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Diffusion kernel-based predictive modeling of KRAS
dependency in KRAS wild type cancer cell lines
Bastian Ulmer 1✉, Margarete Odenthal1, Reinhard Buettner 1, Wilfried Roth2 and Michael Kloth2

Recent progress in clinical development of KRAS inhibitors has raised interest in predicting the tumor dependency on frequently
mutated RAS-pathway oncogenes. However, even without such activating mutations, RAS proteins represent core components in
signal integration of several membrane-bound kinases. This raises the question of applications of specific inhibitors independent
from the mutational status. Here, we examined CRISPR/RNAi data from over 700 cancer cell lines and identified a subset of cell lines
without KRAS gain-of-function mutations (KRASwt) which are dependent on KRAS expression. Combining machine learning-based
modeling and whole transcriptome data with prior variable selection through protein-protein interaction network analysis by a
diffusion kernel successfully predicted KRAS dependency in the KRASwt subgroup and in all investigated cancer cell lines. In
contrast, modeling by RAS activating events (RAE) or previously published RAS RNA-signatures did not provide reliable results,
highlighting the heterogeneous distribution of RAE in KRASwt cell lines and the importance of methodological references for
expression signature modeling. Furthermore, we show that predictors of KRASwt models contain non-substitutable information
signals, indicating a KRAS dependency phenotype in the KRASwt subgroup. Our data suggest that KRAS dependent cancers
harboring KRAS wild type status could be targeted by directed therapeutic approaches. RNA-based machine learning models could
help in identifying responsive and non-responsive tumors.
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INTRODUCTION
The RAS signaling pathway is a key driver of carcinogenesis in many
different tumor entities1–4. Frequently, gain-of-function mutations or
copy number alterations (CNA) at different levels of the signaling
cascade lead to overactivity and thereby increased cell growth,
migration, and invasion2,3,5. Due to its high relevance in cancer
per se, intensive research has been conducted aiming to develop
targeted therapies. In recent years, several drugs entered clinical
application focusing on inhibitors that are directed against
membrane receptors preventing constitutively activated signal
transduction6–8. EGFR represents one of the most well-known
examples9. However, therapy is limited by various resistance
mechanisms in the receptor itself or other RAS/RAF pathway
elements7,10–12. Common mechanisms with high clinical relevance
include mutations in downstream RAS GTPases2,3,10, which represent
important nodes in signal integration from cell membrane to
nucleus13. Here, somatic point mutations lead to constitutive
activation downstream of membrane receptors, thereby hindering
therapeutic success5,10. Despite intensive research, drug binding
pockets could not be identified in these proteins for a long time,
making the development of direct inhibitory pharmacotherapy
difficult. MEK inhibitors have become a first option to overcome this
mechanism of resistance by inhibiting downstream mitogen-
activated protein kinase kinases. However, until now, clinical efficacy
has only been demonstrated for specific applications such as NRAS/
BRAF mutated melanoma14–16. More recently, mutation-specific and
panKRAS inhibitors have been developed that inhibit KRAS activity
directly or indirectly17–20. The mutation-specific inhibitors exploit
structural changes in the KRAS protein that result from oncogenic
point mutations so that cells expressing wild-type protein are less
affected, which is expected to reduce toxicity of the therapy.
However, so far specific inhibitors could only be designed for a few
KRAS mutations such as G12C. This led to the development of the

panKRAS inhibitors, which downregulate KRAS activity by binding to
SOS1 and thus enable an application independent of the mutation
status. PanKRAS inhibitors such as BI1701963 are currently being
tested in clinical trials including combinations with MEK inhibitors21.
Furthermore, following the results of a phase II trial, Sotorasib
became the first drug of mutation-specific inhibitors to receive
preliminary approval for patients with therapy-refractory NSCLC22.
The emergence of new therapies with small molecule RAS

inhibitors also increases the relevance of identifying responsive
and resistant tumors as accurately as possible. Depending on the
drug and tumor entity, different markers are currently used as
predictors. Those include mutations, CNA and gene expression6,23.
The selection of predictors depends on the respective tumor
entity and its characteristics. For example, activating EGFR and
ERBB2 mutations are considered positive predictive markers for
therapy with tyrosine kinase inhibitors against receptors of the
EGFR-family in non-small cell lung cancer (EGFR) and colorectal
cancer (ERBB2)23,24. Response to ERBB2-antibody Trastuzumab
correlates with ERBB2 expression and copy number status in
breast cancer6,25. Furthermore, EGFR resistance mutations such as
T790M are important in anti-EGFR therapy in non-small-cell lung
cancer as well as activating KRAS mutations in colorectal
cancer11,26. Besides activating mutations, expression-based RAS
signatures may also improve therapy response prediction includ-
ing treatment with KRAS inhibitors27,28. This could be particularly
important in tumors with more complex activation mechanisms
by yet unknown RAS-activating events (RAE).
Recent progress in clinical development of KRAS inhibitors has

raised interest in predicting the tumor dependency on frequently
mutated RAS-pathway oncogenes. However, even without such
activating mutations, RAS proteins represent core components in
signal integration of several membrane-bound kinases. This raises
the question of applications of the inhibitors independent from
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the mutational status. In this work, we analyzed KRAS dependency
by CRISPR/RNAi data from the Achilles- and DRIVE-Project29–32. We
identified a subgroup of KRAS dependent cell lines harboring wild
type status in KRAS (Fig. 1a). KRAS dependency of this subgroup
could not be predicted by RAE-based models or those of
previously published expression signatures. Instead, our machine
learning approach based on whole transcriptome data and
diffusion kernel-based variable selection using protein-protein
interaction network analysis significantly improved KRAS depen-
dency prediction in KRASwt cancer cell lines (Fig. 1b/c, see
methods).

