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Diversity and molecular network patterns of symptom
phenotypes
Zixin Shu1,6, Jingjing Wang1,6, Hailong Sun1,6, Ning Xu2, Chenxia Lu3, Runshun Zhang4, Xiaodong Li3, Baoyan Liu5 and
Xuezhong Zhou 1✉

Symptom phenotypes have continuously been an important clinical entity for clinical diagnosis and management. However, non-
specificity of symptom phenotypes for clinical diagnosis is one of the major challenges that need be addressed to advance
symptom science and precision health. Network medicine has delivered a successful approach for understanding the underlying
mechanisms of complex disease phenotypes, which will also be a useful tool for symptom science. Here, we extracted symptom co-
occurrences from clinical textbooks to construct phenotype network of symptoms with clinical co-occurrence and incorporated
high-quality symptom-gene associations and protein–protein interactions to explore the molecular network patterns of symptom
phenotypes. Furthermore, we adopted established network diversity measure in network medicine to quantify both the phenotypic
diversity (i.e., non-specificity) and molecular diversity of symptom phenotypes. The results showed that the clinical diversity of
symptom phenotypes could partially be explained by their underlying molecular network diversity (PCC= 0.49, P-value= 2.14E-08).
For example, non-specific symptoms, such as chill, vomiting, and amnesia, have both high phenotypic and molecular network
diversities. Moreover, we further validated and confirmed the approach of symptom clusters to reduce the non-specificity of
symptom phenotypes. Network diversity proposes a useful approach to evaluate the non-specificity of symptom phenotypes and
would help elucidate the underlying molecular network mechanisms of symptom phenotypes and thus promotes the advance of
symptom science for precision health.
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INTRODUCTION
Symptom phenotypes (i.e., symptoms and signs), one of the main
clinical manifestations of disease conditions, that could be
obtained by human natural perception and cognition abilities,
play a vital role for medical visiting, clinical diagnosis, and disease
treatment. It has been well-recognized that exploring the clinical
patterns and their underlying molecular mechanisms of symptom
phenotypes would contribute significantly to nursing science and
precision medicine1,2. However, non-specificity (or diversity) is one
of the main obstacles to fully utilize the symptom phenotypes for
both diagnosis and treatment. In particular, it has been estimated
that Medically Unexplained Symptoms such as tiredness, dizzi-
ness, and headache3, which are actually the first part of
manifestations in early stage of disease, account for up to 49%
of all general practice consultations and high healthcare cost4.
This means there has no specified pathology to sufficiently reveal
and explain the persistent bodily complaints5.
Furthermore, due to the network pathological mechanisms of

clinical manifestations, symptoms tend to occur together clinically
to form symptom clusters6 across different chronic disease
condition7, which would be more specific and meaningful for
diagnosis and treatment. Therefore, the assessment of symptom
clusters has been recognized as a promising research task for
symptom science. For example, the identification of the typical
symptom clusters and their underlying mechanisms, such as
depression and pain8, have promoted the understanding of
mental disorders and better treatment. In addition, network

medicine approach9 to investigate the interconnection of
symptoms in mental disorders has emerged as one of the most
popular investigation methods in the field of psychometrics10.
However, although it is vital there is no work to quantify the

diversity of symptom phenotypes in the context of clinical
settings and their underlying molecular networks, largely
because of the lack of high-quality symptom-gene associations
and clinical symptom co-occurrence data. Here, we extracted
symptom co-occurrences from clinical textbooks to construct
phenotype network of symptoms with clinical co-occurrence
and incorporated high-quality symptom-gene associations11

and protein–protein interactions to explore the molecular
mechanisms of symptom phenotypes12. Furthermore, we
adopted a well-established measure in network medicine13 to
quantify both phenotypic and molecular diversity of symptom
phenotypes (Fig. 1).

RESULTS
High-quality symptom-gene associations
To obtain the high-quality symptom gene associations, we utilized
the phenomenon of some “Dual Phenotypes” (DP)14, such as
obesity, fever, and insomnia, which are not only regarded as
diseases, but also as symptoms in clinical settings. The associated
genes of symptoms can be directly derived from the disease–gene
associations by filtering the disease with DP properties. In order to
identify these kinds of phenotype terms, we filtered an integrated
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phenotype–genotype associations (PGA) dataset by limiting the
semantic types of Unified Medical language System (UMLS)
concepts as T18415, which resulted in 16,049 associations between
490 symptoms with concept unified identifiers (CUI) code and
4193 genes (see Methods). In fact, these concepts including
syndromes (e.g., kearn sayer syndrome), signs (e.g., abnormal
reflexes), laboratory tests (e.g., leukopenia) and diseases (e.g.,
edema lung). Therefore, we manually reviewed and removed
symptoms without clear meaning under the guidance of medical
to ensure the accuracy of results (Supplementary Table 2). Finally,
we obtained 12,719 high-quality symptom–gene associations
between 341 symptoms and 3598 genes.
Here, we found there are 37.30 related genes on an average per

symptom and 3.53 related symptoms for a single gene. More
specifically, 60% symptoms have less than 20 associated genes

