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Constructing gene regulatory networks using epigenetic data
Abhijeet Rajendra Sonawane 1,2,3, Dawn L. DeMeo1,2, John Quackenbush 1,2,4 and Kimberly Glass 1,2,4✉

The biological processes that drive cellular function can be represented by a complex network of interactions between regulators
(transcription factors) and their targets (genes). A cell’s epigenetic state plays an important role in mediating these interactions,
primarily by influencing chromatin accessibility. However, how to effectively use epigenetic data when constructing a gene
regulatory network remains an open question. Almost all existing network reconstruction approaches focus on estimating
transcription factor to gene connections using transcriptomic data. In contrast, computational approaches for analyzing epigenetic
data generally focus on improving transcription factor binding site predictions rather than deducing regulatory network
relationships. We bridged this gap by developing SPIDER, a network reconstruction approach that incorporates epigenetic data into
a message-passing framework to estimate gene regulatory networks. We validated SPIDER’s predictions using ChIP-seq data from
ENCODE and found that SPIDER networks are both highly accurate and include cell-line-specific regulatory interactions. Notably,
SPIDER can recover ChIP-seq verified transcription factor binding events in the regulatory regions of genes that do not have a
corresponding sequence motif. The networks estimated by SPIDER have the potential to identify novel hypotheses that will allow us
to better characterize cell-type and phenotype specific regulatory mechanisms.
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INTRODUCTION
Gene regulation is a complex process that includes transcription
factors binding and recruiting the transcriptional machinery to the
regulatory regions of their target genes1,2. The regulatory
connections from transcription factors to their target genes can
be summarized in a gene regulatory network. Quantitative
analysis and comparison of gene regulatory networks supports
the characterization of regulatory processes3,4, and can provide
insights into how cells develop, respond to environmental
perturbations5,6, and are altered by disease7,8.
The construction of gene regulatory networks is a fundamental

problem in computational biology9–11. Experimental high-
throughput DNA binding experiments, such as ChIP-seq12, can
identify genome-wide, context-specific transcription factor bind-
ing sites. Although data from these assays can be used to identify
which transcription factors bind within the regulatory regions of
genes, they are limited both by their cost and the fact that they
are only able to cover a small number of transcription factors due
to a lack of good antibodies. This has led to the development of
many computational approaches for gene regulatory network
reconstruction. Most existing methods focus on estimating
relationships between transcription factors and genes exclusively
using expression data13–17, although some combine expression
with other omics data, such as computationally predicted
transcription factor binding site locations18–20. For example,
PANDA (Passing Attributes between Networks for Data Assimila-
tion)18 is a multi-omic network reconstruction algorithm that uses
message passing to integrate predicted transcription factor
binding information with protein–protein interaction and gene
co-expression data in order to estimate gene regulatory networks.
PANDA has been applied to a wide range of biological problems,
including the study of human diseases7,8,18, tissues3,4, and cell
lines21–23. Several databases have also begun curating experi-
mental and computational evidence regarding gene regulatory

relationships24–27, but these sources are not reconstruction
algorithms and thus are not designed to reconstruct a network
de novo from newly generated, context-specific data.
Gene regulatory networks are challenging to model due to the

multi-faceted nature of the regulatory process. For example,
transcription factors often work together by forming protein
complexes. This leads to instances in which a member of a
transcription factor complex regulates a target gene even without
a corresponding binding site in the regulatory region of that
gene2. In addition, the epigenetic state of a cell—i.e., the set of
changes to a cell’s genome that do not impact its DNA sequence,
including its three-dimensional chromatin structure28—influences
which regions of the genome are open and accessible, thus
impacting transcription factor binding and, consequently, gene
regulation. Chromatin accessibility assays, such as DNase-seq29

and ATAC-seq30, can identify regions of open chromatin that are
bound by proteins such as transcription factors, but these assays
do not provide the identity of the bound factors. Instead, the
potential genomic locations of transcription factors are generally
computationally estimated using DNA recognition sequences,
called motifs31–33.
Transcription factor binding site prediction methods generally

work by identifying all the locations in the genome that match a
given transcription factor motif, scoring each identified motif
location, and benchmarking by assessing how well those scores
predict in vivo ChIP-seq transcription factor binding. Motif scores
often incorporate information regarding DNA accessibility to
improve their ability to predict transcription factor binding
sites34–41. However, the focus on improving performance using
an initial set of motif locations means that these types of methods
do not assess instances where a transcription factor binds to the
DNA in the absence of a corresponding recognition sequence
(motif). Furthermore, these algorithms are exclusively designed
and optimized to predict the genomic locations of transcription
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factor binding rather than deducing gene regulatory network
relationships.
On one hand, although there are many algorithms that have

been developed for gene regulatory network reconstruction,
these approaches are almost exclusively based deducing a
network using gene expression data, and do not incorporate
epigenetic data. On the other hand, pipelines designed to predict
transcription factor binding using epigenetic data are not
designed to model network relationships. Here we propose a
method that bridges this gap by reconstructing a gene regulatory
network based on information exchange between epigenetically
accessible motifs. SPIDER (Seeding PANDA Interactions to Derive
Epigenetic Regulation) overlaps transcription factor motif loca-
tions with epigenetic data (open chromatin locations) and then
applies the same message-passing algorithm used by PANDA to
construct a gene regulatory network. We applied SPIDER to
DNase-seq data for six human cell lines and evaluated the
predicted networks using independently derived ChIP-seq data.
We find that SPIDER networks are significantly more accurate than
those derived from the output of existing epigenetic pipelines.
Importantly, we also show that SPIDER’s unique approach of
melding epigenetic data with message passing allows for the
detection of potential co-regulatory events. An implementation of
SPIDER is available at: https://github.com/kimberlyglass/spider.

