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Personalized modulation of coagulation factors using a
thrombin dynamics model to treat trauma-induced
coagulopathy
Damon E. Ghetmiri 1, Mitchell J. Cohen2 and Amor A. Menezes 1,3,4✉

Current trauma-induced coagulopathy resuscitation protocols use slow laboratory measurements, rules-of-thumb, and clinician
gestalt to administer large volumes of uncharacterized, non-tailored blood products. These one-size-fits-all treatment approaches
have high mortality. Here, we provide significant evidence that trauma patient survival 24 h after hospital admission occurs if and
only if blood protein coagulation factor concentrations equilibrate at a normal value, either from inadvertent plasma-based
modulation or from innate compensation. This result motivates quantitatively guiding trauma patient coagulation factor levels
while accounting for protein interactions. Toward such treatment, we develop a Goal-oriented Coagulation Management (GCM)
algorithm, a personalized and automated ordered sequence of operations to compute and specify coagulation factor
concentrations that rectify clotting. This novel GCM algorithm also integrates new control-oriented advancements that we make in
this work: an improvement of a prior thrombin dynamics model that captures the coagulation process to control, a use of rapidly-
measurable concentrations to help predict patient state, and an accounting of patient-specific effects and limitations when adding
coagulation factors to remedy coagulopathy. Validation of the GCM algorithm’s guidance shows superior performance over clinical
practice in attaining normal coagulation factor concentrations and normal clotting profiles simultaneously.

npj Systems Biology and Applications            (2021) 7:44 ; https://doi.org/10.1038/s41540-021-00202-9

INTRODUCTION
There is a dire need for targeted approaches to improve trauma
patient treatment outcomes1. Trauma is the leading cause of
death between the ages of 1–44 in the U.S.2; those who survive
suffer huge morbidity and are left with permanent disabilities3.
Trauma-induced coagulopathy4 (TIC) occurs after severe trauma
and shock, is biologically characterized by perturbations to the
balance between clotting and fibrinolysis4,5, and is clinically
characterized by uncontrolled bleeding and either death or
clotting complications in those who survive6–10. The initial
traumatic hemorrhage accounts for the majority of all trauma-
related deaths11, and 50% of the mortalities of critically-injured
patients who undergo surgery12,13. Targeting coagulation biology
and the resuscitation strategy in the first 24 h of care are critical14,
since 80% of deaths from hemorrhage occur within this window15.
Current treatment involves rules-of-thumb and lab-based

resuscitation guidelines. In most centers, a preset ratio of blood
products is administered to rapidly control hemorrhage11.
Although some studies attribute improved outcomes to such
resuscitation control16–19, other studies show the opposite20,
including conflicting data for the prehospital transfusion of fresh
frozen plasma (FFP) and red blood cells21, and for different ratios
of blood products11,22,23. A possible reason is the dynamic nature
of patient coagulation state; too much or too little of beneficial
static interventions may result in poor outcomes because of a
targeting mismatch with resuscitation needs at that timepoint.
While well-intentioned, blood product transfusion is linked to
inflammatory morbidities and side-effects including acute respira-
tory distress syndrome and multi-organ failure7,24. Despite much
research and vast improvements in clinical care, severely-injured

patients that require massive transfusions still have 30%
mortality25.
Hence, trauma patients may benefit from a tailored transfu-

sion strategy, or from innovative treatments that include
coagulation factor (blood protein) concentrates5,6,26. Targeting
individual coagulation proteases via coagulation factor con-
centrates has benefit for hematologic diseases, such as
hemophilia27,28. Although the kitchen-sink approach of using
FFP in TIC has its proponents, targeted coagulation factor
therapy may have better outcomes compared to FFP-based
treatments29–31. However, some reports on modulating coagu-
lation factors (including factor VII32, factor IX33, and factor X34)
have shown limited benefit in individually correcting coagulo-
pathic hemorrhage. Moreover, coagulation factor levels cannot
be increased in isolation. For example, elevated levels of
activated protein C (aPC) inhibit hemorrhage, but are also
associated with undesirable outcomes including pneumonia,
multi-organ failure, and death35,36. Thus, there are open
requirements to: (1) confirm the benefits of modulating
coagulation factors; and (2) develop a new quantitative
modulation approach that incorporates interactions between
coagulation factors. This article addresses these two
requirements.
Existing protocols for such goal-driven trauma treatment37–40

