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Metabolic modeling of host–microbe interactions for
therapeutics in colorectal cancer
Prerna Bhalla1, Raghunathan Rengaswamy2, Devarajan Karunagaran 1, G. K. Suraishkumar 1 and Swagatika Sahoo 2,3✉

The onset of colorectal cancer (CRC) is often attributed to gut bacterial dysbiosis, and thus gut microbiota are highly relevant in
devising treatment strategies. Certain gut microbes, like Enterococcus spp., exhibit remarkable anti-neoplastic and probiotic
properties, which can aid in silver nanoparticle (AgNPs) induced reactive oxygen species (ROS)-based CRC treatment. However, the
effects of AgNPs on gut microbial metabolism have not been reported thus far. In this study, a detailed systems-level understanding
of ROS metabolism in Enterococcus durans (E. durans), a representative gut microbe, was gained using constraint-based modeling,
wherein, the critical association between ROS and folate metabolism was established. Experimental studies involving low AgNP
concentration treatment of E. durans cultures confirmed these modeling predictions (an increased extracellular folate concentration
by 52%, at the 9th h of microbial growth, was observed). Besides, the computational studies established various metabolic pathways
involving amino acids, energy metabolites, nucleotides, and SCFAs as the key players in elevating folate levels on ROS exposure.
The anti-cancer potential of E. durans was also studied through MTT analysis of HCT 116 cells treated with microbial culture (AgNP
treated) supernatant. A decrease in cell viability by 19% implicated the role of microbial metabolites (primarily folate) in causing cell
death. The genome-scale modeling approach was then extended to extensively model CRC metabolism, as well as CRC–E. durans
interactions in the context of CRC treatment, using tissue-specific metabolic models of CRC and healthy colon. These findings on
further validation can facilitate the development of robust and effective cancer therapy.
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INTRODUCTION
The onset of colorectal cancer (CRC) has been associated with
various extrinsic factors such as infection, unhealthy diet, and
lifestyle1–3, which often result in gut microbiota dysbiosis—a
clinical disorder characterized by perturbation in the composition
and function of the healthy gut microbiota4,5. In the state of
homeostasis, the gut bacteria-derived metabolites synthesize
essential nutrients and compounds6,7, some of which have
demonstrated remarkable anti-neoplastic properties8. For
instance, Enterococcal peptides obtained from clinical strains of
Enterococcus genus (a representative gut microbe) exhibit anti-
proliferative effects against colorectal adenocarcinoma and other
cancer types9. Furthermore, Enterococcus durans was shown to
produce butyrate, which is anti-inflammatory in nature and is
required to maintain the integrity of intestinal epithelium10. Such
studies have highlighted the relevance of gut microbes in devising
effective, novel cancer treatment therapies, as in the case of
nanoparticle-based CRC treatment (Fig. 1).
The transformation of a healthy colon cell into a cancerous cell

type is a complex event, which disrupts cell characteristics at
metabolic, signaling, and regulatory levels11,12, that have been
captured through various in vitro and in vivo experiments.
Moreover, with the advent of constraint-based modeling (CBM),
genome-scale metabolic models (GSMMs) too have aimed at
investigating the re-programmed metabolism for devising novel
therapeutic strategies13,14. To illustrate, context-specific metabolic
models of colon and CRC cell types have been developed to
understand the aberrant metabolism in CRC, as well as decipher-
ing drug targets and biomarkers for cancer diagnostics. For
instance, one such experimental and computational study

discovered the FUT9 gene as a crucial promoter of advanced
stage colon cancer15. Despite these computational advances,
there have been limited computational studies to understand the
contribution of reactive species generation (known to exert
cytotoxic effects in cancer cells) and gut microbiome secreted
metabolites towards CRC metabolism and treatment. Therefore, it
would be interesting to investigate and model the role of gut
bacteria secreted metabolites in cancer cell killing.
Here we present a computational and experimental study that

reveals the effects of AgNP-mediated reactive species generation
on gut bacterial metabolism. The effects of reactive oxygen
species (ROS) were extensively modeled using the GSMM of E.
durans. These computational findings were supported through
experiments. Furthermore, the complexity and systems-level
understanding of the integral metabolic interactions between
gut microbe and host (i.e., colon and CRC cells) was gained using
tissue-specific metabolic models. These models were developed
from proteomics and literature-based data sources, representing
healthy colon and CRC conditions. In addition, we have reported
the differences between the CRC vs. healthy colon models in
terms of their biomass values and attempted at elucidating the
metabolic alterations behind aberrant CRC metabolism using
genome-scale metabolic modeling.

RESULTS
AgNP-mediated oxidative stress (ROS) modulated gut
microbial metabolism
The AgNPs used in this study were characterized for their
physicochemical properties (Supplementary Fig. 1). To study the
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effects of AgNPs on the growth and cell viability of E. durans, the
bacterial cultures were exposed to different AgNP concentrations
(Fig. 2). The specific growth rate (µ) for the cultures treated with
the lowest AgNP concentration (25 ppm) was 0.198 ± 0.03 h−1,
which was 8% lower compared to the control. Further, the highest
AgNP concentration (250 ppm) reduced µ to 0.08 ± 0.016 h−1,
thereby indicating the deleterious effects of nanoparticles at
higher concentrations. Thus, the lowest concentration of AgNPs
(25 ppm) exhibited no major detrimental effects on microbial
viability. Further, the effects of AgNPs at such low concentrations
were quantified experimentally on ROS generation (superoxide
and hydroxyl radicals) (Fig. 3a, b). At 6th h (mid-log phase) of
AgNP-treated bacterial culture growth, the specific intracellular
superoxide concentration increased by 13% (0.273 ± 0.01 nmol/g-
cell) compared to control. Similarly, specific intracellular hydroxyl
radical levels showed a 48% increase (1.057 ± 0.02 nmol/g-cell, at
9th h) in the late-log phase, compared to control.
Nevertheless, the AgNP-induced intracellular ROS generation

could have altered microbial metabolism. This altered state of
metabolism was captured using the CBM approach, which is a
preferred computational approach for studying overall metabolic
characteristics and metabolite systems profiling16, as experimental
studies cannot capture all the metabolic complexities simultaneously.