RESULTS
SPIDER: Seeding PANDA Interactions to Derive Epigenetic
Regulation
To bridge the gap between computational approaches that use
epigenetic data to predict transcription factor binding sites and

network reconstruction approaches that model the relationships
between transcription factors and genes, we developed SPIDER as
a method to reconstruct a gene regulatory network using
epigenetic data. SPIDER identifies transcription factor motifs
found in accessible chromatin regions, uses this information to
identify an initial “seed” network, and then applies message
passing to harmonize connections across all the transcription
factors and genes (Fig. 1a). The input to SPIDER includes the
genomic location of (1) transcription factor motifs, defined by
position weight matrices mapped onto the DNA42, (2) open
chromatin regions, based on epigenetic data, and (3) gene
regulatory regions, which can be defined based on proximity to
transcriptional start sites. SPIDER first constructs a “seed” network
between transcription factors and target genes by intersecting
transcription factor motif locations with open chromatin and gene
regulatory regions. An edge in this seed network represents a
transcription factor that has a motif location that overlaps with
both an open chromatin region and the target gene’s regulatory
region. Next, the weights of edges in this seed network are
degree-normalized to emphasize connections to high degree
transcription factors and genes (see Methods); by definition, these
transcription factors and genes are associated with more open
chromatin regions and are therefore more likely to be active
players in the regulatory process. The structure of this network is
then optimized using the PANDA message-passing algorithm18.
The output of SPIDER is a bipartite, complete network with
weighted edges representing the likelihood of regulatory relation-
ships between all transcription factors and all target genes. For a
more detailed description of SPIDER, see Methods.
We tested SPIDER using data for six human cell lines (Table 1).

For the input to SPIDER we used (1) transcription factor motif
locations derived from mapping transcription factor position
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Fig. 1 Overview of SPIDER and evaluation pipeline. a Schematic of the SPIDER network reconstruction approach. b Overview of the pipeline
we used to evaluate SPIDER, including input data sources, key algorithmic steps, and output networks assessed. TF transcription factor, TSS
transcriptional start site.
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weight matrices from Cis-BP43 to the hg19 genome using FIMO42,
(2) open chromatin regions defined in narrow-Peak DNase-seq
data files from ENCODE, and (3) regulatory regions, defined as
2 kilobase (kb) windows centered around the transcriptional start
sites of genes based on RefSeq annotations44 (Fig. 1b). For each
cell line we estimated two epigenetically informed networks: an
initial “seed” network constructed from intersecting transcription
factor binding motif locations with open chromatin and gene
regulatory regions (orange parallelogram in Fig. 1b) and a final
SPIDER regulatory network estimated by applying message
passing to the seed network (red parallelogram). We also
estimated two reference networks: an epigenetically “naïve” seed
network of transcription factor to gene associations derived from
intersecting motif locations with regulatory regions (gray paralle-
logram), and a final naïve regulatory network derived by applying
message passing to the naïve seed network (black parallelogram).
All of these networks include regulatory associations between 687
transcription factors and 27,090 target genes. Finally, we created
six “gold standard” validation networks, one for each of the six cell
lines, by taking the intersection of peaks from cell-line-specific
ChIP-seq experiments and gene regulatory regions (green
parallelogram). It should be noted that the dimensions of these
ChIP-seq networks vary based on the transcription factors assayed
in each cell line (Table 1); however, the number of target genes in
the networks (27,090) is always the same. In total we have
fourteen reconstructed networks—two (SPIDER seed network,
SPIDER regulatory network) for each of the six cell lines as well as
the “naïve” seed and regulatory networks—and six “gold
standard” networks based on ChIP-seq data. This set of networks
allowed us to explore both the impact of including epigenetic
data as well as the message-passing optimization in SPIDER. For
more information on our data processing and network construc-
tion and evaluation pipeline, see Methods.

SPIDER predicts accurate gene regulatory networks
To begin, we benchmarked the two naïve networks using the six
ChIP-seq “gold standard” networks and evaluated their accuracy
based on the Area Under the Receiver-Operating Characteristic
Curve (AUC-ROC, or more simply, AUC). This provided a baseline
assessment of network accuracy in the absence of epigenetic data
(Fig. 2a). Unsurprisingly, we observed very low AUC values – from
~0.57 to ~0.60 (Fig. 2b, gray and black bars)—indicating that
message passing in the absence of epigenetic data does not
improve the network accuracy. Next, we evaluated the SPIDER
seed networks. These networks, by definition, contain a subset of
edges from the naïve seed network—those with additional
evidence from chromatin accessibility data. We found only a
marginal increase in AUC compared to the naïve networks (Fig. 2b,
pale colored bars). Initially this result may seem surprising since
computational pipelines that use chromatin accessibility informa-
tion to improve transcription factor binding site prediction often
report high accuracy37,39. However, it is important to note that we
are addressing a different problem. Rather than scoring individual

transcription factor binding locations, we are using epigenetic
data to prune predicted transcription factor binding sites within
gene regulatory regions and define an epigenetically informed
network of transcription factor to gene relationships. This
recasting of the problem greatly impacts predictive performance
compared to what is observed in genome-wide transcription
factor binding site assessments (see Supplemental Fig. 1 and
Supplemental Section S1).
We next evaluated the SPIDER-predicted gene regulatory

networks, which are the result of applying message passing to
the epigenetically informed seed networks (Fig. 2b, dark colored
bars). We found that SPIDER regulatory networks are highly
accurate when benchmarked using the ChIP-seq networks, with
AUC scores dramatically increased compared to both the naïve
and epigenetically informed SPIDER seed networks. For example,
the accuracy of the A549 network was improved by over 37%
(AUC= 0.816) compared the seed network. The SPIDER-predicted
network for GM12878 was the most accurate, with an AUC value
of 0.819. This level of accuracy and overall improvement was
consistent across the six cell lines (Supplemental Table 1),
demonstrating the robustness of SPIDER in predicting accurate
regulatory networks across a range of cell types. Furthermore,
high accuracy was not observed when using density-match
random networks to seed the message-passing algorithm (see
Supplemental Fig. 2 and Supplemental Section S2). Together,
these analyses indicate that the combination of epigenetic data
and message passing, rather than either in isolation, is critical for
identifying an accurate regulatory network.
The ChIP-seq gold standards we used to benchmark our results

are slightly unbalanced in terms of class, with an average of 15.6%
of the edges in the positive class across the cell lines. Therefore, to
ensure that our results were not influenced by issues related to
class-imbalance, we repeated these analyses using the Area Under
the Precision-Recall Curve (AUPR). We observed almost identical
results using AUPR as we did with AUC; across the cell lines, the
SPIDER-predicted regulatory networks were always much more
accurate than either of the naïve networks or the epigenetically
informed seed network (Fig. 2c). We note that, since the baseline
for random classification using the AUPR is slightly different for
each cell line, the AUC provides a more comparable metric across
observations. Since our conclusions are the same using either AUC
or AUPR, we opted to use AUC as our primary assessment metric.
For reference, AUPR values for all tests are provided in the
supplement. The curves associated with the global network AUC
and AUPR calculations are provided in Supplemental Fig. 3a.
Next, to ensure that our results were not driven by a handful of

transcription factors, such as those with a high number of motif
locations or abundant ChIP-seq peaks, we separately evaluated
the accuracy of the edges emanating from each individual
transcription factor (Fig. 2d, Supplemental Fig. 4a). Just as
with the overall networks, we found that the AUC and AUPR
values for transcription factors were nearly always significantly
higher in SPIDER networks than in the corresponding naïve and

Table 1. Overview of the human cell line data used in this paper.