RESULTS
Characterization of KRAS dependency in KRAS wild type
cancer cell lines
Currently, several KRAS inhibitors are being tested in clinical trials,
first preliminary approvals have been granted and further are
likely to follow20–22,33. Primarily these inhibitors are developed
with the aim to overcome gain-of-function mutations17–20.
However, there is evidence that patients with wild type status in
RAS/RAS-oncogenes may also benefit from therapies targeting
RAS genes28. To investigate this phenomenon, we analyzed
CRISPR knockout data of cancer cell lines from the Achilles Project
focusing on a dependency characterization of KRAS, NRAS, and
HRAS29–31,34. These data provide a valid approximation of
chemosensitivity to inhibitors targeting wild type RAS, which are
not yet available in databases such as GDSC or CCLE. The KRASwt

subgroup exhibited the largest fraction of dependent cell lines
followed by HRASwt (Fig. 2a), whereas dependencies in NRASwt

tended to be limited to a few cases. Co-dependencies of the
individual wild type subgroups, i.e., the simultaneous presence of
two dependencies, were most frequently observed for KRASwt and
HRASwt, but rather rare overall (Fig. 2b). To validate the existence
of a KRAS dependent subgroup in KRASwt cell lines we additionally
analyzed two other dependency data sources of the DRIVE- (RNAi)
and the Score-Project (CRISPR). Again, cell lines classified as KRAS
dependent in the initial Achilles CRISPR screen exhibited a
significantly higher dependency in both data (Fig. 2c). Next, we
examined the data for an association between tissue origin and
KRAS dependency to rule out any potential bias. For each entity,
we performed a Fisher test with the respective binary

characteristics of belonging to the individual entity (yes/no) and
KRAS dependency (yes/no). Although we observed a proportion-
ally increased number of KRAS-dependent cases for colorectal and
gastric cell lines within the entities (Fisher test; colorectal: p= 0.03;
gastric: p= 0.03; n= 573), the overall composition of the
dependent cell lines demonstrated a heterogeneous distribution
(Fig. 2d). With 26 cases, the largest fraction of responsive cell lines
originated from the lung, followed by skin tumors with 12 and
tumors of the central nervous system (CNS) with 11 cases.
However, these entities account for only 18% (lung), 9% (skin), and
8% (CNS) of the subgroup. We therefore assumed only a limited
impact of tissue-specific effects on the results of our further
studies.
Our results so far suggest that KRAS has an important survival

function in signal integration in a specific subgroup of KRASwt cell
lines. To further investigate a potential clinical relevance, we
analyzed drug sensitivity to several downstream interacting MEK
inhibitors. For this analysis, we additionally excluded cell lines with
non-deleterious mutations in BRAF, HRAS, and NRAS from the
KRASwt subgroup (RASwt/RAFwt). We chose AUC (GDSC) or Active
Area (CCLE) for drug sensitivity quantification because validity of
extrapolated IC50 values is limited for cell lines that were only
partially responsive or unresponsive within the experimentally
tested inhibitor concentrations, as stated by GDSC35. To this end,
the AUC has been successfully used in a variety of other
publications36–38. As expected, we found consistent associations
to MEK inhibitors across multiple compounds and datasets
(Fig. 2e, Supplementary Fig. 1). Overall, the sensitivity of the
KRASwt cell lines with KRAS dependency was significantly higher
compared to the KRASwt independent subgroup, but slightly lower
than the one of the KRASmut cell lines. Thus, we were able to
provide further evidence for an increased RAS activity in the
depicted subgroup. Furthermore, these analyses suggest that a
combined therapy approach with panKRAS and MEK inhibitors, as
it is currently being tested in KRAS mutated tumors21, may also be
effective for patients with RASwt/RAFwt tumors.

RAE possess limited sensitivity and specificity for KRAS
dependency prediction in KRASwt subgroup
According to our results, KRASwt cancers with KRAS dependency
potentially reflect a subgroup of cancers with therapeutic

Fig. 1 Cancer cell line classification algorithm and gene dependency modeling strategies. a Strategy of cell line subgrouping leading to
the investigated subgroups (HRASwt/HRASmut, KRASwt/KRASmut, NRASwt/NRASmut). b Variable selection workflow for whole transcriptome
RNA-expression data consisting of the construction of a literature-based gene network followed by further selections steps with centrality
quantification through a diffusion kernel and a minimum required expression level. Several different constellations of the hyperparameters
were tested. Final modeling was performed using a Lasso, Elastic Net or Random Forest regression. c Workflow of iterative model fitting and
performance evaluation for each gene dependency dataset.
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relevance. Therefore, we aimed to specify this subgroup in more
detail. There are numerous well characterized mechanisms of RAS
activation that can lead to KRAS dependency (RAS activating
events, RAE). These include mutations, overexpression and CNA in
upstream genes as well as amplification of KRAS itself6,23,39–41.
Using differential expression analysis in KRASwt cancer cell lines
between KRAS dependent and independent subsets we were able
to detect several of already known pathway activating regulators.
These included ERBB2 and KRAS (Fig. 3a), which were significantly
overexpressed in the KRAS dependent KRASwt subgroup. In

addition, overrepresentation analysis revealed an association of
the differentially expressed genes (ngenes= 358) to various
receptor tyrosine kinase (RTK) signaling pathways such as EGFR,
FGFR, MET, NTRK, and IGFR (Supplementary Data 1). However, RAE
identification based on molecular genetic events or expression is
not trivial and may lead to erroneous conclusions. Mutations
provide an illustrative example, as their clinical implications are
sometimes not known with certainty42–44.
Therefore, we used the genome wide CRISPR data from the