(Fig. 2a); however, there still exist several symptoms with
hundreds of genes, such as obesity (560 genes) and convulsion
(673 genes), which indicate the underlying complex pathophysiol-
ogy and comorbidities of these symptom phenotypes16–18. On the
other side, over 50% genes have less than 3 associated symptoms,
whereas some genes, such as PRNP, PSEN1, MAPT, GBA, and
MECP2 are associated to >20 symptoms (Fig. 2b).
Furthermore, we mapped 341 symptoms to 14 systems or

categories according to Symptom Ontology (SYMP) with the
principles of the OBO Foundry19. The SYMP standard ontology
(https://www.ebi.ac.uk/ols/ontologies/symp/terms) was developed
in 2005 at the Institute for Genome Sciences (IGS) at the University
of Maryland and contain more than 900 symptoms in 2020.
Despite the limited number of our symptom terms, it covers
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Fig. 1 Quantifying the phenotypic and molecular network diversity of symptom phenotypes. a Curation of symptom-symptom
relationships. The associations between symptoms are based on their co-occurrence in a symptom cluster of a textbook named differential
diagnosis of traditional Chinese medicine symptom. b Constructing symptom clinical association network. The nodes represent symptoms and
size reflects the phenotypic diversity in network. c Extracting high-quality symptom-gene associations. d Integrating both symptom-gene
associations and protein–protein interaction (PPI) database to obtain molecular network diversity of symptom phenotypes. e The main steps
of symptom network diversity analysis. We measured symptom diversity from both phenotypic and molecular network contexts.
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almost all system categories, which of the large number of
symptoms belong to the nervous system (Fig. 2c).

Clinical diversity of symptom phenotypes
To measure the symptom diversity in the context of network, we
first constructed a symptom clinical association network (SCN)
using 2381 records of symptom clusters curated from a well-
recognized textbook named differential diagnosis of traditional
Chinese medicine symptoms (DDTS)20, which resulted in a network
with 1419 nodes (symptoms) and 32,523 links. In SCN, the
symptoms with higher phenotypic diversity (PD) and phenotypic
degree (PE), such as neurological and physiological symptoms
(e.g., dysphoria, PD: 100.32, PE: 623), respiratory system symptoms
(e.g., chest distress, PD: 89.24, PE: 381), and digestive system
symptoms (e.g., diarrhea, PD:84.24, PE: 230) which may involve in
a various of diseases (Fig. 3). For example, for diarrhea21

accompanied with abdominal pain, fever, or gastrointestinal
bleeding, it would suggest inflammatory diseases. For another
diarrhea phenotype with symptoms of fatigue, cough, and fever, it
might relate to virus infectious diseases, such as the severe acute
respiratory syndrome coronavirus 222. Other top ranked symp-
toms, such as night sweats (PD:89.44, PE:282) and difficulty in
urination (PD:80.93, PE:177) (Table 1) would tend to occur as

complications in a critical condition. However, the symptoms with
low diversity, such as nail symptoms (e.g., flat nails, PD:0.95, PE: 2)
and feet symptoms (e.g., digit fester, PD:3.57, PE:8), tend to be
local clinical manifestations.

Molecular network diversity of symptom phenotypes
To explore the underlying molecular mechanisms of symptom
phenotypic diversity, we mapped 252 (73.90%) English terms with
associated genes into 116 Chinese terms in SCN (see Methods,
Supplementary Table 1), including neurological and physiological
symptoms (e.g., night sweats) and general symptom (e.g., chill). 89
(26.10%) symptoms not mapped are mostly from nervous system
symptoms (e.g., echo speech), head and neck symptoms (e.g.,
conjunctiva inflammation), and musculoskeletal system symptoms
(e.g. gait ataxic) (Fig. 2d). Next, we attempt to calculate the
maximum node diversity and degree of the symptom-related
genes in protein–protein interactions (PPI) network23 to represent
molecular network diversity (MD) of symptom phenotypes (see
Methods). The maximum gene diversity (MGD) of 116 symptoms
range from 9.12 to 491.39, and ~45% of symptoms had MGDs
greater than 200. The maximum gene degree (MGE) of symptoms
range from 10 to 1400, and only 10% symptoms had a value
greater than 600 (Fig. 4a, b) (Table 2).