Cell line Tissue Description # ChIP-seq TFs # DNase peaks

A549 Lung Alveolar carcinoma 19 176,870

H1HESC Stem cell Male embryo stem cell 35 258,188

HELAS3 Cervix Cervical adenocarcinoma 38 199,188

HEPG2 Liver Hepatocellular carcinoma 45 192,959

GM12878 Blood B-lymphoblastoid cells 58 183,953

K562 Blood Erythrocytic leukemia 59 202,266

For each cell line we show the number of transcription factors (TFs) with ChIP-seq data and the number of DNase-seq peaks (open chromatin regions).
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Fig. 2 Evaluation of SPIDER predictions. a For each cell line we evaluated four networks, modeled either with or without using epigenetic
data, as well as with or without applying message passing. SPIDER-predicted regulatory networks represent a combination of epigenetic data
and message passing. Throughout the manuscript and figures we refer to these four networks as the naïve seed network (NSN), SPIDER seed
network (SSN), naïve regulatory network (NRN), and SPIDER regulatory network (SRN). b The AUC values of the four types of networks
evaluated in six different cell lines (based on ChIP-seq gold standards). A baseline AUC value of 0.5 is shown as a horizontal dotted line. c The
AUPR values of the four types of networks evaluated in six different cell lines (based on ChIP-seq gold standards). The baseline AUPR values,
equivalent to the percentage of positives in the associated gold standard, are shown as horizontal dotted lines. d The AUC values for
individual transcription factors (TFs) within each network. The distribution of values is shown in the top panel. Individual values are visualized
in the bottom panel. Boxplot elements: center line: median; box limits: 1st and 3rd quartiles; whiskers: upper and lower fence; points: outliers.
See also Supplemental File 1, Supplemental Table 1, and Supplemental Figs. 2–4.
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seed networks, and that this was true across all the cell lines. Of
note, transcription factors with ChIP-seq data in multiple cell
lines (CEBPB, CTCF, EP300, GABPA, MAX, REST in all six cell lines;
ATF3, USF1, YY1, JUND, MX11, MYC, NRF1, RFX5, TBP, USF2, in
five cell lines) had consistent AUC values across the cell lines.
Interestingly, some of these transcription factors also have
higher AUC values across all the different network types. This
may be due to the fact that their corresponding motif is found in
the promoter region of more genes. For example, GABPA targets
18–19% of all genes in the seed networks, whereas the average
transcription factor only targets about 6% of genes in the seed
networks. Other examples include CTCF (targets ~10% of genes),
NRF1 (~10%), and USF2 (~7%).
In summary, the predicted SPIDER networks represent the

in vivo network structure observed in ChIP-seq data, both at the
overall gene regulatory network level and at the level of individual
transcription factors. SPIDER’s consistent performance, especially
in predicting edges emanating from individual transcription
factors (Fig. 2d), indicates that these results are unlikely to be
biased by the specific sets of transcription factors used to make
each of the ChIP-seq validation networks. Finally, although ChIP-
seq evidence for transcription factor binding does not necessarily
translate into functional gene regulation45, we believe the
observed increase in accuracy compared to the naïve and seed
networks demonstrates that SPIDER is effectively applying
message passing to infer gene regulatory networks.

SPIDER predicts cell-specific regulatory relationships
A cell’s regulatory network includes interactions that are specific
to a given cell type or biological context as well as interactions
that are shared across many cell types and support common
regulatory processes3,4. Therefore, we next evaluated SPIDER’s
ability to predict network edges that are cell line specific, i.e.,
instances where the ChIP-seq data indicates that a transcription
factor is bound to the regulatory region of a gene in one cell line
but not another. Such interactions are important in determining

cellular function and may play a role in a wide range of cell-
specific characteristics, including disease risk46.
To evaluate SPIDER’s ability to predict cell-line-specific edges,

we first constructed “differential networks”. Specifically, for each
pair of cell lines (“A” and “B”), we subtracted (1) the input SPIDER
seed networks, (2) the regulatory networks predicted by SPIDER,
and (3) the ChIP-seq derived gold standard networks. It’s
important to note that, since the seed networks and gold
standard networks are binary, taking the difference between
these networks results in three classes of edges: those specific to
cell line A (difference=+1), those specific to cell line B
(difference=−1), and those that are the same in both cell lines
(either existing in both, or not existing in both; difference= 0)
(Fig. 3a).
Next, we computed the AUC for the differential-seed and

differential-regulatory networks by assessing edges that were
identified as cell line specific in our differential ChIP-seq networks
(see Methods). To help illustrate and interpret this analysis, Fig. 3b
shows the ROC curve comparing one pair of cell lines: H1HESC
versus HELAS3. For this pair of cell lines, the differential SPIDER
regulatory network had a much higher predictive power (AUC=
0.69) compared to the differential-seed network (AUC= 0.53).
Importantly, this curve also shows that all the three classes of
edges (−1, +1, and 0) in the seed network contribute to the
improved AUC. This can be seen by noting that the ROC curve for
the differential-seed network is composed of three straight line
segments, one for each of the three classes of edges. The ROC for
the differential SPIDER network rises above these segments and is
especially pronounced for the middle segment. This middle
segment represents edges that, simultaneously, either existed or
did not exist in both cell lines’ seed networks. Thus, the dramatic
shift in the ROC curve for this middle segment indicates that
SPIDER is able to identify edges that are cell-line specific (i.e., in
only one of the two gold standard networks) even among the
portion of the seed network that is identical between the two cell
lines. In other words, there are many edges that are the same
when comparing the seed networks but that differ in the ChIP-seq
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gold standards; these edges can be predicted by comparing their
weights in the SPIDER networks.
Figure 3c, d illustrate the AUC values for differential networks

across all pairs of cell lines. We observe consistently higher values
for the differential SPIDER regulatory networks compared to the
differential SPIDER seed networks. This indicates that the SPIDER
regulatory networks predict cell-line-specific interactions more
accurately than the input seed data and suggests that message
passing is enhancing the detection of cell-line-specific edges.