Achilles Project for the detection of RAE, as they reflect direct
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information about the survival potential of the gene. Consistent
with the expression data, genes of the pathways mentioned above
were associated with higher dependency in the KRAS dependent
subgroup. In addition, we found other RTK pathway associations
such as those to KIT and PI3K (Fig. 3b). In the next step, we
analyzed each cell line for potential RAE that could be causal for
KRAS dependency. In total we used 43 binary markers (Supple-
mentary Data 2) including 42 gene dependencies and KRAS
amplification status, as this is associated with worse outcome and
tumor progression in different cancer types40,45,46 (see methods).
This simple approach allowed us to assign at least one RAE to 67%
of the KRAS dependent cell lines either by co-dependency or
amplification (Fig. 3c). For the remaining 33%, other monogenic
activation mechanisms that were not considered or complex-
genetic activation would be conceivable. In addition, our analysis
showed that the distribution of markers is relatively heteroge-
neous and that multiple co-dependencies may also occur (Fig. 3d/
e). However, a causal relationship is not assured by this approach.
Eventually, independent simultaneous occurrences cannot be
ruled out despite targeted and literature-based marker selection.
Furthermore, it may not always be accurate to conclude that an
RAE leads to KRAS dependency. Strikingly, this is illustrated by
repeating the analysis on wild type cell lines without KRAS
dependency, which assigned a RAE to 63% of the cell lines (Fig.
3c). To further reveal more complex interactions between RAE and
KRAS dependency, we performed Lasso regression using quanti-
tative RAE dependencies as predictors (see methods). This first
approach based on RAE achieved no significant correlation
between model predictions and experimental data (Pearson’s r
= 0, p= 0.92, n= 529), which underlines the need for improved
variable selection and integrative modeling.

KRAS dependency prediction in KRASwt subgroup using
previously published RNA signatures
Our initial approach indicates some challenges in the prediction of
KRAS dependency in KRASwt cancers by known RAE. We therefore
searched for suitable alternative modeling strategies. Regarding
the identification of RAS- and KRAS-dependent cancers, several
approaches have been taken including RNA-based expression
signatures27,28. To characterize whether these known signatures
represent an improvement in prediction, we created machine
learning models and examined their predictive performance (see
methods). Overall, the resulting predictive performance was not
satisfactory. Models based on the signature published by Loboda
et al. achieved a correlation of 0.15 (Pearson’s r, n= 567), those
based on the signature by Singh et al. 0.18 (Pearson’s r, n= 567).
However, it should be noted that we were not able to assign all
gene identifiers in the given signatures, leading to a loss of four

genes (2.7%) in the signature by Loboda et al. and 14 (2.7%) in the
signatures from Singh et al. (Supplementary Data 3). Due to the
small number of missing genes, we considered the influence on
the results to be neglectable in both cases. Consequently, our
analyses indicate a more complex situation in the prediction of
KRAS dependency in KRASwt cancers even with previously
published expression signatures.

Diffusion kernel-based protein-protein interaction network
analysis improves predictive modeling of KRAS dependency in
KRASwt cancer cell lines
Consistent with our results so far, recent literature showed that
gene dependencies of KRAS, NRAS, and HRAS are difficult to
model by whole transcriptome analysis and that mutation status is
proposed to be more robust47. To improve modeling in KRASwt

cancers, we tested our own strategies including different machine
learning algorithms as well as variable selection through gene
centrality estimation in a protein-protein interaction network by a
diffusion kernel (See methods, Fig. 1b/c). Initially, reference
models with all predictors available in the RNA expression dataset
were created (47768 genes) using Lasso regression. Compared to
the previous signatures we achieved significantly higher correla-
tions between test set predictions and the experimentally
determined dependency demonstrating that the predictive
performance of RNA-based models can be improved depending
on the modeling strategy. For the CRISPR data Pearson’s r was 0.23
and for RNAi data 0.25 (Fig. 4a). However, due to the high number
of predictors, it is possible that the models are prone to
overfitting. Dataset-specific artifacts such as random associations
of predictors to the dependent variable, characteristics of the cell
line model or effects caused by the entity distribution could affect
external validity. To further improve the performance and to test
strategies against possible overfitting we included a variable
selection step before modeling. This strategy involved an initial
restriction of predictors to genes derived from a literature-based
protein-protein interaction network (StringDB), followed by further
reduction steps through estimation of gene centrality in the
network using a diffusion kernel (See methods, Fig. 1b/c). The
hypothesis is that the selected genes are important regulatory
elements in KRAS signaling and thus represent suitable predictors
of KRAS dependency with biological significance. This approach
combined with additional hyperparameter optimization (see
methods) resulted in a total of 105 different predictor sets with
a size ranging from 100 to 1000 genes. In the subsequent
modeling by Lasso regression with optimized hyperparameters we
reached a maximum correlation of 0.43 (Pearson’s r) between
observed and predicted KRAS dependency (Fig. 4a, Supplemen-
tary Data 4). This corresponds to a performance improvement of