a b

c d

Fig. 2 The basic statistics of high-quality symptom-gene associations. a The distribution of symptom-related genes. b The distribution of
gene-related symptoms. c The distribution of related system categories of symptoms. We compared the class information of symptoms with
gene information to the ontology. d Mapping distribution of symptoms with genetic information to SCN. We compared the different system
categories of symptoms with genes information grouped by mapping to SCN. The full name of the system: NSS Nervous System Symptom,
HNS Head and Neck Symptom, AS Abdominal Symptom, SITS Skin and Integumentary Tissue Symptom, NPS Neurological and Physiological
Symptom, DSS Digestive System Symptom, RSCS Respiratory System and Chest Symptom, MSS Musculoskeletal System Symptom, HISS Hemic
and Immune System Symptom, GS General Symptom, USS Urinary System Symptom, NMDS Nutrition, Metabolism, and Development
Symptom, CSS Cardiovascular System Symptom, RSS Reproductive System Symptom.
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Here, we calculated the Pearson correlation coefficient (PCC) to
find the relationships of phenotypic and molecular diversity of
these symptoms. The result showed that there exists a positive
correlation between the two measures (PD and MGD: PCC= 0.49,
P-value= 2.14E-08; PE and MGE: PCC= 0.39, P-value= 1.55E-05)
(Fig. 4b). This means that symptoms occurred in more symptom
clusters might tend to held higher diverse underlying molecular
networks. For example, we found depression have rather high
MGD (299.95), which actually is derived from the high diversity of
the related gene: MAPK1 in PPI network. MAPK1 as one of the
important regulated gene in the mTOR signaling pathway which
plays an important role in synaptic plasticity in Alzheimer’s disease
and relate to the depression disorder as well as functioning of the
immune system24,25. It is similar for obesity, which has high MGD
(367.89) and is considered both as complicated chronic disease
condition and symptom with a major negative impact on human
health. Since one of the vital obesity genes: AKT1 has the high

node diversity (367.89) in PPI network, which at molecular level
not only mediated type II muscle growth and thus led to the
reversible reduction of fat mass, but also have a direct role on
cancer and hearing loss26–29.
To further validate and detect the potential applications of

symptom diversity for drug development, we curated 948 drugs
and their 1451 drug targets from the DrugBank database30 and
calculated the correlations between symptom diversity to the
number of drug targets located in the neighborhoods of symptom
genes in the PPI network. We would expect that drugs tend to
regulate symptom by directly targeting symptom genes or the
neighbors of symptom genes, the similar principle of which has
been used for various related studies31. After obtaining the related
drug targets associated with 116 symptoms in the 1st order PPI
interactions, we found that there actually exists a strong positive
correlation between the number of drug targets and the MGD of
symptoms (PCC= 0.79, P-value= 1.93E-26, Fig. 5b). This is similar

Fig. 3 Construction of symptom clinical association network(SCN). The nodes indicate the symptoms and interconnecting edges in SCN
represent the clinical co-occurrence. Node size and color reflected the diversity of symptom phenotypes in SCN (a high diversity is
represented by large size node and deep orange color node). Here, filtering the node and related edges of symptom phenotypic diversity
value <60 in the network and remaining 144 nodes and 6894 edges are visualized.
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for phenotypic network diversity (PCC= 0.54, P-value= 4.55E-10,
Fig. 5b). The results indicate that symptoms with higher diversity
in the clinical settings may tend to have higher number of drug
targets to regulate the underlying molecular mechanisms of
symptoms. Symptoms with higher drug target number (DTN) also
have higher phenotypic diversity, such as dysphoria (DTN: 323),
insomnia (DTN: 431), and vomiting (DTN: 761). For example, about
10 categories of drugs are associated with insomnia, including
antihistamine (e.g., doxylamine32), anxiolytics (e.g., etizolam33),
and antipsychotics (e.g. melperone34), which affect GABA-A, D2
dopaminergic and 5HT2A serotonergic and other receptors to
treat insomnia. Thus, the symptoms with more clinical diversities
would have the potential to be induced and treated by more
drugs that target the related genes in their PPI neighborhoods.
Furthermore, it is also interesting and important to validate
whether the trend is also held for diseases. Therefore, using the
integrated disease-gene associations with 179,307 records (12,563
diseases and 18,189 genes), we further investigate the correlation
between disease diversities (i.e., in terms of its underlying
molecular network) and the number of their drug targets by
additional calculations. We found that there exactly exists a strong
positive correlation between the number of drug targets and the

MGD of diseases (PCC= 0.77, P-value < 4.9E-324). This is similar for
the number of drugs (PCC= 0.74, P-values < 4.9E-324). These
results indicate that diseases with higher diversity in the molecular
network may tend to have higher number of drug targets
(Supplementary Fig. 1).

Molecular network diversity (symptom vs disease
phenotypes)
Traditional clinical diagnosis often relied on symptom manifesta-
tions, which would be more directly be observed in patients’ daily
life and thus convenient for clinical management. However, similar
symptom phenotypes always involved in different disease
conditions, which would propose substantial obstacles for clinical
diagnosis and treatment. Due to the more specific mechanisms of
disease phenotypes, changing from symptom-based diagnosis to
disease-based diagnosis is the main contribution of modern
disease taxonomy and biomedical science35–39. To validate the
advantages of disease diagnosis, we utilized the disease–gene
associations from MalaCards to similarly calculate the MD for
12,563 disease phenotypes. We found that disease phenotypes
tend to have lower diversity than those of symptom phenotypes
in terms of MGD (median: 75.39 vs 115.16, P-value= 9.03E-06) and
MGE (median: 162 vs 277, P-value= 4.58E-13) (Fig. 4c, d). For
example, the diseases, such as bronchitis (213.7), asthma (213.7),
and rhinitis (153.3), have lower MGDs than those of cough (241.1),
which are three typical causes of chronic cough40,41. The lower MD
of disease phenotypes could partially explain their advantages as
diagnostic schema in modern biomedicine.