SPIDER can be used to predict distal regulatory elements
Transcription factor binding in the proximal promoter region
regulates gene expression through the formation of the pre-
initiation complex. Similarly, distal regulatory elements can
influence the rate of gene transcription by acting as either
activators or repressors47. Incorporating these distal regulatory
factors into network models is an important step in developing a
more holistic perspective on gene regulation.
One important advantage of chromatin accessibility data such

as DNase-seq is the identification of enhancer regions. Although
the local chromatin environment around enhancers is well
studied48–52, less is known about which genes are targeted by
these distal elements through mechanisms such as DNA loop-
ing53–55. However, one simple way to approximate distal

regulation is to map predicted transcription factor binding sites
to genes using proximity, or the number of base-pairs away a
predicted site is from the transcriptional start site of a gene56.
Along these lines, we modulated the definition of the regulatory
region used by SPIDER to assess transcription factor binding sites
located outside the proximal promoter. In particular, we defined
the regulatory region of each gene as composed of two windows
of 5 kb each (total 10 kb) located at various distances upstream
and downstream of the transcriptional start site. For example,
Fig. 4a shows the regulatory region of a gene as located −20 kb to
−25 kb and +20 kb to +25 kb away from the transcriptional start
site. For two cell lines, GM12878 and A549, we ran SPIDER using
five different definitions of potential regulatory regions: ±5–10 kb,
±20–25 kb, ±45–50 kb, ±70–75 kb, ±95–100 kb. This allowed us to
examine the potential impact of distal epigenetic variability on
gene regulation at multiple distances; the width of these distal
regions was selected such that the density of the SPIDER seed
information was similar to our proximal promoter analysis. We
benchmarked the results from SPIDER to their corresponding
ChIP-seq derived gold standards, also constructed based on these
same regulatory regions (Fig. 4b). The AUC values for the
regulatory predictions made using these alternate windows
showed little variation, indicating that SPIDER can be used to
predict transcription factor binding sites outside of the proximal
promoter. Interestingly, the prediction accuracy for these distal
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regulatory elements was even slightly higher than those obtained
using proximal promoter region, with an average AUC of 0.85
across distal regions compared to 0.82 for the proximal promoter
(Supplemental Table 2).
Given these results, we selected a single window, ±20–25 kb, to

investigate in more detail. We systematically evaluated predictions
from each of the six cell lines and found that SPIDER accurately
predicts distal ChIP-seq binding events. Importantly, the accuracy
of SPIDER predictions was significantly (p < 2.2 × 10−16) higher
than either those made based on the epigenetically informed
“seed” data or those based on a “naïve” mapping (Supplemental
Table 3). This is true both overall (Fig. 4c; Supplemental Fig. 3b) as
well as for individual transcription factors (Fig. 4d). As in our
previous analysis, we obtained very similar results when comput-
ing the AUPR instead of the AUC (Supplemental Fig. 4b, c). We also
note that the accuracy of the naïve regulatory predictions was
nearly equal to random in the distal analysis (average AUC of 0.52;
Supplemental Table 3). This is in contrast to the low, but slightly
better than random, predictive performance of the naïve
regulatory network constructed for the proximal promoter region
(average AUC of 0.58; Supplemental Table 1). This illustrates the
importance of incorporating epigenetic data when modeling
regulatory connections outside of the proximal promoter and
highlights a key strength of the SPIDER approach.
We also evaluated the cell line specificity of these distal

regulatory interactions and found that the predictions made by
SPIDER were highly cell line specific and more specific than the
information used to seed the algorithm (Fig. 4e, f). In addition,
SPIDER’s ability to predict cell-line-specific information was higher
for distal SPIDER predictions than proximal network predictions
(comparing Fig. 4f with Fig. 3d). This is interesting since biological
processes specific to individual cell types or tissues are more likely
to be driven by distal regulatory elements, such as enhancers,
while common “housekeeping” processes tend to be regulated by
promoters57,58.

SPIDER outperforms other prediction algorithms
Our results demonstrate that SPIDER can effectively leverage
epigenetic data to estimate highly accurate and cell-line-specific
regulatory networks. However, there are a number of computa-
tional tools that incorporate epigenetic information when
performing transcription factor binding site prediction as well as
resources that provide networks derived from these types of
predictions. We benchmarked the performance of SPIDER using
data from several of these resources. In particular, we downloaded
publicly available transcription factor binding locations predicted
by CENTIPEDE37 and PIQ (protein interaction quantitation)39, and
created a set of associated gene regulatory networks by
intersecting these locations with gene regulatory regions using
the same pipeline we applied to build the SPIDER seed networks.
We also downloaded the networks associated with two publica-
tions that analyzed DNase-seq data from ENCODE: Neph et. al.59

and Marbach et. al.60. Finally, we applied TEPIC38,61 to the same
DNase-seq data we used to test SPIDER. Additional details
regarding how we processed these data is included in Supple-
mental Section S3.
It is important to note that the data reported by each of these

sources varies. For example, it is possible to obtain continuous
scores for the predictions made by CENTIPEDE, PIQ, and TEPIC, but
the networks provided with the Neph et. al. and Marbach et. al.
publications are unweighted. Therefore, to ensure a fair compar-
ison across the sources, we converted all networks (including
those estimated by SPIDER) into unweighted graphs using
thresholding (see Supplemental Section S3). The cell lines
and transcription factors included in each source also differ.
Therefore, to gauge the accuracy of network predictions across
these sources, we calculated a series of AUC scores by comparing