Fig. 2 RAS dependency characterization and associations to MEK inhibitor responsivity. a Proportion of gene-dependent cell lines in the
four subgroups of wild type cancer cell lines. The numbers above the columns indicate the absolute number of dependent cell lines. b Total
number of co-dependencies for each gene. c Validation of the elaborated KRAS dependent and independent subgroups. After dividing the
cell lines into KRAS dependent and independent using the Achilles Project CRISPR data, we verified the existence of the two subgroups in
data of the DRIVE (RNAi) and the Score Project (CRISPR). Cell lines classified as KRAS dependent in the Achilles data exhibited a significantly
higher dependency in both screens (Wilcox Test; DRIVE: p= 4,6 * 10−10, n= 342; Score: p= 2.1 * 10−4, n= 124). d Proportions of the different
entities in the KRASwt group (inner circle) and the proportion of KRAS-dependent cell lines in each entity with indicated absolute numbers
(outer circle). Only entities with at least ten cell lines were included in the figure. In absolute numbers, lung tumors were the most represented
entity among KRAS dependent cell lines, followed by skin tumors. Overall, the group is very heterogeneous without one entity clearly
dominating. e Characterization of MEK-inhibitors sensitivity in KRASwt cancer cell lines with dependent (blue, wt (dependent)) independent
(purple, wt (independent)) status and as a reference KRASmut cases (green, mut). The symbols above the brackets refer to the following
significance codes: *** < 0.001; ** < 0.01; * < 0.05]; ‘n.s.’ > 0.05. In the overall comparison between the three groups, KRASwt cell lines with KRAS
dependency are significantly more responsive to MEK inhibitors (lower AUC) than KRASwt independent group, but for some inhibitors less
responsive than the KRASmut cell lines (Wilcox Test: Trametinib: (1) p= 4.6 * 10−4 (n= 183), (2) p= 7.4 * 10−3 (n= 113); Ulixertinib: (1) p= 4.1 *
10−3 (n= 183), (2) p= 9.5 * 10−2 (n= 112); VX-11e: (1) p= 4.9 * 10−4 (n= 178), (2) p= 9.7 * 10−2 (n= 111); ERK_6604: (1) p= 1.8 * 10−4 (n=
179), (2) p= 1.3 * 10−1 (n= 111)). For further compounds of CCLE, GDSC1, and GDSC2 see also Supplementary Fig. 1. Box plot annotation (c, e):
25th percentile (box bottom), 75th percentile (box top), median (box center), whiskers top/bottom ±1.5 × interquartile range, outliers are
shown as dots.
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72% compared to the reference models with all available
predictors of the RNA sequencing data. Best predictions could
be achieved by using an initial variable set reduced to only 500
genes. Additional models based on the complete gene set of the
protein network consistently performed weaker when compared
to the diffusion kernel-based prediction (Fig. 4a).
These results demonstrate that variable selection by the

network-based approach significantly improves the performance
of models predicting KRAS dependency in KRAS wild-type cancer

cell lines. The predictions were clearly superior to RAE-based
models or those of previously published expression signatures
(Fig. 4b). In addition, it enables a substantial reduction of
predictors prior modeling without impairing model performance.
However, a closer analysis of the models revealed specific
challenges. For all models, we observed that absolute errors
increase significantly toward the outsides of the distribution,
thereby also reflecting outliers which are difficult to predict (Fig. 4c).
We assumed biological effects or attributes of dependency

Fig. 3 Transcriptional characterization and dependency analysis of KRAS dependent KRASwt cell lines. a Differentially expressed genes in
KRASwt dependent vs independent cell lines (n= 567). Positive values on the x-axis reflect higher expression in the dependent subgroup,
correspondingly negative values reflect higher expression in the independent subgroup. b Overrepresentation analysis (Reactome) of
genome wide CRISPR screen genes exhibiting a higher dependency in the KRASwt dependent subgroup (Wilcoxon–Mann–Whitney Test;
ngenes= 1038). c Percentage of cell lines harboring at least one RAE (blue) or no RAE (purple) in KRASwt subgroup for KRAS dependent (left)
and independent (right) cell lines. Absolute values are shown above each column. d, e Binary co-dependency network of RAE in KRASwt

highlighting the heterogeneous distribution of RAE (Dependent cell lines (d), independent (e)). Number of co-dependencies shared between
two genes is shown if there were more than two co-dependencies. Node size refers to the number of cell lines classified as dependent on the
respective gene. Cell lines without RAE were not included in the figures.
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distribution to be the cause for this observation. Therefore, we
tested Elastic Net and Random Forest regression as two additional
algorithms for modeling. However, these methods could not
improve the prediction accuracies (Fig. 4d). For the predictor sets
selected by the diffusion kernel maximum observed correlation
coefficients (Pearson’s r) with Elastic Net regression after
hyperparameter optimization were 0.33 (CRISPR data) and 0.43
(RNAi data). Interestingly, despite the skewed distribution of the
KRAS dependency with more independet cell lines the decision
tree-based Random Forest regression performed worse than the
linear regression models (Pearson’s r; CRISPR: 0.29; RNAi: 0.41).