Clinical symptom clusters hold approach for specific molecular
network mechanisms
To resolve the non-specificity of symptom phenotypes, many
contemporary diagnoses owe their existence to symptom cluster
which has been defined as two or more interrelated symptoms
that present together and involve the similar etiology and
pathophysiology, such as nephrotic syndrome, irritable bowel
syndrome, and chronic fatigue syndrome42–44. Particularly, those
symptom clusters with specific underlying common mechanisms
have been accepted in clinical practice and frequently used by
clinicians today45–48. Therefore, we would expect that the
common molecular mechanisms involved in symptom clusters
would propose an effective approach to reduce the high
molecular diversity of a symptom phenotypes. To further validate
this assumption, we obtained 1740 symptom pairs (as representa-
tions of symptom clusters) with the overlapping genes from SCN,
which we found only 704 symptom pairs with symptom-gene
association randomization (1740 vs 704, P-value= 3.07E-101). This
means that symptom pairs in SCN tend to have shared genes.
Next, we obtained the MGDs of symptom pairs in terms of
maximum node diversity of their shared genes. We found that
symptom pairs tend to have significant lower MGD (median:
108.30 vs 115.16, P-value= 1.8E-04) and MGE (median: 222 vs 277,
P-value= 3.14E-08) than those of single symptoms. Particularly,
the proportions of MGD (4.94% vs 12.68%) and MGE (41.38% vs
55.46%) in high value (i.e., >=250) are lower in symptom pairs
than in single symptoms (Fig. 4d). These results confirmed the
significance of symptom clusters as a feasible solution to acquire
specific understanding of disease conditions.

Case study: insomnia symptom clusters
Insomnia is a typical chronic disorder and symptom phenotypes
that has both diverse underlying molecular mechanisms and can
cause various psychiatric and physical health problems49,50. It has
also been considered a strong risk factor of psychiatric illness, such
as anxiety disorder, major depressive disorder51, and associated
with many types of metabolic disease52,53, obstructive airway

Table 1. Quantifying the diversity of symptom phenotypes in SCN
(including the top 50 symptoms sorted by the phenotypic diversity
in SCN).

Symptom PDa PEb Symptom PD PE

Dysphoria 100.33 623 Cough 85.76 321

Emotional lability 99.34 632 Blurred vision 85.73 344

Yellowish
complexion

91.26 327 Impaired vision 85.65 345

Rash 91.15 367 Coughing of phlegm 85.37 264

Bitter taste 90.98 330 Red eyes 85.26 251

Palpitation 90.07 366 Chill 85.06 502

Short urine 89.81 319 Hypochondriac pain 84.71 225

Dry throat 89.75 388 Constipation 84.65 539

Hypologia 89.68 253 Diarrhea 84.24 230

Night sweats 89.44 282 Consciousness disorder 84.09 351

Chest distress 89.24 381 Cold hands 83.83 254

Tachypnea 89.22 381 Cold feet 83.63 250

Whitish
complexion

89.17 412 Cold limbs 83.43 349

Reddish
complexion

88.65 451 Oliguria 83.25 220

Nausea 87.75 301 Chest pain 83.12 197

Vomiting 87.54 311 Convulsion 83.01 284

Do not like
to drink

87.38 243 Abdomen distention 82.97 457

Emaciation 87.36 363 Coma 82.85 261

Cacochroea 87.31 252 Clear urine 82.84 213

Soreness of loins 87.25 360 Fullness in the stomach 82.80 244

Loose stools 86.94 432 Yellow urine 82.53 507

Spontaneous
sweating

86.69 229 Insomnia 82.37 514

Headache 86.29 394 Lower extremity
weakness

82.33 230

Skin patches 86.27 249 Dark complexion 81.62 200

Tinnitus 85.89 343 Cold body 81.51 195

aPD means the symptom phenotypic diversity in SCN; bPE means the
symptom phenotype degree in SCN.
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disease54, and cancer55. To investigate the underlying molecular
mechanisms of specific symptom cluster, we identified 72
insomnia symptom pairs from 1740 clusters with overlapping
genes. A total of 11 systems are involved in insomnia-related
symptoms, which 36.2% of symptoms related to neurological and
physiological systems, such as abdominal pain, amnesia, and
dysphoria (Supplementary Fig. 2). We found 19 insomnia pairs
with co-occurrence >=15 in DDTS, including the pairs of
(insomnia, dysphoria), (insomnia, dizzy), and (insomnia, poor
appetite) (Table 3). Moreover, we obtained the overlapped
enriched KEGG56 pathways (P-value < 0.05) between these symp-
toms and insomnia to explore the shared molecular mechanisms
of these insomnia pairs (see Methods). The number of enriched