the targeting profile of each transcription factor in a given cell line
network with its targeting profile based on cell-line-specific ChIP-
seq data. This resulted in a series of AUC scores associated with
each method. The number of cell lines, transcription factors, and
tests performed for each source is reported in Supplemental Table
4. We note that, by design, the tests performed for each source are
always a subset of those performed for SPIDER.
The distribution of the calculated AUC values across all tests is

shown in Fig. 5a. We observe that the networks derived from
transcription factor binding site prediction algorithms were only
marginally better than random chance; the mean AUC across all
tests was only 0.516 for CENTIPEDE and 0.556 for PIQ. This is
despite the fact that both of these algorithms do an outstanding
job of predicting ChIP-seq binding when scoring motif locations
(Supplemental Fig. 5a; see also Supplemental Section S1 and
Supplemental Fig. 1). The networks reported in Neph et al. and
Marbach et al. were also not very accurate, with mean AUCs
(based on comparison to ChIP-seq data) across all tests of 0.518
and 0.559, respectively. This is likely due to the fact that these
networks were derived using similar techniques as the ones we
modeled based on CENTIPEDE and PIQ. The networks predicted
by TEPIC were overall more accurate than the other sources (mean
AUC= 0.582) but were still less accurate than those predicted by
SPIDER (mean AUC= 0.695). We note that these results were not
greatly impacted by considering the scores made by the algorithm
in lieu of thresholding (Supplemental Fig. 5b) and were similar for
distal regulatory interactions (Supplemental Fig. 5d, e). As in the
case of our other analyses, these results were also very similar
when using AUPR instead of AUC to assess accuracy (Supple-
mental Fig. 5c, f). Finally, we also point out that SPIDER’s
comparative performance is similar when restricting to the subset
of tests performed for each source (Supplemental Fig. 6).
To better understand why SPIDER outperformed these other

methods/sources, we analyzed the components that lead to the
calculation of the AUC (Fig. 5b), namely: (1) the True Positive Rate
(TPR), or instances where a transcription factor is predicted to
be regulating a gene and that gene has a ChIP-seq peak for the
transcription factor in its regulatory region; (2) the True Negative
Rate (TNR), or instances where a transcription factor is predicted to
be absent and there is no ChIP-seq peak; (3) the False Positive Rate
(FPR), or instances where a transcription factor is predicted to be
regulating a gene, but that prediction is not supported by ChIP-
seq; and (4) the False Negative Rate (FNR), or instances where
transcription factor is predicted to be absent, but a ChIP-seq peak
exists in the regulatory region of the gene. Visualizing these rates
(Fig. 5b) revealed that although other methods generally excel at
detecting true negatives, this is at the cost of greatly reducing the

TFBS Prediction Methods Publicly Available GRNs GRN Prediction Methods

tn
ec
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p

Fig. 5 Comparison of SPIDER with other sources. a An assessment
of the regulatory predictions made by the networks associated with
various data sources. The distribution of AUC values across all the
tests performed (transcription factor / cell line pairs) is shown.
Boxplot elements: center line: median; box limits: 1st and 3rd
quartiles; whiskers: upper and lower fence; points: outliers. b
Heatmap illustrating the median true positive rate (TPR), true
negative rate (TNR), false positive rate (FPR), and false negative rate
(FNR) across the tests. See also Supplemental Table 4 and
Supplemental Figs. 5, 6.
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number of true positives, ultimately leading to a very high false
negative rate and poor overall accuracy. On the other hand,
although the networks predicted by SPIDER had a slightly lower
true negative rate, they also included many true positive events,
which were largely missed by the other methods. This is due to
the fact that, unlike previous approaches, SPIDER does not require
that a transcription factor motif is present in the regulatory region
of a gene in order to predict an interaction between that
transcription factor and gene. Rather, an interaction between a
transcription factor and a gene can be learned through SPIDER’s
message-passing process, which assesses the likelihood of each
edge based on the overall structure of the network (see Methods).
Biologically, these learned relationships may represent transcrip-
tion factor regulatory mechanisms that are not captured by DNA
sequence62, such as the recruitment of cofactors63,64.
Finally, we wished to understand how the networks estimated by

SPIDER compare to those estimated by methods that leverage
transcriptomic data to infer transcription factor to gene connections.
Therefore, we identified several commonly used expression-based

network reconstruction approaches, including ARACNe14, CLR15,
GENIE313, and PANDA18. We applied these approaches to estimate
regulatory networks for 666 transcription factors and 19260 genes
using lymphoblastoid expression data from the Genotype-Tissue
Expression (GTEx) project3. We also applied SPIDER to estimate
regulatory relationships between these same transcription factors
and genes. We then evaluated the accuracy of the networks
predicted by each of these algorithms by comparing with the
ChIP-seq network for GM12878. We observe that the networks
predicted by SPIDER are much more accurate than those
predicted by the expression-based network reconstruction meth-
ods (Supplemental Section S3 and Supplemental Fig. 7). This
analysis illustrates the importance of effectively incorporating
epigenetic data into gene regulatory network models, especially
for higher-order organisms such as humans.

SPIDER predicts hidden interactions
In molecular biology, functional validation can often only be
performed on a limited number of top predictions. We explored

Fig. 6 SPIDER Identification of hidden regulatory relationships. a Schematic showing the relationship between true positives (TP), false
positives (FP), true negatives (TN), and false negatives (FN) in the SPIDER seed network, as well as potential SPIDER predictions (red lines).
b Distribution of the SPIDER-predicted edge weights in the A549 network for the subset of edges that were absent in the A549 SPIDER seed
network (TN or FN edges; see panel a). Of these, top-weight edges that have a significant (FDR < 0.05) weight in the SPIDER-predicted
networks are shown in light red. c The number of times a gene is targeted by one of the top-weight edges shown in panel b. d A table
showing the three top-weight edges predicted by SPIDER that originate from transcription factors with ChIP-seq data. Edges validated
by ChIP-seq are illustrated below the table. e Integrative Genomics Viewer tracks showing DNase hypersensitivity regions, motif predictions,
and ChIP-seq data in the PDE4D promoter region. Motif, DNase, and ChIP-seq peaks exist for CEBPB and SIX5. However, although only DNase
and ChIP-seq peaks can be seen for CREB1 and MAX (but no corresponding motif ), SPIDER recovered these regulatory relationships. See also
Supplemental Table 5 and Supplemental Table 6.
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how to use SPIDER’s predictions to develop novel hypotheses
regarding transcription factor regulation of genes. Our analysis
demonstrates that SPIDER estimates accurate networks by
simultaneously predicting two classes of regulatory relationships:
those that have initial evidence based on the presence of a
transcription factor motif in the regulatory region of a gene, as
well as those without evidence from transcription factor motif
data but which are instead only supported by the local structure
of the regulatory network (and potentially modulated by
regulatory mechanisms not encoded in the DNA sequence). We
evaluated the potential for generating biologically testable
hypotheses regarding novel regulatory interactions using this
second class of edges, i.e., edges that were not present in SPIDER’s
seed network but had a high edge weight in SPIDER’s predicted
regulatory network. For demonstration, we focused on the SPIDER
seed and regulatory networks for the A549 (lung cancer) cell line.
Key results for each of the six cell lines are included in
Supplemental Tables 5-6.
To begin, we selected transcription factor to gene relationships