use thromboelastometry, a viscoelastic coagulation assay, but this
assay is time-consuming at typically about an hour per run. These
protocols are non-quantitative, rely on clinical intuition and older
standard procedures, and only correct for a small number of
coagulation factors and/or their interactions. These protocols are
qualitative because traditional statistical analysis and machine
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learning on static trauma patient measures like coagulation factor
concentrations are not informative in diagnosing coagulation41,42

or treatment outcomes43,44. These protocols are also non-dynamic,
meaning that they are unable to make time-course, patient-
specific predictions of recovery, and they do not facilitate future
intervention automation. A recent thromboelastogram modeling
advance45, while promising, has yet to be deployed for dynamic
treatment schemes.
Because patient responses to trauma are complex and

dynamic, with risks in both hemorrhagic and thrombotic
states46, dynamical systems approaches are preferable since
they offer the ability to intervene at any timepoint, or even at
multiple timepoints, in a patient’s coagulopathic trajectory. This
capability can reduce a need for urgent hospital interventions
to improve physiological outcomes47, given that there exist
numerous unknown or unquantifiable priors such as patient
arrival time to the hospital, injury severity, co-morbidities, and
patient genetics. Dynamical systems models can capture
coagulation kinetics and physiological trauma measures to
improve treatment. They can also differ in how much
mechanistic coagulation knowledge is harnessed48, or how
much stoichiometry has to be included49,50. We seek a dynamic,
goal-oriented, model-based, rapid trauma patient treatment
strategy that follows the control architecture in Fig. 1a,
comprising sensors, actuators, process dynamics, and a
controller that uses sensed measurements of coagulation factor
concentrations to actuate clotting dynamics by manipulating
these concentrations. The controller vision in Fig. 1b is a

point-of-care device that enables clinicians to assess, monitor,
and alter trauma patient coagulation status51.
Toward achieving this vision, this article establishes how to

quantitatively attain appropriate trauma patient treatment goals
by weaving together appropriate actuators, sensors, process
dynamics models, and a control algorithm into an automated
treatment delivery platform that can be physically implemented at
the point-of-care in future work. The original contributions of this
article are as follows:

1. We provide significant evidence from patient data that there
is substantial merit to administering coagulation factors to
treat trauma patients. Trauma patient survival 24 h after
hospital admission occurs if and only if coagulation factor
concentrations equilibrate at a normal value, either from
inadvertent plasma-based modulation or from innate
compensation.

2. We develop a Goal-oriented Coagulation Management (GCM)
algorithm, a personalized and automated ordered sequence of
operations to compute and specify coagulation factor
concentrations that rectify clotting. For this algorithm, we:

(a) substantially improve a recent black-box process
dynamics model by harnessing more data, and we then
validate our improvements in silico on a separate dataset
(Fig. 1a “plant”);

(b) use rapidly-measurable coagulation factor concentrations
and this updated model to predict individual clotting
dynamics (Fig. 1a “sensors”);

Fig. 1 Trauma-induced coagulopathy automated treatment vision. a Our proposed control system architecture and block diagram. The
envisioned automated system consists of four elements: sensors, a controller, actuators, and a plant, which is the patient’s coagulation process
dynamics. b A schematic of a personalized, goal-oriented, and dynamic precision-medicine implementation to treat trauma patients at the
point-of-care, which realizes the architecture in (a). Blood samples can be readily obtained from trauma patients. By using sensors and
coagulation assays, coagulation factor concentrations in the blood sample can be quickly quantified. A smart controller algorithm then
recommends a personalized treatment plan according to a goal-oriented approach, moving the patient along a recovery trajectory toward
healing. This algorithm recommends coagulation factor concentrations to administer, which act as interventions to modulate patient
coagulation process dynamics. This intervention approach is repeated frequently, and the treatment is adjusted dynamically. Created with
BioRender.com.
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(c) confirm that administering coagulation factor concentra-
tions accurately changes clotting as described by our
improved dynamics model, noting saturating behavior
for excessive coagulation factor concentration adminis-
tration that motivates keeping levels between generally-
accepted normal limits when modulated in a treatment
scheme (Fig. 1a “actuators”); and

(d) propose a novel ordering in which to tune coagulation
factor concentrations to satisfy a clotting improvement
goal (Fig. 1a “controller”).