The metabolic effects of ROS (oxidative stress) on E. durans were
computationally captured for the first time in this study, wherein CBM
of E. durans was used to identify metabolic consequences associated
with increased generation of reactive species (ROS/RNS) within the
microbial system. Genome-scale metabolic model (GSMM) of E.
durans (E. durans ATCC 6056) was downloaded from virtual human
metabolic (VMH)17, and an extensive manual curation of the model
was performed using scientific literature to incorporate relevant
reactive species reactions to generate expanded E. duransmodel with
ROS reactions (Supplementary Data 1 and Supplementary Table 1).
The ROS expanded metabolic model was then constrained as per the
MRS medium composition (Supplementary Data 1).
Flux variability analysis (FVA)18 was then implemented to capture

the relative changes in the network fluxes before and after the
addition of ROS reactions. Upon calculating flux span ratio (FSr) for
the original and ROS expanded models (detail in the Methods
section), seven reactions- most of them associated with folate
metabolism, showed heightened fluxes in the expanded ROS model.
These reactions were catalyzed by: dihydrofolate reductase
(EC:1.5.1.3), methenyltetrahydrofolate cyclohydrolase (EC:3.5.4.9),
formate-tetrahydrofolate ligase (EC:6.3.4.3). In addition, minNorm
analysis indicated that these seven reactions, in turn, influenced
major metabolic pathways, i.e., amino acid/peptide metabolism,

Fig. 1 An overview of the direct and indirect effects of AgNPs mediated oxidative stress on gut bacterial metabolism in treatment and
management of CRC. AgNPs are known to mediate their direct cytotoxic effects through increased generation of reactive species inside the
target cells. Besides, the AgNP-generated oxidative stress can also affect the cellular metabolism and certain pathways of interest (in this case,
the anti-cancer metabolites) thereby enhancing indirect cytotoxicity. Gut microbe-CRC interactions can further assist in understanding the
role of gut bacterial metabolites (indirect effects of ROS) on CRC metabolism.

Fig. 2 Variation of E. durans growth with different concentrations of AgNPs. Exposure of bacterial cultures to higher concentrations of the
nanoparticles results in a) excessive cell death and b) reduced specific growth rates (p-value= 0.0201). Values are expressed as mean ± SD,
n= 4.

P. Bhalla et al.

2

npj Systems Biology and Applications (2022)     1 Published in partnership with the Systems Biology Institute

1
2
3
4
5
6
7
8
9
0
()
:,;



nucleotide metabolism, carbohydrate metabolism (pyruvate metabo-
lism, glycolysis/gluconeogenesis), and energy metabolism, as eluci-
dated in Fig. 4 (details in Discussion and Supplementary Table 2). One
of the most important and novel CBM predictions highlighted the
association between folic acid derivatives (cellular folate pool) and
SCFA (propionate) metabolism through the enzymes-malonyl CoA
pyruvate carboxytransferase (EC:2.1.3.1) and 2-oxobutanoate formate
lyase, as mentioned in Supplementary Table 2.
Based on the modeling predictions, the effects of ROS on folate

levels were examined experimentally. Interestingly, the findings
showed AgNP-induced oxidative stress also elevated both intracel-
lular (Supplementary Fig. 2) and extracellular (Fig. 5a) microbial folate
levels, as revealed by HPLC analysis. At 9th h of AgNP-treated
microbial growth, maximum specific extracellular folate was 52%
higher compared to control (128.84 ± 0.16 nmol/g-cell).

E. durans-secreted metabolites, specifically folate, affected
CRC cell viability
Previous studies have reported that many microbe-secreted metabo-
lites exhibit anticancer properties8,19. Folic acid is one such metabolite,
which is involved in CRC carcinogenesis20,21. However, for the very
first time, we were able to identify the cytotoxic effects of folic acid (at

a critical concentration of 0.5 µM) on HCT 116 cells (Supplementary
Fig. 3). Moreover, the role of various metabolites produced by E.
durans in the context of nanoparticles-based targeting of CRC was
studied. To do so, HCT 116 cells were treated with crude bacterial
supernatant obtained from AgNP-treated bacterial culture and an
MTT viability assay was performed. It was found that AgNP (25 ppm)
treated bacterial culture supernatant exerted cytotoxic effects on
cancer cells. The viability of the cancer cells treated with 9th h
supernatant from nanoparticle treated cultures was reduced by 19%
as compared to control (Fig. 5b). Interestingly, this was also the time
point corresponding to the release of the optimal cytotoxic
concentration of extracellular folate secreted in the culture (Fig. 5a).
As microbe secreted metabolites have the potential to affect cancer
cell viability, it was crucial to understand the metabolic interrelation-
ships between the E. durans and the host cell (i.e., healthy colon and
cancer colon cell types) in detail.

Context-specific metabolic models of CRC and CRC-microbe
metabolic interactions facilitated understanding metabolic
complexities of CRC
Tissue-specific metabolic models of healthy colon and CRC cells
were developed from Recon 3D22. The generic human metabolic

Fig. 3 Reactive species time profile in the absence and presence of AgNP generated oxidative stress. ( indicates control culture;
indicates culture treated with 25 ppm AgNP). a The superoxide radical levels increased during the mid-log phase (6th h) of growth (on
exposure to AgNPs), and then dropped, when compared to control (p-value= 0.0419). b The hydroxyl radical concentration in the presence of
a lower concentration of AgNP, showed increased levels at 9th h when compared to the control (p-value= 0.0357). Values are expressed as
mean ± SD, n= 3.