overlapped pathways of insomnia-related symptom pairs range
from 1 to 49. Fever, fatigue, and amnesia have great overlapping
pathways and co-occurrence with insomnia, which reflected the
high diversity of these insomnia symptom pairs from both
phenotype and molecular mechanisms (Table 3). For example,
there are many reasons for insomnia patients with fever, such as
influenza57, tuberculosis58, pneumonia59, tumors60, and neurolo-
gical disorders61, which would be involved in various molecular
pathways, including the immune system pathway (e.g., intestinal
immune network for IgA production and intestinal immune
network for IgA production), signal transduction pathway (e.g.,
cAMP signaling pathway and AMPK signaling pathway), and

a

b

c

d

Fig. 4 Symptom network diversity analysis. a The MGD and MGE distribution of symptoms in SCN. b Correlations of the symptom diversity
between phenotypic and molecular networks. c Compared the MGD and MGE distribution of symptoms and diseases. On each box, the
central mark indicates the median, the bottom and top edges of the box indicate the 25th and 75th percentiles, respectively. The whiskers
extend to the most extreme data represent the minimum and maximum value. d Compared the MGD and MGE distribution of symptoms and
symptom pairs.
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infectious disease pathway (e.g., Influenza A and Tuberculosis)
(Fig. 6).
Particularly, using hierarchical agglomerative clustering analysis

(by the cluster map function in the Python Seaborn library)62, we
identified 54 enriched pathways of 22 pathogenesis types and 5
main symptom clusters, such as (insomnia, fever, rash), (insomnia,
body pain, emaciation, fatigue), (insomnia, loose stools, poor
appetite), (insomnia, night sweats, headache), and (insomnia,
constipation, emotional lability) for insomnia disorder (Fig. 6). For
example, the overlapped pathways of insomnia-fever-rash cluster
are involved in immune and infectious disease (e.g., herpes
simplex infection). The related report that sleep–wake cycles have
emerged as prominent regulators of the immune system and
variations in sleep duration that occur in the natural setting have
the potential to impact infectious disease risk63. The patient of
insomnia-body pain-emaciation-fatigue cluster are associated with
cancer64,65, and the related pathways include dysregulation of
cancer transcriptional regulation. Other insomnia patients often
show constipation and emotional lability after taking drugs66, and
the pathways are related to the substance dependence, such as
amphetamine addiction, alcoholism, and cocaine addiction.
In addition, we have extracted the PPI networks of the 5

insomnia-related symptom clusters (Fig. 7 and Supplementary
Figs. 3–6) and obtained the enriched gene ontology terms of

biological process (GO_BP) of the overlapping genes for each
cluster (Table 4 and Supplementary Tables 3–5). We found that
insomnia-fever-rash symptom cluster includes the cytokines (e.g.,
IL6, IL10, and IL1B) and inflammatory biomarkers (e.g., PIK3R1,
STAT3, and TNF) as the hub genes in their associated PPI network
and tends to be related to the inflammatory immune-related
insomnia subtype involving the biological processes, such as B-cell
differentiation, antigen processing and presentation, and
cytokine-mediated signaling pathway (Fig. 7 and Table 4). We
also found that genes in the network, such as PTGS2 and PTGS1,
are targeted by a variety of nonsteroidal anti-inflammatory drugs
(NSAIDs), including dexibuprofen, mefenamic acid, and bufex-
amac to improve symptoms of fever, rash, and insomnia67–69. It is
similar and biomedical meaningful for the other 4 insomnia-
related symptom clusters.

DISCUSSION
Symptom phenotypes are the overt manifestations of disease
observed by physicians and patients. However, most symptoms
are non-specific and rarely identify a disease unambiguously. In
fact, numerous diseases—including some of the most common
ones such as cancer, cardiovascular disease, and HIV infection—
may manifest unspecific symptoms (e.g., fatigue) in the early stage
which often easily be ignored to regard as the asymptomatic
phenomenon5. Therefore, it is a vital task to elucidate the
underlying molecular mechanisms of symptoms, in particular the
network mechanisms of them to investigate the pathogenesis of
non-specificity of symptom phenotypes. However, the biological
mechanisms of symptom phenotypes have rarely been addressed
in systematic approach, which might largely be owing to the lack
of high-quality symptom-gene associations data.
Here, we curated high-quality symptom-gene associations and

quantitatively evaluated the network diversity of symptom
phenotypes using a well-established network measure (i.e., node
diversity). The results showed that the degree of un-specificity of
symptoms could be represented by node diversity and we further
found that the clinical diversity of symptom phenotypes could be
partially explained by the molecular network diversity of symptom
phenotypes (significant positive correlation between MGD and PD
was detected; PCC= 0.49, P-value= 2.14E-08). Furthermore, we
evaluated the molecular diversity of diseases and found it is lower
than those of symptom phenotypes. These results validate the
advantages of disease diagnosis and the reliability of MGD for
evaluating the diversity of symptom phenotypes. Overall, our work
proposes a feasible approach to evaluate the diversity of symptom
phenotypes and it could further be used for “symptom subtyping”
as recent literature for establishing the new disease taxonomy70.
Particularly, as a recent hot research topic that has been

