/mL) 45.71 ± 23.1 (10.6–95.6)

HOMA-IR 1.4 ± 0.6 (0.5–2.7)

HOMA-β 63 ± 21.5 (24.4–106.6)

Data shows mean ± standard deviation. The values in parentheses indicate
the minimum and maximum values. Fasting glucose and fasting insulin
indicate fasting values of glucose and insulin, respectively; and 2-h glucose
and 2-h insulin indicate values of blood glucose and insulin 2 h after
glucose ingestion, respectively.
2-h 2-hour, cm centimetres, HOMA-β homeostasis model assessment of
β-cell function, HOMA-IR homoeostatic model assessment of insulin
resistance, kg kilograms, kg/m2 kilograms per square meter, mg/dL
milligrams per decilitre, µIU/ml million international units per millilitre, N
total sample size.
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relation of individual j of molecule k is constant over time. The higher the
value for TVRIk, the more constant the relation among individuals of
molecule k over time. High-sensitivity C-reactive protein (hs-CRP) was
excluded from this analysis because data about this molecule for the 20
individuals were not available for all time points.

Normalization of time series
For each blood molecule at each time point after glucose ingestion, we
defined a normalized concentration, which is the magnitude of
concentration changes averaged among individuals as follows. We also
normalized time courses as a ratio of relative temporal changes to the
fasting values to the variances among individuals as follows.

xk;t ¼
PNindividual

j¼1 xj;k;t
Nindividual

; (5)

Sk;t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNindividual

j¼1 ðxj;k;t � xk;tÞ2
Nindividual

;

s
(6)

Sk ¼
PNtime

t¼0 Sk;t
Ntime

; (7)

Yj;k;t ¼ xj;k;t � xj;k;0
Sk

; (8)

Yk;t ¼
PNindividual

j¼1 Yj;k;t
Nindividual

: (9)

where xj,k,t indicates the concentration of the individual j, molecule k, time
point t, xk;t indicates the mean of xj,k,t for all individuals (Eq. (5)), and Sk,t
indicates the standard deviation for all subjects (Eq. (6)). Sk indicates the
time-mean of Sk,t (Eq. (7)). We normalized xj,k,t subtracted from xj,k,0 by Sk as
Yj,k,t (Eq. (8)), and calculated the mean of Yj,k,t as Yk;t (Eq. (9)). The
normalized values indicate the ratio of relative temporal changes to
the fasting values to the variances among individuals. The greater the
temporal changes, or the smaller the variances among individuals, the
greater the normalized values.

The temporal pattern similarity among individuals
We defined the temporal pattern similarity among individuals (TPSI) as an
index of the similarity of temporal patterns among individuals as follows.

xj;k ¼ x0j;k;0; � � � ; x0j;k;240
h i

(10)

X ¼ x1;k ; x1;k ; � � � ; x1;k ; x2;k ; � � � ; x2;k ; � � � ; xj;k ; � � � ; xj;k ; � � � ; x19;k
� �

(11)

Y ¼ x2;k ; x3;k ; � � � ; x20;k ; x3;k ; � � � ; x20;k ; � � � ; xjþ1;k ; � � � ; x20;k ; � � � ; x20;k
� �

(12)

TPSIk ¼ ρðX; YÞ: (13)

where x0j;k;t indicates the concentration difference from fasting value of the
individual j of molecule k at time point t,and xj,k indicates the time series vector
of xj,k,t from 0 to 240min (Eq. (10)). X is a vector connecting (20−j) of each time
series vector xj,k from individual jth to 19th, and Y is a vector connecting 19
time series vectors connecting xj+1,k from individual (j+ 1)th to 20th (Eqs. (11)
and (12)). We defined TPSIk (the temporal pattern similarity among individuals)
by using ρ(X,Y), which indicates a Pearson’s correlation coefficient between X
and Y (Eq. (13)). The TPSI indicates a correlation coefficient between the time
courses connecting all the time courses of the combination of selecting two
from all individuals (20C2= (20!/(2!18!))= 190). The higher this index is, the
more similar temporal patterns among individuals are.