Central components of KRAS interaction network contain non-
substitutable information signals for dependency modeling
Next, we characterized the predictors of KRAS dependency in
KRAS wild type models. Among the 12,000 models of CRISPR/RNAi
data using gene sets selected by the diffusion kernel and
hyperparameter optimization, the frequency of non-zero model
coefficients was quantified for each predictor. In total, 1964 genes
were used at least once in a model. Most frequently used
predictors were NRAS and KRAS expression, followed by GNG11,
HRAS, and RBX1 (Fig. 4e, Supplementary Data 5). KRAS expression

Fig. 4 Performance of different KRAS dependency modeling strategies and predictor analysis in KRASwt cell lines. a Correlation analysis
(Pearson’s r) in independent test sets between the experimentally determined KRAS cancer cell line dependency and our machine learning-
based predictions for varying sets of predictors (see methods). Results are shown for models using all available predictors of the RNA
sequencing data (total), all available predictors of the protein interaction network (net) and predictors selected by the diffusion kernel with
hyperparameter optimization (kernel). Models were based on KRASwt cell lines of the different datasets (crispr - Achilles CRISPR effect data (n
= 567), rnai - DRIVE RNAi (DEMETER2) data (n= 487)). In case of the diffusion kernel variable selection workflow maximum correlation was
reached with a hyperparameter constellation using 500 predictors. For complete results of hyperparameter tuning see Supplementary Data 4.
b Performance (Pearson’s r) of KRAS dependency models in KRASwt group compared between the different approaches (RAE – RAE-based
models (CRISPR data), Loboda – Models using RNA expression of the gene selection by Loboda et al. (CRISPR data), Singh – Models using RNA
expression of the gene selection genes by Singh et al. (CRISPR data), CRISPR – Best performing models using RNA expression of the gene
selection by the diffusion kernel with optimized hyperparameters (CRISPR data), RNAi – Best performing models using RNA expression of the
gene selection by the diffusion kernel with optimized hyperparameters (RNAi data)). For CRISPR/RNAi correlation analysis was performed
similarly to (a). Correlation coefficients for RAE, Loboda and Singh were determined as described above. c Absolute error of CRISPR/RNAi
models for each cell line using mutation- and best performing RNA-predictor set. Summarized results of 400 unique models are shown in the
two waterfall plots. Cell lines were ordered by ascending observed KRAS dependency from left to right. The absolute error was estimated by
summing the individual absolute differences of the predicted values from the observed values. d Correlation analysis (Pearson’s r, nCRISPR=
567, nRNAi= 487) performed similarly to (a) this time comparing models using different algorithms (Elastic Net regression - enet, Random
Forest regression – forest, Lasso regression - lasso). Neither Elastic net nor Random Forest Regression could improve the Lasso predictions of
KRAS dependency. e Occurrence frequency of RNA-predictors in 12000 unique models of KRAS dependency (CRISPR/RNAi) in KRASwt cancer
cell lines. Only models using the variable selection by the diffusion kernel were included. Negative values indicate the frequency of how often
the predictor had a negative coefficient in the models (associated with higher KRAS dependency), positive values the frequency of how often
the predictor had a positive coefficient (associated with lower KRAS dependency). The 25 most redundant genes are shown here.
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was associated with an increase, NRAS, GNG11, HRAS, and RBX1
with a decrease of KRAS dependency. The inverse regulation of
KRAS, NRAS, and HRAS expression in context of KRAS dependency
is consistent with results from Fig. 2b showing that co-
dependency between these genes is a rare event in KRAS wild
type cancer cell lines. We also performed an overrepresentation
analysis of predictors that were used in at least 10% of all models,
which corresponds to a list of 63 genes. As expected, numerous
pathways related to signal transduction were overrepresented
because of the variable selection based on the KRAS centralized
network (Supplementary Data 6). Accordingly, the results show a
profile comparable to Fig. 3b. Most significant regulated pathways
were extra-nuclear estrogen signaling (p= 3.1 * 10−16), Diseases of
signal transduction by growth factor receptors and second
messengers (p= 2.4 * 10−15) as well as several pathways which
involve tyrosine kinase signaling. Again, this highlights the
heterogeneity of RAE and further potential approaches for
combination therapies in the KRASwt subgroup.
The results indicate that KRAS dependent cancer cell lines in the

KRASwt group exhibit a distinctive phenotype or activation state,
which might be represented by expression data. However, RNA
expression data are highly structured and intercorrelated31,48, so
that genes selected by our literature-based approach might be
replaced without losing predictive power of the models. Conse-
quently, a specific phenotype or gene regulation in the context of
KRAS dependency would be less likely. On the other hand, a
decrease in prediction power would mean a loss of information
that could not be compensated by other predictors and context-
specific regulation would be more likely. To investigate this, we
selected the models with best performing hyperparameters and

extracted all predictors with non-zero coefficients, resulting in lists
of 293 (CRISPR) and 184 (RNAi) genes. Then, separately for each
gene list and dependency dataset we excluded the lists from the
superset of all proteins in the interaction network and repeated
modeling with these selections. In fact, we found a lower
correlation for both datasets compared to the models using the
total number of network genes. Performance in models of Achilles
CRISPR dependency data dropped about 20% (Pearson’s r= 0.20,
n= 567) and for DRIVE RNAi data about 29% (Pearson’s r= 0.27,
n= 487). The loss of predictive power suggests that a non-
compensable loss of information has taken place. This speaks for a
regulation of genes selected by our interaction network-based in
context of KRAS dependency, indicating a KRAS dependency
phenotype in the KRASwt subgroup.