Fig. 4 Folate metabolism and its association with different central metabolic pathways. The metabolic pathways (viz., amino acid, energy
and nucleotide metabolism), were influenced by folate metabolism as predicted by the model. The link between SCFA metabolism and folic
acid metabolic pathways is a novel model prediction that needs to be confirmed experimentally.
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network was constrained using proteomic data obtained from the
Human Protein Atlas (HPA; Version: 19.1)23, as well as gene
regulation data (genes specifically upregulated in colon cancer)
from the literature24. The multi-omics data was then integrated
using iMAT algorithm25. The data-constrained models were further
conditioned to grow on a defined nutrient medium for
mammalian cells, i.e., DMEM growth medium as per the
experimental studies (Supplementary Data 2). These nutrient-
constrained colons and CRC models were then independently
integrated with ROS expanded E. durans (Supplementary Data 3
and Supplementary Table 1) using the Microbiome Modeling
Toolbox26 to simulate host–microbe interactions.
The first step in investigating the metabolic attributes

differentiating healthy colon and CRC was to model the growth
of the models, which is a function of the flux obtained through
their biomass reactions, respectively using flux balance analysis
(FBA). The flux through the biomass reaction of the CRC model
was found to be higher (0.0223 mmol/g-DW/h), compared to
that of the healthy colon model (0.0003 mmol/g-DW/h), thus,
indicating that transformed cells grow and proliferate at
relatively higher rates. This defining characteristic of CRC cells
is attributed to their ability to cater to the increasing
biosynthetic demands for increased proliferation, which was
further explored by computing variation in fluxes of the entire
metabolic network. To do so, FVA and subsequently, flux
distribution ratio (FSr, considering values in the range 0.8 > FSr
> 2) analysis of colon and CRC metabolic models, as well as
colon-microbe and CRC–microbe models was performed. A
surge in biochemical flux was observed through different major
metabolic pathways in CRC compared to the colon (Fig. 6a) and
CRC-microbe to colon-microbe models (Fig. 6b). Most of these
pathways were common to both sets of models and included:

i. Fatty acid oxidation: The reactions participating in fatty acid
oxidation catalyzed by Carnitine O-Palmitoyltransferase
(CPT; EC:2.3.1.21), Enoyl Coenzyme A Hydratase (ECH,
EC:1.3.8.7), and Enoyl Coenzyme A Reductase (EC:1.3.1.38)
showed increased fluxes, indicating beta-oxidation of fatty
acids was a metabolically pronounced phenomenon in both
the CRC and CRC- E. durans integrated models.

ii. Fatty acid synthesis: The pathways involving reactions
catalyzed by Very-Long-Chain 3-Oxoacyl Coenzyme A Synthase
(EC:2.3.1.199) and Very-Long-Chain 3-Oxoacyl Coenzyme A
Reductase (EC:1.1.1.330) also had increased flux values,
indicative of fulfilling the metabolic requirements of
cancer cells.

iii. Amino acid metabolism: Tyrosine metabolic pathway displayed

enhanced flux through the reaction catalyzed by 3, 4-
Dihydroxymandelaldehyde:NADP+Oxidoreductase (EC:1.2.1.5).

iv. Squalene and cholesterol metabolic pathways were also
affected in these metabolic networks. For instance,
Isopentenyl-Diphosphate D-Isomerase (IDI, EC:5.3.3.2) which is
important in squalene synthesis showed increased flux value in
both models.

v. The reaction catalyzed by the enzyme Deoxyuridine Phosphor-
ylase (DURIPP; EC:2.4.2.23) in nucleotide interconversion also
showed increased flux.

The relevance of these enzymes and related pathways in cancer
cells have been discussed at great length in the Supplementary
Discussion. Interestingly, these computational predictions have been
concordant with the existing literature findings (summarized in Table
1), thereby supporting the reliability of these models in evaluating
metabolic aspects of CRC as a disease. However, certain reactions
catalyzed by Prostaglandin I2 synthase (E.C:5.3.99.4; eicosanoid
metabolism) and Palmitoyl Coenzyme A Hydrolase (E.C:3.1.2.2; fatty
acid oxidation showed reduced fluxes. This contrasts with the
findings reported in the literature (Supplementary Discussion).

E. durans-driven changes in CRC metabolism highlight the
relevance of gut microbe
The FSr analysis between the host (CRC and colon)–microbe
model sets emphasized changes brought about in the fluxes of
the following CRC biochemical reactions in presence of E. durans
(ROS exposed) model when compared to colon–E. durans:

i. Steroid metabolism: In the CRC–E. durans integrated
metabolic model, steryl sulfatase (STS, EC:3.1.6.2) and
Hydroxysteroid (17-Beta) Dehydrogenase 4 (17βHSDs, EC:
1.1.1.35) showed increased flux values.

ii. Oxidative phosphorylation (OXPHOS): One of the crucial
highlights of the CRC–microbe integrated metabolic model
was increased flux through Sn-Glycerol-3-Phosphate:
(Acceptor) 2-Oxidoreductase (EC:1.1.5.3) catalyzed reaction
of the OXPHOS pathway. This established the importance of
OXPHOS in rewired CRC metabolism when exposed to E.
durans integration.

iii. Arachidonic acid metabolism: Arachidonate 5-Lipoxygenase
(EC:1.13.11.34) catalyzed reaction showed increased flux
value in the CRC–microbe model.

Moreover, we also compared fluxes between CRC and
CRC–microbe models to identify metabolic changes specifically
driven by E. durans. These included the following:

Fig. 5 Effects of AgNPs on folate secretion, and role of latter in affecting HCT116 viability. ( indicates control culture; indicates culture
treated with 25 ppm AgNP). a The extracellular folic acid concentrations increased on exposure to AgNPs. This increase could be an outcome of the
oxidative stress induced in the organism, which in turn impact folate related metabolic pathways. b MTT analysis of HCT116 treated with bacterial
supernatants from cultures exposed to silver nanoparticles and control. Reduction in viability was observed for cells treated with 9th h supernatants
(p-value= 0.0031), the time point corresponding to maximum concentration. Values are expressed as mean ± SD, n= 3.