that were absent in the SPIDER seed network (i.e., edges with no
evidence of transcription factor regulation of the gene based on
intersecting motif data with open chromatin and gene regulatory
regions; this set includes both true and false negative edges; Fig.
6a) and plotted the distribution of their weight in the predicted
SPIDER regulatory network (Fig. 6b). We then selected the subset
of these relationships with the highest weights for further analysis,
using FDR < 0.05 as our cutoff (see Methods); these edges are
those that were absent in the epigenetically informed seed
network but which were subsequently predicted after running
SPIDER.
Next, we determined the genes targeted by these edges (Fig.

6c). Among the genes associated with the most edges are several
that are important for lung cancer, including PDE4D (Phospho-
diesterase-4), ZBTB20, and TGIF1. PDE4D is known to promote
proliferation and angiogenesis in lung cancer under hypoxia and
is a potential therapeutic target for lung cancer therapy65. PDE4D
is also involved in apoptosis, growth, and proliferation in lung
cancer cells66,67, and promotes the Epithelial-Mesenchymal
Transition (EMT) in A549 cell lines68. Similarly, ZBTB20, a member
of the POK family of transcriptional repressors, is upregulated in
lung cancer compared to adjacent normal tissue through
transcriptional repression of FOXO169. Finally, TGIF1 knockdown
inhibits the growth and the migration of non-small cell lung
cancer cells70 and is dysregulated in several types of cancer.
Assessment of TGIF expression has shown that silencing TGIF
attenuates the tumorigenicity of A549 cells71. These results
suggest that SPIDER networks can identify biologically relevant
genes that may be regulated in a context-specific manner despite
a lack transcription factor motif evidence.
Finally, we investigated SPIDER-predicted transcriptional reg-

ulation, focusing on transcription factors with ChIP-seq data. In
particular, we selected the three top-weight edges with motif
evidence (true or false positives in the SPIDER seed network) as
well as the three top-weight edges that do not have any
corresponding motif evidence (true or false negatives in the
SPIDER seed network). Four of these top-weight edges, including
two with motif evidence and two without, targeted PDE4D (Fig.
6d). To better understand these SPIDER predictions, we visualized
DNase-seq, ChIP-seq, and motif locations in the regulatory region
of PDE4D (Fig. 6e). For CEBPB and SIX5 we find ChIP-seq peaks
aligned with their corresponding motif and a DNase-seq peak.
CREB1 and MAX also have ChIP-seq peaks aligned with DNase-seq
peaks but no corresponding predicted motif, meaning that their
potential role in regulating PDE4D would have been missed using
other common approaches. Interestingly, CEBP proteins can
mediate the binding of cAMP proteins, such as CREB1, to gene
promoters72, suggesting that recruitment of CREB1 to PDE4D may

have been facilitated by CEBPB—a cofactor mechanism which was
likely captured by SPIDER’s message-passing procedure.

DISCUSSION
In this manuscript we present SPIDER, a framework to predict
robust, accurate, and epigenetically informed gene regulatory
networks. SPIDER works by applying a message-passing approach
that emphasizes similarities in transcription factor targeting
patterns across an initial (or seed) set of epigenetic-informed
regulatory relationships. This process emphasizes consistent
structures within the seed network, upweighting edges that
originate from transcription factors that have similar sets of target
genes as well as edges that point to genes targeted by similar sets
of transcription factors. SPIDER not only predicts accurate overall
networks, it also reliably estimates cell-line-specific regulatory
information. Importantly, SPIDER-predicted networks are signifi-
cantly more accurate than the regulatory information used to seed
the algorithm as well as networks constructed without epigenetic
data. This indicates that both message passing and epigenetic
data are critical to SPIDER’s success. We recognize that networks
derived from ChIP-seq data, like the ones we used to benchmark
SPIDER, are not a perfect representation of gene regulation.
However, SPIDER’s consistent high performance across multiple
cell lines and individual transcription factors gives us confidence
both that the algorithm is robustly highlighting true biological
signal and that our results are independent of the specific
transcription factors that composed our ChIP-seq validation
networks.
We also compared the performance of SPIDER-predicted

networks to other published gene regulatory networks as well
as networks constructed using the results of transcription factor
binding site prediction algorithms; all of these networks use
similar input data. SPIDER’s predictions were significantly more
accurate than those made by other approaches. Other methods
often require that a transcription factor’s motif is present in the
regulatory region of a gene in order to assign an edge between
that transcription factor and gene. Our analysis demonstrates that
this leads to a high number of false negatives (missing edges). In
contrast, the message-passing procedure employed by SPIDER
allows new transcription factor to gene regulatory relationships to
be inferred, even when a transcription factor’s motif is not present
in the regulatory region of a gene.
SPIDER’s strength lies in its ability to reduce false negatives

while retaining a high true positive rate. In other words, SPIDER is
able to recover missing edges without introducing a large number
of false edges. SPIDER’s ability to detect and effectively enhance
hidden interactions not only increases the accuracy of the
predicted networks, it also supports the generation of novel
hypotheses regarding specific gene regulatory mechanisms. For
example, when we investigated edges that had no supporting
evidence from our motif scan, but were predicted by SPIDER, we
identified CREB1 targeting of PDE4D in the A549 network. Not only
did we find ChIP-seq evidence of CREB1 binding in PDE4D’s
promoter region, we also were able to use the network predictions
to identify a possible co-factor mechanism mediating this
interaction, specifically, the recruitment of CREB1 by CEBPB.
SPIDER is a highly versatile algorithm. In this manuscript, we