Comparison of RNA expression data and KRAS mutation
status as predictors of generalized KRAS dependency
Finally, after predicting KRAS dependency in the KRASwt subgroup
we also applied our selective modeling strategy to the entire set of
cancer cell lines. Initial reference models using Lasso regression
and all predictors available in the RNA expression dataset
achieved correlations (Pearson’s r) of 0.55 (CRISPR) and 0.52
(RNAi) between observed and predicted KRAS dependency
(CRISPR) (Fig. 5a). Prior variable selection by the diffusion kernel
yields slight improvements in performance (Pearson’s r: 0.58
(CRISPR), 0.54 (RNAi)). Using all available predictors of the protein
interaction network, a minimal improvement in prediction
accuracy was observed for the CRISPR data again (Pearson’s r:
0.59), but not for the RNAi data, where models performed weaker
(Pearson’s r: 0.51). Despite the good results, consistent with

Fig. 5 Performance of mutation status-/RNA expression-based KRAS dependency models and analysis of error distributions in the
complete cell line dataset. a Correlation analysis (Pearson’s r) in independent test sets between the experimentally determined KRAS cancer
cell line dependency and our machine learning-based predictions for varying sets of predictors (see methods). Results are shown for models
using all available predictors of the RNA sequencing data (total), all available predictors of the protein interaction network (net) and predictors
selected by the diffusion kernel with hyperparameter optimization (kernel). For both dependency datasets models were based on the entire
cell line set (crispr - Achilles CRISPR effect data (n= 698), rnai - DRIVE RNAi (DEMETER2) data (n= 601). In case of diffusion kernel variable
selection workflow maximum correlation was reached with a hyperparameter constellation using 1000 predictors. For complete results of
hyperparameter tuning see Supplementary Data 4. b Correlation analysis (Pearson’s r) performed similarly to (a) this time comparing models
either using KRAS mutation status (mut) or best performing predictors of the RNA sequencing data (rna) in the respective datasets (crispr -
Achilles CRISPR effect data (nrna= 698, nmut= 704), rnai - DRIVE RNAi (DEMETER2) data (nrna= 601, nmut= 613). Using RNA sequencing data as
predictors, the best performance was achieved either with the complete protein interaction network (CRISPR) or a subset of the network
consisting of 1000 genes selected by the diffusion kernel (RNAi). c Absolute error of CRISPR/RNAi models for each cell line using mutation- and
best performing RNA-predictor set (CRISPR: complete protein interaction network; RNAi: diffusion kernel selection with 1000 genes).
Summarized results of 400 unique models are shown in the two waterfall plots. Cell lines were ordered by ascending observed KRAS
dependency from left to right. The absolute error was estimated by summing the individual absolute differences of the predicted values from
the observed values (RNA expression-based (rna): purple bars; Mutation status-based (mut): blue bars). Predictions of models using mutation
status show two local minima in the absolute error distributions indicating the binary prediction results. For both types of predictors residuals
tend to increase at both sides of the distribution.
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recently published literature models based on KRAS mutation
status outperformed RNA-based models (Fig. 5b; Pearson’s r: 0.76
CRISPR, 0.7 RNAi)47. Again a closer analysis of the models revealed
specific challenges. For both types of predictors, we observed that
absolute errors increase significantly toward the outsides of the
distribution (Fig. 5c). As expected, the mutation-based models
provided near-binary predictions, as they were built on three
binary predictors which cannot represent the continuous distribu-
tion of KRAS dependency. This is illustrated by the distribution of
absolute residuals in Fig. 5c, which exhibits two local minima in
the mutation-based models, each reflecting one of the two almost
constant prediction values of the models. In contrast, RNA-based
models did allow quantitative prediction and identified potential
borderline cases. Nevertheless, as before, they struggled to
adequately predict highly responsive cases. These results show
distinct advantages and disadvantages of the two types of
predictors. Accordingly, comprehensive models of KRAS depen-
dency may benefit from a combination of KRAS mutation status
and RNA expression data, as well as other predictor types.

DISCUSSION
The RAS signaling pathway possesses a central position in the
oncogenesis of several tumor entities via numerous mechanisms.
Recent progress in clinical development of KRAS inhibitors has
raised interest in predicting the tumor dependency on frequently
mutated RAS-pathway oncogenes. However, even without such
activating mutations, RAS proteins represent core components in
signal integration of several membrane-bound kinases. This raises
the question of applications of the inhibitors independent from
the mutational status.
In this work we identified a KRAS dependent subset of KRAS

wild type cell lines. Consistently, across six different datasets from
CRISPR, RNAi, and chemosensitivity experiments, we found
evidence for increased RAS activity in the elaborated subgroup.
Our results suggest that patients without activating KRAS
mutations may also benefit from targeted therapies against KRAS.
Here, compounds such as the SOS1-KRAS interaction inhibitors BI-
3406 or BI-1701963 could be of particular interest. In contrast to
mutation-specific inhibitors17, these pan-KRAS inhibitors do not
require a specific mutation and could be used in the therapy of
KRAS wild type malignancies19,20. In addition, since the subgroup
exhibits a significantly increased sensitivity to MEK inhibitors, a
combined therapy, as currently being tested in clinical trials for
KRAS mutated tumors, may also offer further advantages for some
patients21.
Our results provide evidence for the presence of a KRAS-