P. Bhalla et al.

4

npj Systems Biology and Applications (2022)     1 Published in partnership with the Systems Biology Institute



i. Phosphatidylinositol (PI) and inositol phosphate metabo-
lism: The flux through various enzyme-catalyzed reactions
involved in the PI pathway exhibited increased fluxes in the
CRC-microbe integrated model compared to the CRC model
alone. These enzymes included 1-Phosphatidylinositol-4-
Phosphate 5-Kinase (PIP kinase, EC:2.7.1.68) and Phosphati-
dylinositol N-acetylglucosaminyltransferase (EC:2.4.1.198).

ii. Glycerophospholipid metabolism: The reaction catalyzing
the generation of 1-Palmitoylglycerophosphoinositol and
1-Arachidonoylglycerophosphoinositol showed increased
fluxes in the CRC-E. durans integrated model. These
reactions are catalyzed by phospholipase A2 (EC:3.1.1.4).

iii. Propanoate metabolism: 2-Hydroxybutyrate dehydrogenase
(2HBDH; EC:1.1.1.30), catalyzed reaction showed increased
flux in the CRC–E. durans integrated model.

Metabolome analysis of the host–microbe models aid in
predicting novel therapeutic drug targets in CRC
Another important aspect of our computational studies involving
FSr analysis for different sets of metabolic models, viz. CRC and
colon; CRC–E. durans and colon–E. durans, was to identify any
affected reactions/enzymes that behaved differentially in CRC (or
CRC–E. durans) models and could serve as promising new drug
targets. These included:

1. Sn-Glycerol-3-Phosphate: (Acceptor) 2-Oxidoreductase (E.
C.1.1.3.21) catalyzed reaction of the OXPHOS pathway
which displayed increased flux in CRC-microbe integrated
model (16.67% increment) indicating that the CRC cells
favor oxidative phosphorylation (OXPHOS) over glycolysis.

2. 3, 4-Dihydroxymandelaldehyde Dehydrogenase (E.
C.1.2.1.5) catalyzed reactions carried increased flux in
CRC and CRC–microbe metabolic models (increase by
62.5%).

3. Catechol O-Methyltransferase (COMT; E.C.2.1.1.6) cata-
lyzed reaction from phenylalanine metabolism in
CRC–microbe model showed increased flux by 41.67%.

These novel predictions have been summarized in Table 2 and
their significance in CRC has been discussed in detail in the
ensuing discussion.
The secreted metabolite profiles (secretome) of the host and

host-microbe models were also analyzed to better understand the
metabolic changes associated with CRC metabolism (in the
presence and absence of gut microbe). Based upon the FSr analysis
of the colon v/s CRC and colon–microbe vs. CRC–microbe models,
the exchanges with FSr values falling in the defined range (0.8 > FSr
> 2) were further analyzed to establish the secretome of the CRC
model. The maximum fluxes for these exchanges were subsequently
observed to identify the metabolites with increased secretion in
cancer cells (Fig. 7). In case of colon v/s CRC models, the metabolites
pertaining to fatty acid metabolism (EX_lnlncg (gamma-linolenic
acid), EX_ocdca (stearic acid), EX_hdca (palmitic acid) etc.),
sphingolipid and glycolipid metabolism (EX_dolichol_L, EX_acnam
(N-acetylneuraminic acid), EX_sphgn (sphinganine)), glucose meta-
bolism (EX_glyc (glycerate), EX_glcn (gluconic acid)), amino acid
metabolism (EX_Nacasp (N-acetyl-L-aspartic acid), EX_glu_L,
EX_asn_L) showed increased flux in CRC model compared to
healthy colon (Fig. 7a). Similarly, a comparison of colon-microbe and
CRC–microbe in terms of fluxes through host exchange reactions
captured increased fluxes for certain metabolites of importance in
cancer (Fig. 7b). These included pyrimidine metabolism (EX_cytd[e]b
(cytidine), EX_dcyt[e]b (deoxycytidine), EX_orot[e]b (orotic acid)),
steroid metabolism (EX_dheas[e]b (Dehydroepiandrosterone sul-
fate), EX_eandrstrn[e]b (16a-hydroxydehydroisoandrosterone),
EX_prgnlone (pregnenolone)), catechol metabolism (EX_34dhox-
peg[e]b (3,4-dihydroxyphenylglycol)). Further, E. durans secreted
metabolites can also affect CRC metabolism. In this study, gut
bacteria secreted thymidine (intercellular exchange) showed
increased flux in CRC–microbe model, thus acting as the point of
interaction between the two models. The secretome analysis of
cancer cells and its relevance in promoting/controlling the disorder
has been discussed in the next section.

Fig. 6 Variation of reaction absolute fluxes highlighting the affected metabolic pathways. a Colon vs. CRC and b colon-microbe vs.
CRC–microbe models.
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DISCUSSION
The primary aim of this study was to uncover the role of gut
microbes in nanoparticle-aided CRC management using guided
computational and experimental approaches. Specifically,
genome-scale metabolic modeling was utilized to substantiate
the metabolic interactions between gut microbe and CRC
metabolisms, which were identified through experimental analy-
sis. Firstly, the response of E. durans to nanoparticle exposure was
examined, as AgNPs have been reported to generate intracellular
oxidative stress27,28. in biological systems. Despite the notable
antioxidant properties displayed by E. durans29, a lower concen-
tration (25 ppm) of AgNPs resulted in an increased generation of
intracellular reactive species (Fig. 3). Furthermore, the hydroxyl
levels increased noticeably during the late log phase in
nanoparticle-treated cultures, indicating that AgNPs are potent
inducers of ROS. In turn, the nanoparticle-generated oxidative
stress has been reported to affect the cellular metabolism in
different biological systems, thereby increasing the productivity of
certain metabolites (for instance, xanthan gum and pyocyanin in
Xanthomonas campestris)30,31. Based on these findings, it was
hypothesized that increased ROS levels may impact the gut