primarily focused on modeling gene regulatory networks based
on promoter regions. However, when we applied the approach to
predict transcription factor binding in regions that are distally
located from the transcriptional start site, we observed a very high
level of accuracy. Like our promoter-based analyses, SPIDER
predictions in distal regions were cell-type specific and highly
accurate across transcription factors. While we recognize that the
ChIP-seq data we used for validation only provides information on
transcription factor binding, and not on gene regulation, our
ability to accurately predict cell-specific transcription factor
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binding outside of promoter regions suggests that SPIDER can be
used to model distal regulatory mechanisms mediated by
enhancers or three-dimensional chromatin structure.
It should also be noted that we only used DNase hypersensi-

tivity as a marker of open chromatin. This was done to facilitate
the comparison of SPIDER with existing methods and networks
that use DNase-seq data to predict transcription factor binding.
However, the algorithm could easily be used with data from other
epigenetic marks of open chromatin, such as ATAC-sequencing
data or ChIP-sequencing of histones—this is a key future direction
of our work. Finally, since SPIDER builds on the message-passing
framework used in the PANDA reconstruction algorithm, it has the
potential to be extended to incorporate other sources of
regulatory information, including protein–protein interaction and
gene expression data (see Supplemental Section S4 and Supple-
mental Fig. 8).
SPIDER provides a principled way to use open chromatin data to

gain a comprehensive understanding of the cellular transcriptional
regulatory architecture. The algorithm’s unique application of
message passing to highlight structures in a seed network gives it
a distinct advantage compared to other methods and illustrates
the importance of considering the overall regulatory context when
predicting transcription factor targeting. SPIDER predicts biologi-
cally interpretable, context-specific, and epigenetically informed
gene regulatory networks. Ultimately, we believe SPIDER networks
will facilitate a more comprehensive understanding of regulatory
processes that define health and disease.

METHODS
Details of the SPIDER algorithm
SPIDER combines (1) a simple approach for identifying transcription factor
binding sites in open chromatin, with (2) a network reconstruction
algorithm that can overcome issues related to missing information, such as
the potential for a transcription factor to bind to DNA without a
corresponding sequence motif. SPIDER consists of four main steps.

Step 1—Intersect open chromatin regions with motif locations. First, SPIDER
uses bedtools73 (version v2.25.0) to intersect a BED file containing regions
of open chromatin with a series of BED files containing the locations of
transcription factor motifs (one BED file per transcription factor). The
output of this step is a single BED file that contains the locations of
transcription factor motifs that are in open chromatin regions. By default,
each of these locations is given a score of one. Note that, in practice, the
file produced by this step could be produced in another manner and still
used by SPIDER.

Step 2—Intersect motifs in open chromatin (from Step 1) with gene regulatory
regions and create a seed regulatory network. Next, SPIDER uses bedtools
to overlap a BED file containing the locations of transcription factors that
are in open chromatin (created in Step 1) with a BED file containing the
regulatory regions of genes; a gene can have multiple associated
regulatory regions in this second file. If a transcription factor’s motif falls
within the regulatory region(s) of a gene, then an edge is created between
that transcription factor and gene. The maximum score across all
transcription factor motif instances associated with a gene is used to
weight the edge; by default, this value is one. The result of this step is an
epigenetically informed seed regulatory network between all transcription
factors and genes.

Step 3—Degree normalize seed network. The seed network from Step 2
consists of edges between NTF transcription factors and NG genes. In this
network, edges connected to high degree nodes, especially high degree
genes, also tend to be associated with many open chromatin regions and
are more likely to be biologically relevant. Let us denote the transcription
factor by gene adjacency matrix describing the seed network as A. Based
on this matrix, we can calculate the average degree for each transcription
factor i and gene j as:

kTFi ¼ 1
NG

XNG

j
Aij and kGenej ¼ 1

NTF

XNTF

i
Aij : (1)

We use this information to degree normalize the seed network:

A�ij ¼ Aij
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkTFi Þ2 þ ðkGenej Þ2

q
: (2)

Step 4—Apply message passing. Finally, SPIDER applies the PANDA18

message-passing algorithm to the degree-normalized seed network A*
calculated in Step 3. PANDA’s message-passing framework integrates
information from three networks, representing transcription factor
protein–protein interactions (P), transcription factor to gene regulatory
interactions (W) and gene co-expression (C) (see “Details of the PANDA
algorithm” below). In SPIDER, P and C are set equal to the identity matrix;W
is set equal to A*. PANDA returns a complete, bipartite network with edge
weights representing the likelihood that a transcription factor regulates a
gene; the distribution of these edge weights is similar to Z-scores.

Summary. In step 1, SPIDER identifies potential transcription factor
binding sites within open chromatin regions. Step 2 transforms those
predictions into a bipartite network describing relationships between
transcription factors and genes. Step 3 adjusts the weights of edges
according to biological knowledge and in a manner that counter-balances
the Z-score transformation applied by PANDA to the input data matrices
(see “Details of the PANDA algorithm” below). Finally, in step 4, SPIDER
applies the PANDA network reconstruction approach to the degree-
adjusted seed network.

Details of the PANDA algorithm
SPIDER repurposes the message-passing approach implemented in
PANDA18. While PANDA has been extremely successful, it does not
incorporate epigenetic data. In other words, the input seed network used
by PANDA generally assumes that all motif sites on the genome are equally
accessible.
Supplemental Figure 9 provides an overview of PANDA’s message-

passing procedure. PANDA harmonizes data contained in input three
matrices: (1) W is a NTF by NG matrix that represents an initial
approximation of transcription factor to gene regulatory relationships; (2)
P is a NTF by NTF matrix that represents an initial approximation of
cooperative interactions between transcription factor proteins; and (3) C is
a NG by NG matrix that represents an initial estimate of whether pairs of
genes are co-regulated. Since diverse data is often used to construct these
matrices, they are immediately normalized by transforming the matrix
values into Z-scores using:

Xð0Þ
ij ¼ 1ffiffiffi

2
p Xij � μi

σi
þ
Xij � μj

σj

� �
; (3)

where μi/σi and μj/σj are the mean/standard-deviation across row i and
column j of X, respectively; X can be either W, P, or C. The data across these
three normalized matrices is then iteratively updated through a series of
normalized matrix multiplications using:

T ij ¼ T ð~x;~yÞ ¼
~x �~yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~xk k2þ ~yk k2�~x �~yj j
q ; (4)

where ~x and ~y are vectors representing row i of matrix X and column j of
matrix Y, respectively. At each message-passing step, t, W is updated using:

WðtÞ ¼ 1� αð ÞWðt�1Þ þ α

2
T ðPðt�1Þ;Wðt�1ÞÞ þ TT ðCðt�1Þ; TWðt�1ÞÞ

� �
(5)

P and C are then updated using

PðtÞ ¼ 1� αð ÞPðt�1Þ þ αT WðtÞ; TWðtÞ� �
and

CðtÞ ¼ 1� αð ÞCðt�1Þ þ αT TWðtÞ; WðtÞ� �
:

(6)

The update parameter, α, can take a value between 0 and 1, but by
default is set equal to 0.1. TW(t) indicates transpose of W(t). These updates
are repeated until algorithm convergence.
We note that in SPIDER, we set both P and C equal to the identity matrix

(see “Details of the SPIDER algorithm” above). In this case, W(1)~W(0), P(1)

can be interpreted as a normalized quantification of the number of shared
gene targets between pairs of transcription factors in W(1), and C(1) can be
interpreted as a normalized quantification of the number of shared
transcription factor regulators between pairs of genes in W(1)

. The off-
diagonal elements in P(1) and C(1) are then propagated back into W(t>0)

through the subsequent message-passing steps. Thus, this message-passing
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procedure can leverage the topological structure of the seed network
defined by W(0) to identify transcription factor to gene relationships that
are absent in the seed network.
In this paper we develop SPIDER using the MATLAB implementation of

PANDA due to its speed and readability74. However, PANDA is also
implemented in C, python, and R, supporting future implementations of
SPIDER in these languages (https://netzoo.github.io/).

Data used to test SPIDER
The input data used by SPIDER include BED files which contain (1) the
genomic locations of potential transcription factor binding sites (one BED
file per transcription factor), (2) epigenetic (chromatin accessibility)
information, and (3) regulatory regions. We used hg19 coordinates for all
the data in this study.

Identification of potential transcription factor binding sites. We identified
motifs, in the form of position weight matrices, for 687 human
transcription factors from the Catalog of Inferred Sequence Binding
Preferences (Cis-BP)43 (http://cisbp.ccbr.utoronto.ca, accessed: July 7,
2015). We mapped the motifs to the human genome (hg19) using FIMO42

with a custom background model for promoter sequences, and retained all
locations meeting a significance of p < 10−4.

Epigenetic data. We obtained DNase-seq peak locations from ENCODE for
six cell lines. Additional information about the DNase-seq data used,
including lab and download URL, is given in Supplemental File 1.

Regulatory regions. We used RefSeq gene annotations downloaded from
the UCSC genome browser (https://genome.ucsc.edu/cgi-bin/hgTables;
accessed on 29 May 2018) to define the regulatory regions of 27,090
genes. We defined regulatory regions in terms of distance from the
transcription start site: the proximal regions were defined as a window of
2 kb centered around the transcriptional start site. For the analysis where
we evaluated the potential of SPIDER to be used to predict distal
regulatory events, we used a pair of ranges, each with a width of 5 kb. We
chose separate distal windows of 5 kb on both sides of the transcriptional
start site in order to exclude promoter effects and to keep the density of
regulatory seed network information similar between the promoter and
distal analyses. For our primary distal analysis, these ranges were situated
at a distance of 20–25 kb both upstream and downstream of the
transcriptional start site. We also evaluated SPIDER at various distance-
ranges in the GM12878 and A549 cell lines. This included windows at
±5–10 kb, ±20–25 kb, ±45–50 kb, ±70–75 kb, and ±95–100 kb around the
transcriptional start site. We saw little variation in the accuracy of SPIDER
predictions across these ranges.

Data used to validate SPIDER
We obtained ChIP-seq data for human transcription factors in six cell lines
from ENCODE in narrow peak (BED) format. Information about the ChIP-
seq data used, such as treatment, antibody, data freeze date, lab, and
download URL, is provided in Supplemental File 1. For some transcription
factors, multiple ChIP-seq experiments performed in the same cell line
were available. In these cases, to reduce the potential for false negatives in
our benchmark75,76, we made one composite file containing all ChIP-seq
peaks using the bedtools merge function. To create gold standard
networks from these data, ChIP-seq peaks were intersected with gene
regulatory regions following the same protocol as used by SPIDER, Step 2,
as described above.
When benchmarking, we took the intersection of the transcription

factors in the predicted network and those in the corresponding ChIP-seq
network, and evaluated the subnetwork corresponding to all possible
edges between the overlapping transcription factors and all target genes.
For example, for A549 this corresponded to a subnetwork containing the
514,710 edges between 19 transcription factors and 27,090 target genes
(Table 1). We computed AUC and AUPR values using the perfcurve()
function in matlab (R2014b). To calculate AUPR for the seed networks
(which are binary), we added a small level of Gaussian random noise
(sigma= 0.05) to the initial 0/1 edge weights. For the differential network
analysis, we analyzed the subnetwork associated with transcription factors
assayed in both cell lines and used perfcurve() with the ‘negclass’
parameter to assign both a positive (+1) and negative (−1) prediction
category; this excluded evaluation of edges that were identical in both cell
line ChIP-seq networks (0).

Detecting hidden interactions inferred by SPIDER
For each cell line network, we selected transcription factor to gene
relationships that were absent in the SPIDER seed network. Because SPIDER
uses PANDA to perform message passing, the weights of these edges can
be interpreted as Z-scores18 (see “Details of the PANDA algorithm” above).
Therefore, to identify significant edges in this class, we converted the
weights of edges into probabilities using the pnorm() function in R and
corrected for multiple comparisons using the Benjamini–Hochberg
method. We selected top significant edges for further analysis using an
FDR cutoff of 0.05. For the A549 proximal network this corresponded to an
edge weight cutoff of 4.64.
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