dependent subgroup in KRASwt tumors. The high number of KRAS-
dependent cell lines within the KRASwt subgroup raises expecta-
tions for an equally high proportion of patients with increased
response to therapy. In the future, further clinical research efforts
are needed. In this regard our study should serve for deeper
understanding of mechanisms in panKRAS inhibition and asso-
ciated current clinical trials.
Identification of responsive and resistant tumors will be an

essential task for an optimal therapy of the identified subgroup.
We demonstrated that RAEs such as KRAS amplifications or EGFR
co-dependencies are not reliable predictors of KRAS dependency
in the KRASwt subgroup. Moreover, RAEs were heterogeneously
distributed, and presence of RAE did not necessarily follow a KRAS
dependency and vice versa. This observation is corroborated by
results from clinical trial data, as the presence of an activating
KRAS G12C mutation predicted response to Sotorasib in only 32%
of patients17. We interpreted this as further evidence for the
complexity of signal transduction as previously described9,49. To
address this complexity, we investigated modeling solutions using
whole transcriptome RNA sequencing data as predictors. Recently,

difficulties in RNA-based modeling of gene dependencies of the
tumor drivers KRAS, NRAS, and HRAS have been described47.
In our analyses we tested modeling using Lasso regression with

varying sets of predictors with a focus on variables selected by a
literature-based protein-protein interaction network and subse-
quent gene centrality quantification through a diffusion kernel.
This systematic approach with an initial variable reduction to
100–1000 genes significantly improved predictions of KRAS
dependency in KRASwt cell lines when compared to models using
all available RNA predictors, RAE-based models or those of
previously published expression signatures. Although not the
main focus of the depicted study, we also achieved improvements
in performance by our approach in the complete cell line set but
could not outperform KRAS mutation status.
The importance of variable selection for modeling is empha-

sized by inferior predictions of models based on genes of previous
RAS expression signatures. In the respective initial publication
these signatures could provide robust predictions for training and
test data27,28. However, in our study the reported performance
dropped significantly. This suggests that predictions of
expression-based models are only valid for applications with high
similarity to the training data and tend to overfitting. General-
izations of specific gene signatures without methodological and
algorithmic reference seem to be limited, which underlines the
need for standardized procedures for the prediction of therapy
response to KRAS inhibitors in tumor patients.
Even with high agreement between the training set data and

those of the planned application, steps to reduce overfitting
caused by artifacts in the training data are highly relevant to
ensure external validity. In this regard, besides the use of statistical
methods suitable for high-dimensional datasets collecting addi-
tional information about the predictors to select variables with
context specific biological relevance can be important before
modeling. Literature-based protein-protein interaction networks
as used in this work represent one option for this purpose since
they enable the integration of preexisting scientific knowledge to
identify key regulatory genes in the context of KRAS signaling.
These genes possibly represent more robust predictors, which
reduce overfitting caused by dataset-specific artifacts. Due to the
lack of additional data, we were not able to validate this
hypothesis. Nevertheless, the significantly improved internal
performance of KRAS dependency models in the KRASwt

subgroup, using predictors selected by the diffusion kernel,
indicate the advantages of this strategy. Future efforts with the
objective to establish diagnostically applicable models may
possibly benefit from similar approaches as well.
In summary, our results suggest that a subset of patients

without oncogenic KRAS mutations may benefit from targeted
therapy with KRAS inhibitors. In the long run, we assume that
machine learning models based on high-dimensional RNA
expression data could help with therapeutic decisions. As already
mentioned before, a crucial factor for clinical applicability of the
proposed models will be a highly standardized test methodology.
This includes all steps of the analysis including sample prepara-
tion, sequencing and bioinformatic analysis as well as the choice
of a suitable parameter for therapy response quantification. The
realization of such solutions appears to be possible and reason-
able as costs for quantifying gene expression continue to fall.

METHODS
Data
Cancer cell line data were obtained from the website of Dependency Map
Consortium including Genomic, RNA-expression, CRISPR, RNAi and CCLE
drug sensitivity data (Release 21Q1)29–32,34,50. GDSC drug data (Release 8.2)
were downloaded from the project’s website51. For all analyses, only cell
lines originating from solid tumors were used.
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Cell line classification
Cell line classification was performed in two steps using mutation and
CRISPR dependency data of the Achilles project. The investigated entire
cell line set was divided into wild type and mutated according to their
mutation status in the examined CRISPR knockout gene. All cell lines
harboring non-deleterious mutations in KRAS, NRAS, and HRAS were
regarded as mutated, reflecting typically activating hotspot mutations. This
resulted in six different groups of cell lines (HRASwt/HRASmut, KRASwt/
KRASmut, NRASwt/NRASmut). Initial analyses were performed in cell lines
with wild type status and for each gene individually (Fig. 1a). In a second
step, each group was divided into dependent and independent cell lines
by the respective CRISPR gene dependency using the Achilles dependency
format. The format indicates the probability of being part of a distribution
of essential or non-essential genes for each cell line and each gene
(Supplementary Fig. 2). At a threshold of over 50%, cell lines were classified
as dependent.

Binary RAE classification
For RAE classification based on CRISPR dependency we selected
oncogenes of the oncoKB database with a restriction to receptor kinases
and non-RTKs annotated in HGNC52–54. After that we searched for co-
dependencies between the selected genes and KRAS using Achilles CRISPR
dependency format. As before, cell lines were classified as dependent if
dependency exceeded a threshold of 50%. RAE detection based on KRAS
amplification status was performed using CCLE copy number data. Cell
lines were classified as KRAS amplified if the relative copy number of KRAS
exceeded a threshold of 3 compared to the mean copy number of the
sample.