microbial metabolism and secretion profiles of metabolites, such
as folate, while the latter being of major relevance in key
metabolic pathways.
To test this hypothesis, we used the systems biology modeling

approach (COBRA toolbox)32 to analyze the systems-level effects
of ROS on the metabolism of E. durans. The modeling framework
assisted in establishing the critical link between folic acid
metabolism and other important intermediary metabolic path-
ways (i.e., amino acid, energy, lipids, as well as SCFA metabolism)
in the gut microbe exposed to ROS (Supplementary Table 2). For
instance, the minNorm analysis indicated that the addition of ROS
to the model system affected glycine hydroxymethyl transferase
(EC:2.1.2.1)33 catalyzed reaction, wherein the 3-carbon serine
serves as one of the major sources in transferring one-carbon
moiety to tetrahydrofolate (THF) to form 5, 10-methylene THF
(MLTHF). A positive flux was generated in this reaction, implying
an increased release of folate derivatives, thereby affecting folate
metabolism. Similarly, an increased flux was observed in
methylenetetrahydrofolate dehydrogenase (EC:1.5.1.5) catalyzed
reaction that synthesizes METHF (methenyl THF) from MLTHF

Table 1. Host and host-microbe model predictions in agreement with literature.

Reactions Comments

CRC specific model predictions

ATP:Dephospho Coenzyme A 3-Phosphotransferase (EC:2.7.1.24) and
Pantothenate 4-Phosphotransferase (EC:2.7.1.33)

These enzymes catalyze the reactions leading to Coenzyme A
synthesis, the latter being the acyl carrier participating in various
metabolic pathways60, and therefore being significant in cancer
metabolism. The related enzyme-catalyzed reactions showed
increased flux in the CRC model.

Carnitine O-Palmitoyltransferase (EC:2.3.1.21), Enoyl Coenzyme A
Hydratase (EC:1.3.8.7), and Enoyl Coenzyme A Reductase (EC:1.3.1.38)

These enzymes catalyze the reactions of fatty acid oxidation metabolic
pathways, and their activity is significantly heightened in colon
carcinogenesis61,62. The related enzyme-catalyzed reactions also
showed increased flux values in the CRC metabolic, thus, being
consistent with the literature findings.

Isopentenyl-Diphosphate D-Isomerase (EC:5.3.3.2) This enzyme participates in the mevalonate-isoprenoid biosynthetic
(MIB) pathway, which is crucial to CRC metabolism63. Interestingly, the
CRC metabolic model computational analysis also reported an
increased flux through the related enzyme-catalyzed reaction.

Folylpolyglutamate Synthetase (EC:6.3.2.17) The enzyme is required for the synthesis of folate derivatives (1-C
carriers), the excess of which promotes CRC carcinogenesis64. The CRC
metabolic model showed increased flux value through the related
enzyme-catalyzed reactions.

CRC-microbe integrated model predictions

2-Methylpropanoyl Coenzyme A:Oxygen 2, 3-Oxidoreductase (EC:1.3.99.2)
and ‘3-Methylbutanoyl Coenzyme A: (Acceptor) 2, 3-Oxidoreductase
(EC:1.3.99.12)

These enzymes catalyze the degradation of BCAAs, the major
degradation product being acetyl CoA, which is essentially required
for fatty acid synthesis65, a metabolic process elevated in CRC cells.
The related enzyme-catalyzed reactions in the CRC microbe
integrated model also showed increased flux values.

L-Alanine:2-Oxoglutarate Aminotransferase (EC:2.6.1.2) This enzyme catalyzes the formation of pyruvate and glutamate, the
two being important substrates for various major metabolic
pathways66, and hence relevant to cancer pathogenesis.
Computationally, the CRC–microbe integrated model captured the
increased activity of this enzyme through increased flux.

17-Beta-Hydroxysteroid Dehydrogenase (EC:1.1.1.35) and Steryl-Sulfatase
(EC:3.1.6.2)

These enzymes participate in the steroid biosynthesis (estradiol)
metabolic pathway, wherein increased serum levels of estradiol have
been reported in colon cancer67. The CRC–microbe model also
showed increased flux values through the related enzyme-catalyzed
reactions.

Arachidonate 5-Lipoxygenase (EC:1.13.11.34) The enzyme catalyzes the intermediate steps in the synthesis of
leukotrienes, and its activity is reported to be elevated in colon cancer
cells68. The CRC–microbe integrated model captured increased flux for
the related enzyme-catalyzed reaction.
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(derived from serine metabolism), thus associating energy
(NADPH) and nucleic acid metabolism with folate metabolism34.
Interestingly, the novel link between folic acid derivatives and

SCFA (propionate) metabolism was predicted by the model (Fig.
4). The two enzymes linking these essential pathways were
malonyl CoA pyruvate carboxytransferase (EC:2.1.3.1) and
2-oxobutanoate formate lyase. Both these enzymes are required
for synthesizing propionate CoA, which further participates in
propionate metabolism. The role of ROS in increasing the folate
levels was further validated through experiments, wherein an
increase in extracellular folate levels was observed in AgNP
treated bacterial culture (Fig. 5a). Thus, this is the first study of its
kind that establishes the interplay between gut bacterial
metabolism and AgNP-generated intracellular oxidative stress.
Moreover, the interactions between E. durans and CRC were