intensively investigated in nursing science71. Various studies have
identified significant symptom clusters (e.g., fatigue, depressive
symptoms, and anxiety72) of the typical diseases during the
nursing process, such as psychiatric diseases (e.g., depression and
anxiety)73, cancer diseases (e.g., breast cancer, gastrointestinal
cancer, lung cancer)74, and chronic diseases (e.g., chronic kidney
disease, chronic obstructive pulmonary disease, type 2 dia-
betes)75–77. For example, related study found that patients with
heart failure (HF) would manifest distinct symptom clusters, the
weary (lack of energy, lack of appetite, and difficulty sleeping) and
the dyspneic symptom clusters (shortness of breath, difficulty
breathing when lying flat, and waking up breathless at night).
Each one unit increase in mean distress score in the dyspneic
symptom cluster doubled the risk for cardiac death and the risk of
cardiac rehospitalization increased by 1.5 times for each one unit
increase in mean distress score in the weary symptom cluster78.
Therefore, it is a promising clinical analysis task to find significant
symptom clusters involved in various disease conditions. It also
emphasizes the importance of investigating and monitoring of

Table 2. Quantifying the molecular network diversity of symptom
phenotype in SCN (including the top 50 symptoms sorted by the
molecular network diversity in SCN).

Symptom MGDa MGEb Symptom MGD MGE

Convulsion 491.39 1186 Brash 249.61 410

Vomiting 491.39 777 Thin hair 249.61 410

Nausea 491.39 777 Voice hoarseness 249.61 410

Chest pain 491.39 777 Nail thinness 249.61 410

Headache 491.39 777 Rigidity 244.27 515

Chill 422.73 1400 Fatigue 244.27 515

Dyscalculia 380.77 1186 Fever 241.09 502

Obesity 367.89 639 Loose stools 241.09 502

Deafness 367.89 558 Cough 241.09 527

Body weakness 367.89 527 Skin pruritus 233.94 362

Decreased
hearing

367.89 558 Difficulty in movement 229.93 437

Tremor 367.89 527 Consciousness
disorder

229.93 639

Emaciation 323.43 515 Failure to thrive 229.93 437

Edema 323.43 527 Disorder joint 229.93 437

Speech scanning 299.95 639 Jaundice 229.93 437

Amnesia 299.95 639 Limb pain 229.93 437

Depression 299.95 522 Joint pain 229.93 437

Rash 286.07 558 Insomnia 229.93 437

Body pain 285.63 444 Low back pain 229.93 437

Abdominal pain 285.63 515 Joint swollen 229.93 437

Constipation 282.94 558 Aphtha 229.93 437

Dyspnea 282.94 558 Poor appetite 213.66 350

Skin patches 282.94 558 Anorexia 213.66 350

Delay language 282.94 558 Emotional lability 213.66 382

Tachypnea 282.94 558 Blindness 208.68 350

aMGD means the maximum node diversity of the symptom-related genes
in PPI network; bMGE means the maximum node degree of the symptom-
related genes in PPI network.
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symptom clusters which can help improve the capability of clinical
diagnosis, treatment and predict the outcomes in patients rather
than individual symptoms. Altogether, symptom clusters have
proposed an effective approach for symptom subtyping, which

would deliver population stratification with higher specificity than
single symptom phenotype. In our study, using the molecular
diversity measurement of symptom phenotypes, we further
investigate the underlying network mechanisms of symptom

a

b

PCC = 0.55 
P-value = 1.34E-10

PCC = 0.52 
P-value = 1.46E-09

PCC = 0.77 
P-value = 5.98E-24

PCC = 0.73 
P-value = 2.17E-20

PCC = 0.54 
P-value = 4.55E-10

PCC = 0.49 
P-value = 1.80E-08

PCC = 0.79 
P-value = 1.93E-26

PCC = 0.71 
P-value = 3.59E-19

Fig. 5 Correlations of the symptom network diversity and related drug-targets diversity. a Correlations between the symptom diversity
(phenotypic and molecular networks) and the number of related drugs. b Correlations between the symptom diversity (phenotypic and
molecular networks) and the number of related drug-targets.
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clusters and why their clinical specificities could be obtained,
which would finally be helpful to detect and understand various
symptom subtypes involved in different disease conditions.
There still have several limitations for our work. First, the