The temporal pattern similarity among molecules
We defined the temporal pattern similarity among molecules (TPSM) as an
index of the similarity of temporal patterns among molecules as follows:

x0k ¼ x01;k;0
h

; � � � ; x01;k;240; x02;k;0; � � � ; x0j;k;0; � � � ; x020;k;240
i

(14)

TPSMkl ¼ ρðx0k ; x0lÞ; (15)

TPSMAbs
kl ¼ TPSMklj j: (16)

where x0j;k;t indicates the concentration difference from fasting value of the
individual j of molecule k at time point t, and x0k is the time series vector
connecting the x0j;k;t (Eq. (14)). We defined the temporal pattern similarity
among molecules k, l as TPSMkl by using ρ x0k ; x

0
l

� �
, which indicates a

Pearson’s correlation coefficient between x0k and x0l (Eq. (15)). Thus,
TPSMAbs

kl indicates how similar the temporal pattern of molecules k, l is. A
high negative value of TPSMkl indicates that temporal patterns are
synchronized in anti-phase. Here, some sets of molecules showed negative
correlations, but they are at least about −0.686 (min(TPSMkl) ≈ –0.686). We
defined TPSMAbs

kl by calculating an absolute value of TPSM to eliminate the
distinction between positive and negative because we focused on the
magnitude of the value (Eq. (16)). We set the threshold of TPSMAbs at 0.6
because Pearson’s correlation coefficient is judged to be moderately high
when it is >0.639.

Betweenness centrality
We performed the Brandes algorithm to calculate the centrality40.

Degree
In the graph between molecules with TPSM above the threshold, we
defined degNormalized as an index that normalizes the number of edges
(degree) connected to the molecule k by the metabolic group including
molecule k as follows:

degNormalized kð Þ ¼
X

m<M

ej j
mj j (17)

where |e| indicates the number of edges connected to the molecule k, and
|m| indicates the number of metabolic groups (Supplementary Data 9)
including the molecule k. M indicates a set of metabolic groups.

Hierarchical clustering analysis
We performed hierarchical clustering of normalized time courses of 83
molecules (Fig. 2) and the correlation coefficients of 18 glucose-responsive
molecules (Fig. 5) using Euclidean distance and Ward’s method. For the
normalized time courses of 83 molecules (Fig. 2), based on the clustering
tree, we defined 13 clusters of molecules that showed the different
temporal patterns of the normalized time course among molecules.
For the correlation coefficients of 18 glucose-responsive molecules

(Fig. 5), which were based on the clustering tree, we defined four different
clusters of molecules that showed the temporal change of the correlation
coefficient among molecules.

Principal component analysis
We performed a singular value decomposition method41 for a principal
component analysis and an approximate ellipse.

Molecules that changed significantly by glucose ingestion
We defined the significant change in the concentration of molecules from
a fasting state by glucose ingestion as follows. The fold change of the
values at each time point over the fasting values was calculated for each
molecule. The significance of the change at each time point was tested by
two-tailed paired t-test for each metabolite. Molecules that showed an
absolute log2 fold change >0.585 (20.585= 1.5) and a −log10 false
discovery response- (FDR-) adjusted p value (q value) <0.1 at any time
point compared to the fasting state (0 min) were defined as molecules that
changed significantly after glucose ingestion (Supplementary Fig. 3). The q
values were calculated using Storey’s procedure (Storey, 2002). To define
an increase or decrease in time courses with changes in both directions at
different times, we used the direction of change compared to a fasting
state at the earliest time point that showed a significant change. Molecules
that responded to oral water ingestion were determined using the same
procedure that defined molecules that changed significantly after glucose
ingestion (Supplementary Fig. 3, Supplementary Data 1).
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