3. We validate the GCM algorithm’s guidance in silico on a
separate dataset for the critical first 24 h of care. We show
superior performance over clinical practice in attaining
normal coagulation factor concentrations and normal
clotting profiles simultaneously.

Coagulation factors are central to our control approach: they are
the actuators for trauma patient treatment, and their concentra-
tions can be rapidly measured within a few minutes using sensors
and coagulation assays. The process of clot formation after injury
proceeds according to the biochemical kinetics of the coagulation

cascade52, Fig. 2, driven by coagulation factor concentrations. The
resultant dynamics constitute the plant in Fig. 1a, b.
Thrombin, factor IIa, is the end product of the coagulation

cascade, and thrombin generation measures can be leveraged to
predict hemostatic potential and transfusion requirements53. Such
measures can replace conventional coagulation tests like pro-
thrombin time (PT), partial thromboplastin time (PTT), interna-
tional normalized ratio (INR), and platelet counts, all of which have
limitations54. Thrombin is a unique protein that functions as both
a procoagulant and an anticoagulant55. As a procoagulant,
thrombin activates platelets, converts fibrinogen into strands of
fibrin, effects the cross-linking of fibrin to produce a firm fibrin clot
by activating factor XIII, and catalyzes other coagulation-related
reactions, like the activation of factors V, VIII, XI, and protein C (PC),
which in turn regulate thrombin generation56. As an antic-
oagulant, thrombin binds to thrombomodulin, a receptor protein
on the endothelial membrane of a blood vessel, initiating a series
of reactions that leads to fibrinolysis55. Thrombin’s activation of
PC, a strong anticoagulant implicated in TIC, has also been
extensively studied35,57 and is therefore included in our study.

Fig. 2 The coagulation cascade. Details of the plant, i.e., patient clotting dynamics, as embodied by the coagulation cascade, which consists
of biochemical reactions that are initiated following injury. The release of tissue factor (TF) drives the process to generate thrombin, a key end
product. Most of the involved proteins, called coagulation factors, are denoted by Roman numerals. An added letter “a” indicates activation.
Anticoagulant proteins include tissue factor pathway inhibitor (TFPI), antithrombin (ATIII), protein C (PC), and protein S (PS). Created with
BioRender.com.
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The calibrated automated thrombogram (CAT)58 is a coagula-
tion assay that can measure the concentration time-history of
thrombin in a plasma sample. However, this assay takes about
45–60min to run, without including plasma sample preparation
time. Such delays are far too long to be used at the bedside to
predict and guide treatment and outcomes59. Models48 that
mathematically predict the concentration time-history of throm-
bin from patient plasma sample coagulation factor concentrations,
and that thereby capture the dynamics of the coagulation system
process while simultaneously replacing the CAT assay, can be
useful in controller development. Among the few existing
thrombin-prediction models, either important coagulation factors
like PC are excluded48, computational loads are high60, or
simulation results are not thoroughly validated against experi-
mental data61,62. These deficiencies are addressed in this article. As
we also show, a treatment algorithm that leverages such an
improved model can provide frequent, personalized, and dynamic
recommendations based on sample clotting predictions, to move
a trauma patient’s coagulation state toward a desired recovery
trajectory.

RESULTS
The merit of administering coagulation factors to personalize
trauma treatments
Trauma patient therapy does not yet use quantitative coagulation
factor concentration guidance, possibly because common static
machine learning approaches on typical patient data with
coagulation factor concentrations are uninformative41–44. We
highlight this fact for the 1671-patient Activation of Coagulation
and Inflammation in Trauma (ACIT) dataset, a previously
described63 prospective cohort study of severely-injured trauma
patients who were admitted to a Level I trauma center
(Supplementary Fig. 1 overviews the numbered datasets used to
develop and validate all results in this article). In this dataset,
dataset 1, and throughout this article, coagulation factor
concentrations are measured using the STA Compact Max® device
(Stago), which reports these concentrations in units of percent
activity, a measure that is with respect to the normal coagulation
factor concentration in a healthy person. Supplementary Fig. 2
shows the lack of correlation between coagulation factor
concentration measurements and patient measures such as age,
injury severity score (ISS), PTT, and INR. Unsurprisingly, Supple-
mentary Fig. 3 shows that coagulation factor concentration
measurements are uncorrelated with injury severity, and are
hence not useful for classification to elicit ISS. Additional static
machine learning results, such as those from a bilayered neural
network, Supplementary Fig. 4a, and from a support vector
machine, Supplementary Fig. 4b, fail to predict patient mortality
much better than a coin flip. Even dynamic machine learning is
not satisfactory44.
Moreover, initial biomarker and injury measurements are not