Overrepresentation analysis
Overrepresentation analysis was performed using R package Reacto-
mePA55. Following differential expression analysis, consideration was given
to all statistically significant negative and positive associations with a
minimum required level of gene expression higher than the 75th
percentile. For CRISPR data, only those with significantly increased
dependency in the KRAS-dependent group (Wilcoxon–Mann–Whitney
test) were used.

Dependency modeling
CRISPR/RNAi data of Achilles and DRIVE projects (gene effect format [−∞;
∞]) were used as dependent variables in gene dependency modeling.
Different predictor types (RAE, mutations, RNA expression) were processed
as follows. RAE were represented by Achilles CRISPR gene effect format
and KRAS gene copy number. We restricted gene dependency RAE to
oncogenes annotated in oncoKB database and receptor kinases/non-RTKs
from HGNC52–54, resulting in 43 different markers for RAE-based
predictions (Supplementary Data 2). Using a similar approach to Dempster
et al., mutations were divided into three categories (deleterious, hotspot,
other) based on annotations from DepMap data47. The categories hotspot
and other were restricted to non-silent, non-deleterious mutations with or
without TCGA/COSMIC hotspot classification. Subsequently, a binary
predictor variable was created from each of the three categories. In the
presence of one or more mutations from one of the categories, the
respective cell line was classified as mutated in the corresponding
predictor variable, and as non-mutated in the absence of mutations in the
category. Gene identifiers of previous expression signatures (Supplemen-
tary Data 3) were obtained from the respective publications and were used
without further selection steps27,28. To quantify gene expression levels, we
used CCLE RNA sequencing data in TPM format.
For our workflow based on whole transcriptome RNA-expression data

(TPM) we either used the total number of available RNA predictors or
subsets selected by our variable selection approach. For this purpose, we
constructed a literature-based protein-protein network to identify sig-
nificant predictors by gene centrality (Fig. 1b). The hypothesis is that these
genes are important regulatory elements in KRAS signaling and thus
represent suitable predictors of KRAS dependency. First, protein-protein
interactions were downloaded from the STRING database56. Gene
identifiers were assigned to each protein and duplicated interaction
scores between the same genes were averaged. Interactions with a score
lower than the 90th percentile were discarded. To focus the network on
genes which may be involved in the context of KRAS signaling we
restricted genes to those with a direct KRAS interaction (1st shell) and their

respective interaction partners (2nd shell). The final network consisted of
7070 genes. Centrality (closeness) of each gene was determined by a
diffusion kernel which captures the information flow within the network as
previously described57,58. [Eq. 1]

K ¼ eβH ¼ Iþ βHþ β2

2!
H2 þ β3

3!
H3 þ ::: (1)

K refers to the diffusion kernel, e to Euler’s number, H to the negative
Laplacian matrix, I to the identity matrix and β to a parameter which
controls the degree of information flow. Similar to Lee et al.58 we tested
several values of the β parameter (β= 0,75n, n= 1, 5, 10, 20, 30) for
variable selection. This resulted in seven different closeness estimates of
the genes in our network.
Hyperparameter optimization of the variable selection by the diffusion

kernel was performed for the following variables. The minimum level of
gene expression was tested for the percentiles P25, P50, P75, and P95. β
parameter was tuned for the values mentioned above. Subsequently, the
number of selected genes by centrality was tested for 100, 500, and 1000
genes. This approach resulted in a total of 60 different predictor sets for
modeling. Independent of the hyperparameter optimization, we also
tested modeling either with all unfiltered genes of the network (6967
genes) or with the total number of RNA predictors available (47,768 genes).
For all predictor sets gene expressions with missing values were discarded
before the final selection step.
Despite our variable selection workflow, the number of predictors for

RNA-based models was still high. To prevent overfitting, we consistently
used Lasso regression for all models and predictor types. In addition, we
also tested Elastic Net and Random Forest regression in KRAS dependency
models of the KRASwt subgroup after variable selection through the
diffusion kernel. Lasso and Elastic Net regression minimize the following
quantities [Eqs. 2–3]:

βLasso ¼
Xn

i¼1

yi � β0 �
Xp

j¼1

βjxij

 !2

þ λ
Xp

j¼1

βj
�� �� (2)

βElastic net ¼
Xn

i¼1

yi � β0 �
Xp

j¼1

βjxij

 !2

þ λ
Xp

j¼1

β2j þ λ
Xp

j¼1

βj
�� �� (3)

n is the number of observations, p the number of different predictors, β0
the y-intercept, βj the coefficient of the respective predictor, yi the values
of the independent variable, and xij the values of the predictors.
For every set of independent variables 100 models were trained, each

using 80% of the cell lines randomly selected by R base sample() function.
The remaining 20% served as an independent test set. Test set predictions
were averaged for each predictor set and correlated with the experimental
data (Fig. 1c).

Statistical analyses
All statistical analyses were performed in R programming language59. The
package glmnet was used for Lasso regression and Elastic Net60. Random
Forest regression was performed with randomForest package61. Differ-
ential expression analyses were carried out with DESeq262 and network
analysis was generated with igraph63. RAWGraphs 2.0 was used for
additional graphics64. Standard statistical methods are mentioned in
figures and legends.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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