extensively modeled to assess the role of gut microbes in disease
etiology. To do so, multi-omics (proteomics and transcriptomics)
data-driven metabolic models of CRC and colon were generated
(refer methods section). These models were used to analyze
distinct metabolic features of CRC cells often represented through
rapid growth and division in tumor cells when compared to their
healthy counterparts (colonocytes)35. A higher rate of cell
proliferation was observed in the CRC model in terms of increased
biomass flux (i.e., approximately 98%), as compared to the healthy
colon model, thus corroborating the existing literature reports36.
Moreover, these tissue-specific models were also able to capture
various metabolic pathways (Fig. 6a), responsible for providing
various biosynthetic components (ATP, NADPH, NAD+, acetyl-CoA,
and amino acids) to the transformed cell for sustaining its growth
and proliferation.
Further, to understand the effect of gut microbes on CRC

metabolism, the host–microbe interactions were simulated by
constraining the host-microbe integrated model as per the
experimental conditions. These metabolic interactions can aid in
deciphering the interplay between gut microbes and tumor cells,
and hence be advantageous in devising novel therapeutic targets
in the context of AgNP-based CRC treatment. The metabolites
secreted by gut microbes also affected CRC cell viability, as a
significant reduction in viability was observed in HCT 116 cells
treated with supernatants obtained at the 9th h of bacterial
culture growth—both control and AgNP treated cultures (Fig. 5b).
Moreover, the extracellular folate concentrations measured in
AgNP treated cultures at the 9th h of bacterial growth were
equivalent to the optimal-cytotoxic concentration of synthetic
folic acid that resulted in increased cell death (compared to
control). These experimental findings observations found that
oxidative stress heightened the production of folate to optimal-
cytotoxic levels, affecting cancer cell viability.
Contrary to experimental findings, the CRC–microbe model was

unable to capture the anti-cancer effects of gut bacterial
metabolite(s), as no decrease in flux was observed in the flux
through the CRC-biomass reaction. Typically, an oncogenic
transformation operates at multiple levels of signaling, metabolic,
and regulatory variations, all culminating in the re-wiring of
cellular metabolic pathways12,37. However, owing to the limita-
tions of GSMs, these models were unable to capture other
significant cellular aspects (i.e., signaling and regulatory) asso-
ciated with metabolism. Nonetheless, the tissue-specific models
(CRC and CRC–E. durans) effectively captured various metabolic
pathways that contribute to aberrant CRC metabolism (Fig. 6b).
One of the major outcomes of this study was the agreement

observed between the computational predictions and literature
findings for the affected pathways in CRC and CRC–microbe
models. A detailed review of the same has been discussed in the
Supplementary Information (Supplementary Figs. 4–6) along with
additional analysis such as computing shadow prices, flux
enrichment analysis, etc. (details in Supplementary Discussion).
Furthermore, these metabolic models were able to predictTa
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enzymatic reactions that could serve as novel drug targets while
managing CRC (Table 2). For instance, the constraint-based CRC-
microbe integrated metabolic model showed increased flux
through Sn-Glycerol-3-Phosphate: (Acceptor) 2-Oxidoreductase
(EC:1.1.3.21) catalyzed reaction of the OXPHOS pathway when
compared with colon–microbe model. Experimental studies have
shown that the cancer cells derive their energy mainly through
aerobic glycolysis (Warburg effect)38. In such cases, the cells prefer
to metabolize carbohydrates through glycolysis, despite having
completely functional mitochondria, thus not resorting to a more
efficient oxidative phosphorylation (OXPHOS) pathway. However,
recent studies have shown that certain cancers (prostate and
ovarian) exhibited a switch from glycolysis to OXPHOS for energy
generation39. This change in energy metabolism is another
prominent characteristic feature of cancer metabolism, which
makes the OXPHOS pathway an effective target for cancer
therapeutics. This phenomenon has not been reported in CRC-
related experimental studies this far. In addition to linking
carbohydrate and lipid metabolism, this enzyme also catalyzes
the generation of hydrogen peroxide (H2O2), the latter resulting in
increased intracellular oxidative stress40. This chronic oxidative
stress in turn is conducive to the pro-inflammatory micro-
environment of CRC tissues. Thus, given its significance in the
OXPHOS pathway, this enzyme can serve as a novel chemother-
apeutic drug target.
Another enzyme, 3, 4-dihydroxymandelaldehyde: NADP+

oxidoreductase (EC:1.2.1.5) facilitates the conversion of 3,4-
dihydroxymandelaldehyde to 3,4-dihydroxymandelic acid (DHMA)
in tyrosine metabolism. DHMA, a catechol, is a norepinephrine
metabolite known to possess strong antioxidative potential41.
Certain in vitro studies have shown that catechol inhibits the

growth of lung cancer, and therefore possesses anticancer
attributes42. However, its role in CRC metabolism and treatment
has not been investigated. Interestingly, 3, 4-dihydroxymandelal-
dehyde: NADP+ oxidoreductase catalyzed reactions showed
increased flux in CRC and CRC–microbe metabolic models, thus,
favoring its importance as a therapeutic target while designing
novel cancer treatment drugs.
Catechol O-methyltransferase (COMT; EC:2.1.1.6) catalyzes the

synthesis of S-Adenosyl-homocysteine (SAH) from S-Adenosyl-
methionine (SAM), the latter being a major methyl donor in
transmethylation reactions that can downregulate the expression
of oncogenic promoters by reversing DNA hypomethylation,
thereby inhibiting tumor growth43. Furthermore, this tumor-
inhibiting attribute of SAM is well established in gastric and colon
cancers44. In CRC–microbe model, an increase in flux through this
reaction was observed (41.67%). On the other hand, high SAH
serum levels inhibit SAM-dependent methyltransferases (that
catalyzes methionine to SAM conversion). Elevated serum
concentrations of SAH have been reported in chronic diseases
like cardiovascular and chronic kidney diseases45. However, the
role of SAH has not been established in colon cancer yet. The
reduced levels of SAM (on account of increased flux through
COMT catalyzed reaction in the CRC–microbe model) can result in
increased cancer cell proliferation and growth making COMT a
promising drug target, an aspect that can motivate future
experimental studies.
To better understand the anomalous behavior of CRC, the

secretome profiles obtained from medium constrained models
focused on the metabolites accountable for deviant cellular
characteristics observed in CRC by altering the tumor micro-
environment. The models were constrained as per the DMEM