correlated to treatment received, and so cannot predict resuscita-
tion need and adverse outcomes. This unpredictability is
illustrated by 252 of the 1671 trauma patients who survived the
first 24 h and for whom we had complete data, dataset 2
(Supplementary Fig. 5 has demographic information for this
patient subset), as well as the 96 patients who died within the first
24 h, dataset 3. We found that the means of trauma patient
coagulation factor concentrations do not indicate if a trauma
patient is at high risk for mortality within 28 days (Supplementary
Fig. 6a), or at high risk for massive transfusion (Supplementary Fig.
6a) or a thrombotic event (Supplementary Fig. 6b). Equally
important, coagulation factor concentrations are uncorrelated to
treatment and resuscitation: trauma patients who receive FFP, no
matter the number of units they receive, show substantial
variation in coagulation factor concentration changes over time

(Supplementary Fig. 7), potentially due to a lack of characteriza-
tion of, and inherent variability in, coagulation factor concentra-
tions per FFP unit. Therefore, FFP units are not predictive of
increases or decreases in coagulation factor concentrations. This
also substantiates why FFP administration has mixed results for
treatment, since units may not deliver required coagulation factors
or may oversupply unnecessary coagulation factors in different
patients at different timepoints.
Nevertheless, a close examination of the changes in coagulation

factor concentrations for subgroups of the 252 survivor trauma
patients based on initial coagulation factor levels shows clear
dynamic information over the first 24 h after hospital admission. We
illustrate these dynamics using a heatmap of changes (Δ) in
coagulation factor (CF) concentrations at different time periods in
the first 24 h (0 h–6 h, 6 h–12 h, 12 h–24 h), Fig. 3a. These changes are
computed by subtracting the coagulation factor concentration at the
period end time from the coagulation factor concentration at the
period start time. For each period, the changes are arranged into
heatmap cells according to the coagulation factor concentration at
the start of the time period. The mean ΔCF is the number displayed
in each heatmap cell, and is matched to an appropriate color.
Specifically, coagulation factor concentrations move toward an

equilibrium concentration that is representative of homeostasis:
concentrations that start from a low value increase over time, while
concentrations that start from a high value decrease over time, Fig.
3a. This observation holds true for all coagulation factors. In general,
we see darker colors at the lower and upper ends of the Fig. 3a
heatmaps at the start time (left side), indicating a sharper change in
coagulation factor concentration over the first time period. As
coagulation factor concentrations move toward equilibrium over
time, the magnitude of these changes decrease, and we observe
white and lighter color shades (right side of the heat maps).
To test the significance of our observation that coagulation

factor concentrations move toward an equilibrium in patients who
recover, we performed a hypothesis (p-value) test that contrasted
coagulation factor concentration changes in patients who
survived to those who died in the first 24 h. We defined four
groups: (1) for patients who died between 6 and 24 h, their
changes in coagulation factor concentrations between 0 and 6 h
(Deceased 0–6 [h]); and for patients who were alive at the 24 h
mark post hospital admission time (Alive), their changes in
coagulation factor concentrations between (2) 0 and 6 h, (3) 6
and 12 h, and (4) 12 and 24 h. We performed Welch’s t-test and
calculated p-values for α= 0.05. The null hypothesis (H0) was that
the mean change in a coagulation factor’s concentration is equal
for patients who are dead or alive, i.e., μx= μy, where μx and μy are
the deceased and alive sample means, respectively.
Fig. 3b is a barchart representation of the mean of coagulation

factor concentration changes over different time windows, with
error bars that indicate a 95% confidence interval. For all
coagulation factors, there is no significant difference in concen-
tration changes between the two groups (deceased and alive)
from 0 to 6 h, because the two groups had similar initial
conditions. However, in the later time periods in patients who
survived, i.e., from 6 to 12 h and from 12 to 24 h, there is a
significant difference in the mean coagulation factor concentra-
tion change of survivors compared to the deceased. The
exceptions are for factors VII and IX, due to the large variability
of these coagulation factors in the deceased. The results of this
analysis reject the null hypothesis and therefore favor an
alternative hypothesis Ha of non-equal means, i.e., our results
indicate that there is enough statistical evidence to conclude that
mean changes in coagulation factor concentrations of patients
who recovered are significantly different from those of patients
who died.
Given that patients who survive the first 24 h have coagulation