number of symptom-gene associations is limited, which is mainly
owing to the focus of PGA on congenital hereditary diseases. In
our study, most of the symptoms with gene associations belong
to the nervous system, which would be result in certain
deviations. However, the 341 symptoms in our work have
covered 180 (46.63%) of symptoms in Medical Subject Heading
vocabulary67 which was created and updated annually by the
NLM since 1960s. This means that our results would deliver some
kinds of reliable and useful knowledge for understanding the
network mechanisms of the whole spectrum of symptom
phenotypes. Second, the disparity of clinical and biomedical
terminologies on symptom phenotypes is another obstacle to
perform the translational medicine studies as our work. We found
that clinical terminologies in clinical settings would tend to be in
more specific granularities and the terms in biomedical data
would be in higher levels. Therefore, the semantic mapping
between different terminologies is a vital task for our study. This
is further challenged by the cross-language translation difficulty
involving Chinese and English languages. Actually, we have used
the symptom cluster data in Chinese to construct the SCN, which
would have the constraints of specific language (i.e., Chinese). In
addition, the recordings of symptom clusters in Chinese and
Chinese population would possibly influence the generalization
of our results for other populations. Notwithstanding these plenty
of challenges, we are convinced that advances in the field of
symptom science will eventually enable us to substantially
expand the data sources and thus promote the understanding

of symptom phenotypes in the postgenomic era. In the future, we
hope to identify novel and effective drug targets for symptom
subtypes by incorporating the underlying network mechanisms
of symptom diversity, so as to better serve the individualized
diagnosis and treatment.

METHODS
Basic datasets and preprocessing
We curated both clinical and molecular related data on symptom
phenotypes to perform our study, which includes (i) clinical symptom
manifestations from textbook, (ii) phenotype-genotype associations, (iii)
protein interactome data, and (iiii) drug–targets associations.

Clinical symptom manifestations. We curated the data related to clinical
symptoms derived from a well-recognized textbook named DDTS for
clinicians in China, which contain 431 investigated symptoms and their
symptom clusters (with 988 additional symptoms) in traditional Chinese
medicine (TCM) clinical settings. This book is an important part of TCM
syndrome differentiation and treatment, which reflects the use of TCM basic
theory syndrome differentiation method for subtype analysis of symptoms.
The characteristics of the same symptom in different clusters reflect the
diversity and complexity of symptom in clinical settings. Therefore, the book
could have served as a data source for exploring the diversity of symptoms.

Phenotype–genotype associations. We used an integrated PGA from
DisGeNet79 and MalaCards80, which contains 110,407 associations with
11,362 unique diseases represented by UMLS CUI code and 13,271
unique genes.

Protein–protein interactions. The PPI were filtered from the human subset
of STRING V1123 by the score threshold >=700, which include 17,185
distinct proteins and 420,534 high-quality interactions.

Table 3. The basic molecular features of insomnia symptom cluster (sorted by the co-occurrences).

Symptoms Co-occurrences
n (%)a

Overlap pathways
n (%)b

Overlap genes

Emotional lability 160 (32.72) 26 (25.74) NDST1, SLC18A2, TSHR, PRNP, DCTN1

Dysphoria 156 (32.64) 2 (16.67) LEP, PRNP

Dizzy 135 (33.25) 19 (29.23) TNXB

Fever 121 (16.78) 41 (29.08) IL6, HLA-DRB1, PRNP, PRL, CRP

Thirst 99 (18.20) 1 (25.00) LEP

Fatigue 79 (14.42) 49 (26.78) HESX1, LHX3, TNXB, SLC18A2, TSHR, DNMT1, HLA-DRB1, PRNP, DCTN1,
PROP1, TSHB, POU1F1

Blurred vision 69 (38.76) 19 (23.75) HESX1, CLIP2, LIMK1, BAZ1B, PRNP, GTF2IRD1, GTF2I, RFC2, TBL2, ELN

Night sweats 53 (42.06) 38 (31.40) SLC18A2, HLA-DRB1, DDC, PRNP, HMBS

Poor appetite 51 (11.26) 31 (36.90) HMBS

Constipation 47 (13.35) 34 (24.46) DDC, PRNP, RAI1, NR4A2, THRA, TSHB, POU1F1, FLII, HESX1, TSHR, THRB,
HMBS, CLIP2, SNCAIP, LHX3, TRHR, TNXB, LIMK1, BAZ1B, GTF2IRD1, PROP1,
RFC2, GTF2I, TBL2, ELN, CPOX

Amnesia 44 (66.67) 44 (32.35) NPS, HCRT, IL6, HLA-DRB1, DNMT1, PRNP, HLA-DQB1, MOG, ZNF365

Tachypnea 33 (15.57) 20 (20.83) HLA-DRB1, DCTN1

Emaciation 33 (23.91) 44 (29.73) TSHR, HLA-DRB1, SLC9A6, PRNP, HLA-DQB1, SNCA, DCTN1, LEP

Loose stools 23 (8.68) 33 (31.43) TSHR, NAGLU, DDC, HMBS, SGSH, CPOX, GNS

Headache 23 (9.54) 21 (32.31) IL6

Rash 21 (10.66) 46 (26.29) TNXB, IL6, HLA-DRB1, CRP, SIN3A

Body pain 19 (6.57) 36 (25.35) CLIP2, TNXB, IL6, LIMK1, HLA-DRB1, BAZ1B, ELN, GTF2IRD1, GTF2I, HMBS,
RFC2, TBL2, CPOX

Cough 16 (7.80) 28 (49.12) HLA-DRB1

Consciousness disorder 16 (11.27) 28 (24.59) IL6, TSHB

aThe co-occurrences are presented as n/N (%), where n is the co-occurrence frequency of the symptom and insomnia in a textbook named differential diagnosis
of traditional Chinese medicine symptom; N is the total occurrence frequency of symptom in this book. bThe overlap pathways are presented as n/N (%), where n
is the number of overlapped enriched KEGG pathways between the symptom and insomnia; N is the total enriched KEGG pathways of the symptom.
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Drug–targets associations. The drug–targets associations obtained from
the DrugBank database30, which is a comprehensive online database
containing information on drugs and drug targets. Finally, we obtained
948 unique drugs and their 1451 targets for correlation analysis.