Fig. 7 Metabolite secretion profiles of the host and host–microbe models. a Colon vs. CRC and b colon–microbe vs. CRC–microbe.
Exchange reactions with increased fluxes are depicted in red, with the same fluxes in white and reduced fluxes in black.
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composition, wherein various macro- and micro-nutrients were
provided as substrate inputs. Several metabolite secretions were
affected in diseased conditions compared to a healthy colon. For
instance, increased secretion of alpha-ketoglutarate (EX_akg), an
intermediate of the tricarboxylic acid cycle, reinstated its relevance
in the oxidation of fatty acids, amino acids, and glucose46. Other
metabolites partaking in fatty acid metabolism, glycolysis,
sphingolipid, and amino acid metabolism also showed increased
exchange fluxes in the CRC model, compared to the colon (Fig.
7a). An essential metabolite, N-acetyl-L-aspartic acid (EX_Nacasp)
which has a prominent role in promoting tumor growth and can
act as a potential target for anticancer therapy47 also showed
increased secretion in the CRC model.
Similarly, CRC-microbe secretome analysis also featured ele-

vated fluxes in various metabolites secretions (Fig. 7b) like orotic
acid (EX_orot[e]b) and its derivative (EX_orot5p[e]b), which is a
powerful tumor promoter in hepatocellular carcinoma48. Pregne-
nolone (EX_prgnlone[e]b) and sulfites (EX_so3[e]b) which pro-
mote prostate cancer49 and ulcerative colitis, potentially leading
to colon cancer50 respectively, also showed increased secretion in
the integrated model. In addition to the tumor-promoting
metabolite secretions, dehydroepiandrosterone sulfate
(EX_dheas[e]b) a key adrenal steroid that is known to have some
protective role in CRC51 also showed elevated levels in the
host–microbe integrated model. Moreover, it was thymidine
secreted by E. durans that acted as an important metabolite
connecting the microbe metabolism with that of the host.
Increased extracellular transport of thymidine from microbe to
CRC could have possibly boosted the latter’s pyrimidine metabo-
lism compared to the healthy colon, as captured and supported
by the FSr analysis. Thus, all the computational predictions
cumulatively emphasized the applicability of GSMMs in compre-
hending CRC metabolism and potential drug targets.
To summarize, CBM effectively predicted the association

between ROS and folate metabolism, which was also verified
through experiments. Moreover, context-specific models of CRC
and colon could accurately capture the fundamental biochemical
differences between a healthy colon- and CRC-cell, further
demonstrating the metabolic adaptations essential for CRC
survival. The integration of CRC and gut microbe metabolic
models to simulate host-microbe interactions was beneficial in
understanding CRC metabolism in presence of a gut microbe.
These metabolic interactions can help mimic the interplay
between gut microbes and tumor cells under in vivo conditions
and can be advantageous while devising novel therapeutic targets
in the context of AgNP-based CRC treatment.

METHODS
Characterization of silver nanoparticles (AgNPs)
Silver nanoparticles (AgNPs) were obtained from Sigma Aldrich (catalog
No. 7440-22-4). Size distribution analysis was carried out using dynamic
light scattering and zeta potential was measured using Horiba Scientific
Nanopartica nanoparticle analyzer (SZ-100). A scanning electron micro-
scope was used to study NP–bacteria interaction.

Bacterial culture and treatment with AgNPs
E. durans, a facultative aerobe, procured from MTCC (MTCC No. 3031) was
used as the model organism. The bacterial culture was grown in shake
flasks containing MRS broth at 37 °C, 180 rpm, in a shaker (Scigenics
Orbitek). The total cell concentrations at different time points were
measured through optical density (cell scatter) at 600 nm (JASCO V-630
Spectrophotometer), and a comparison with a standard plot of OD vs. cell
concentration was done.
The AgNPs (25–250 ppm) were dispersed in the medium using a water

bath sonicator. The medium was then inoculated with the appropriate
volume of the subculture (inoculum), such that the OD value at the 0th h
was 0.1.

Quantifying intracellular ROS concentrations
Intracellular ROS were measured by following the procedures from
literature52. 3′-(p-amino-phenyl) fluorescein, APF (Invitrogen, USA) and
dihydroethidium, DHE (Sigma-Aldrich, India) were used to detect hydroxyl
and superoxide radicals, respectively. The samples (microbial cell cultures
at different time points) were incubated with the dyes (2 mM DHE at 37 °C
and 5mM APF at room temperature) for 30min. Upon detection through a
fluorescent spectrophotometer, the hydroxyl and superoxide radical
concentrations were evaluated using the standards plots of hydrogen
peroxide and potassium superoxide, respectively. The concentration of
superoxide and hydroxyl radicals was reported in nmol/(g-cell).

Sample preparation for folate estimation and HPLC analysis
The bacterial culture was harvested every 3 h and culture volume
corresponding to 10 OD was used for sample extraction. The extracted
culture volume was centrifuged, and the bacterial pellet obtained was
suspended in 1ml of milli Q water. It was then sonicated (Q Sonica
sonicator), at an amplitude of 70%, for a processing time of 4min (pulse on
and off time being 2 s). The sonicated sample was then placed in a water
bath at 100 °C and subjected to heat for 5 min to release any folate bound
to the folate binding proteins. The cell-free extract was obtained by
centrifuging the sample. The supernatant was collected, filtered, and used
further for folate estimation. For quantifying extracellular folate, released
by the bacterial cells into the growth medium, 1 ml of culture was
collected every 3 h and the filtered supernatant was used for HPLC using
UFLC Shimadzu HPLC setup. C18 Hypersil column (25 cm*4.6 mm, 5-micron
spherical packing)53. Carbinol in 0.05 M KH2PO4 which was used as the
mobile phase was filtered through 0.46-micron filters before use and then
sonicated in a bath sonicator for 10min for degassing the solution. The
flow rate was maintained at 0.4 mL/min.
Folic acid (Himedia, catalog No. CMS175) was used as standard

(0–125 μM) in the estimation of folate in samples (cell extracts and
bacterial supernatant).

Treatment of HCT 116 with bacterial supernatant
HCT 116 (colon cancer cell line) was obtained from Dr. Bert Vogelstein,
John Hopkins University, Baltimore, USA. The tumor cells were grown in
Dulbecco’s Modified Eagle Media (DMEM), with 5% serum. The cells were
seeded and grown in a 96-wells plate and were treated with bacterial
supernatant (control and 25 ppm AgNPs), and different concentrations of
synthetic folic acid. MTT cell proliferation assay was then performed to
quantify cell viability on exposure to the drug after 48 h of treatment54.

Modeling gut bacteria—ROS interplay: constraint-based
model formulation
In our study, the unconstrained E. durans GSMM was downloaded from the
VMH database (https://vmh.uni.lu/) and expanded using ROS reactions
curated from the literature.
rBioNet was used to add the different reactions (ROS reactions; missing

transport and exchange reactions; sink and demand reactions) to the
model. rBioNet enables the user to add these reactions in a quality-
controlled manner, by exempting sources of manual error55. A total of
eight ROS reactions and 11 metabolites were added to the model. These
ROS reactions focused on the biochemical interactions between reactive
species (predominantly superoxide, hydroxyl radical, and nitric oxide), and
amino acids56, and nucleic acids57. The resulting reconstruction (with ROS
reactions) was then merged with the downloaded metabolic model, thus,
formulating the ROS expanded model (Supplementary Data 1). FBA was
carried out on the newly added reactions individually to check if the
reactions were blocked (carrying zero net flux). Blocked reactions might
result from incomplete reaction information about the consumption of
substrates or the generation of products. These blocked reactions were
then resolved by adding complete metabolic reactions and pathways from
the literature). In case there was no literature evidence supporting
reactions pertaining to the blocked reaction, the reaction was un-blocked
(by adding demand or sink reactions for products and reactants,
respectively). For E. durans model, seven demand reactions and one sink
reaction were added. Upon un-blocking the newly added reactions, dead-
end metabolites were then identified. Dead-end metabolites are the ones
that are either produced or consumed but never both. These dead-end
metabolites were also resolved using literature information for adding the
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required reactions to the model. The debugged model was medium
constrained as per MRS medium composition.
FVA was then performed that provided the flux values (minimum and

maximum) FSr, which is the ratio between absolute flux values of reactions
for healthy model (original E. durans) to absolute flux values of reactions
for disease model (ROS-expanded E. durans) was calculated. The range for
FSr is user-defined. The reactions with FSr values in the range 0.8 > FSr > 2
were identified. These were the reactions that were considered as affected
due to the addition of ROS reactions to the model. minNorm analysis was
then carried out on these reactions. minNorm function in MATLAB is a tool
for frequency estimation of the data vector, for a given function.

Context-specific model building
Recon 3D, a human metabolic reconstruction, consisting of metabolic
reactions and their corresponding enzymes/genes was used to generate
the colon and CRC condition-specific tissue models. The ‘omics’ data
(obtained from HPA)23 for healthy and CRC colon was mapped onto
Recon 3D, and the resultant model was derived using iMAT algorithm25

to provide a better understanding of the molecular phenomena
occurring in cancer and normal cell types. iMAT is an integrative
metabolic analysis tool, that allows the integration of transcriptomic
and proteomic data with genome-scale metabolic networks to calculate
fluxes associated with enzyme metabolized reactions. It works best for
capturing reactions/pathways associated with the given data input. This
is advantageous in cases where a single objective is not obeyed/
maintained, for example, mammalian cells. The reactions are grouped in
three categories based on the expression levels of proteins as high,
medium, and low (as per HPA). A data matrix is constructed, wherein the
primary reaction set represents reactions with a high and medium
confidence level to be present in the cell type, and this data matrix is
fed in the iMAT algorithm. The gap-filling was then done using MILP
(mixed-integer linear programming) approach, maintaining the defined
stoichiometric and thermodynamic constraints. The preliminary models
once generated are further curated to satisfy the sanity checks as per
COBRA toolbox standards. Further, to the healthy colon model,
transport reactions were added as reported in literature58, and the
biomass reaction was modified to exclude replicating precursors and
include dependency on cellular folate59. However, the CRC model was
retained with the biomass reaction as in Recon 3D. Additionally, both
the healthy and CRC colon models were expanded to include exchange
reactions for all the metabolites appearing in the extracellular
compartment.

Microbiome modeling toolbox
The Microbiome Modeling Toolbox26 provided by the COBRA toolbox was
used to integrate host and microbe models. This toolbox is primarily used
for modeling microbe-microbe/host-microbe interactions, as well as
personalized microbial communities.

Statistical analysis
All cultures and measurements were carried out in triplicates (each
subjected to at least three technical replicates). Values have been reported
as mean ± SD (please refer to individual results in the Results section). One-
way ANOVA (level of significance, α= 0.05) and Tuckey’s multiple
comparison tests were carried out.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The AGORA resource is freely available at the Virtual Metabolic Human website
(https://vmh.life). The models used in the study are growth medium constrained and
have been provided as excel sheets in Supplementary Data 1–3.

CODE AVAILABILITY
MATLAB codes for performing simulations and data analyses can be accessed at
https://opencobra.github.io/cobratoolbox/latest/modules/analysis/index.html and
Supplementary Note.
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