Construction of symptom association network
In the DDTS, several established symptom clusters would be associated for
each chief symptom. We considered symptom cluster as one record and
constructed the SCN by symptom co-occurrence in symptom clusters and

Fig. 6 The overlapped pathways of insomnia symptom clusters. The enriched KEGG pathways is evaluated by P-value with <0.05.
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visualized by Gephi 0.9.2 software. To connect phenotypic and genetic
data of symptoms in SCN, we manually mapped Chinese terms of
symptoms in clinical data to English terms of symptoms in PGA by the
trained medical researchers (e.g., Zixin Shu, Ning Xu, Chenxia Lu, Runshun
Zhang) in our author list, thereby ensuring highly accurate terminological
mappings. 252 (73.90%) English symptom terms with associated genes
mapped to 116 Chinese symptom terms in SCN. Therefore, there is a
phenomenon of multiple CUI code merging corresponding to one TCM
symptom, for example, C0035021 and C0015967 were both mapped to发
热 (i.e., fever). Finally, we obtained the genetic information of 116 symp-
toms in SCN by merging the genetic associations of the CUI code
symptoms (Supplementary Table 1).

Measuring the phenotypic diversity
We used node diversity13 to characterize the diversity of symptom
phenotypes in the context of network, which have been successfully used
for measuring disease diversity in recent studies12,70. The diversity ϕ of

node j is based on the node bridging coefficient81 and defined by

ϕðjÞ ¼
X

i 2NðiÞ

δðiÞ
k ið Þ � 1

where k (i) is the degree of node i, N (i) denotes its neighborhood, that is,
the set of all its direct neighborhood and δ (i) is the total number of links
leaving that neighborhood. The diversity ϕ is large for nodes with many
neighbors that have out-going links themselves.
To evaluate the MD of phenotypes, we assume the molecular diversity of

symptom phenotypes would largely lie on the related genes in the context
of molecular network. For example, to quantify the MD (in terms of node
diversity) of amnesia, we calculated all the node diversity values for the
amnesia-related genes, such as MAPK1, EP300, and APP. Finally, we
considered the MD of amnesia as 299.95 since we found that MAPK1 has
the maximum node diversity of 299.95 among those genes. Furthermore, it
is intuitively that node degree also could be considered as additional
measure for molecular diversity.

Fig. 7 Construction the PPI network of insomnia-fever-rash cluster. We extracted a PPI subnetwork of insomnia-fever-rash symptom
clusters which consisted of 363 nodes and 1860 edges. The nodes indicate the related genes of these symptoms in PPI network and edges
represent the interactions of these genes in PPI network. Node size reflected the degree of symptom in the network (a high degree is
represented by large node). Node colors represent genes associated with different symptoms.
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Shortest paths length between drug targets and symptom
genes
Shortest paths are an important topological measurement for the analysis
of social and biological networks12. Here, we utilize Dijkstra’s algorithm82 to
find all shortest path lengths between drug targets and genes of symptom
in the PPI network to help obtain 1-order drug targets and their related
drugs for a given symptom phenotypes.

Enrichment analysis
In order to identify molecular pathways and biological processes that could be
impacted by the gene variations of each symptom cluster we used
enrichment analysis. Pathway analysis offers the great power for discovering
the biological functions underlying genes and proteins. The KEGG PATHWAY
database is the main database in Kyoto Encyclopedia of Genes and Genomes
(KEGG), and it consists of manually drawn reference pathway maps together
with organism specific pathway maps56. Gene set enrichment analysis is a
method of identifying classes of genes or proteins that are over-represented
in a large set of genes or proteins and may be associated with disease
phenotypes. We obtained the enriched KEGG pathways and gene ontology
terms of biological process using the database for annotation, visualization,
and integrated discovery (DAVID)83, which is a web-based online bioinfor-
matics resource that aims to provide tools for the functional interpretation of
large lists of genes/proteins.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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and its Supplementary material files.

CODE AVAILABILITY
The source codes and data are available at: https://github.com/shuzixin9212/
symptom-diversity. The codes including the construction of the SCN and the
calculation of node diversity. Node diversity algorithm was implemented using Java
JDK 1.8. The other data analysis tasks were implemented using Python 3.7. In
addition, we also provide two types of source files, (1) the clinical data used to
construct SCN, the mapping data between Chinese and English terms of symptom
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network data.
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