factor concentrations that converge to equilibrium values (either
from inadvertent plasma-based modulation of coagulation factor
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Fig. 3 Dynamical and statistical analyses of changes in coagulation factor concentrations over time. a Heatmap of changes in
concentrations of coagulation factors (CFs) for 252 trauma patients who survived 24 h, dataset 2, grouped by initial concentration (percent
activity) at the beginning of time period, show that concentrations move toward an equilibrium over time. If the starting concentration of any
of factors II, V, VII, VIII, IX, X, ATIII, and protein C is low then the concentration increases, and if the starting concentration is high then the
concentration decreases. Numerical values in the cells indicate the mean change of CF in that group, and the cell color represents this mean
ΔCF according to the color bar on the right. b Comparison between the mean of coagulation factor concentration changes in trauma patients
who died after 6 h, dataset 3, to the mean of coagulation factor concentration changes in the 252 trauma patients of panel (a) who were alive
after the first 24 h, dataset 2, at different time periods (from 0 to 6 h, from 6 to 12 h, and from 12 to 24 h). The bar value indicates the mean of
each group, the error bar represents a 95% confidence interval, and the p-value significance is indicated above/below each bar (ns: not
significant, p > 0.05; *p ≤ 0.05; **p ≤ 0.01; and ***p ≤ 0.001). This panel confirms that patients who recover have coagulation factor
concentrations that move to an equilibrium, with the change in coagulation factor concentrations moving to zero.
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concentrations, or from innate coagulation factor compensation),
Fig. 4a shows that these equilibria are within normal ranges of
60–140% activity64,65. Moreover, Fig. 4b shows that trauma
patients who die between 6 and 24 h have coagulation factor
concentrations that also converge to equilibrium values, but these
are outside normal ranges. It follows that our data support the
claim that a necessary and sufficient condition for trauma patients
to survive the first 24 h is to administer coagulation factors such
that their concentrations will equilibrate at a normal value. The
necessary condition is Fig. 4a, and the contrapositive of the

sufficient condition is Fig. 4b. Consequently, there is merit to
correcting individual coagulation factors dynamically over time,
tailored to each patient to improve treatment outcome.

Improved prediction of process dynamics from coagulation
factors
Since there is merit to administering coagulation factors, the next
question is how to administer them to personalize trauma patient
treatment. Predictions of effect are first required. Menezes et al.

Fig. 4 Trauma patient coagulation factor concentration time history over the first 24 h. a Mean ± one standard deviation of the
concentrations of coagulation factors (CFs) during the first 24 h after hospital admission, for factors II, V, VII, VIII, IX, X, ATIII, and protein C of
252 trauma patients, dataset 2 (demographics in Supplementary Fig. 5a). On average, the coagulation factor means converge to normal,
where normal is the coagulation factor concentration range of 60–140% activity. b Mean ± one standard deviation of the CF concentrations
for another 96 patients that died in the first 24 h after hospital admission, dataset 3, grouped by mortality time window. On average, the
coagulation factor means converge outside normal. Units of coagulation factor concentrations are reported as percent activity.
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proposed a third-order linear dynamical systems model48 to
rapidly predict CAT trajectories from quickly-measured coagula-
tion factor concentrations. While this model has satisfactory
prediction capability, we hypothesized that an embedded
constraint limits its prediction accuracy. We investigated whether
model improvement was possible without changing model
structure, by just adding a single degree-of-freedom parameter
to remove this underlying constraint.
We examined the input–output model

YðsÞ
UðsÞ ¼

Kn

s3 þ K2s2 þ K1sþ K0
e�Kds; (1)

where K0, K1, K2, Kn, and Kd are five patient-specific model
parameters (the prior model48 used four parameters with its fifth
parameter constrained; the models are mathematically-equiva-
lent), Y(s) is the predicted output thrombin concentration time-
history in the frequency domain, and U(s) is a 5 pM impulse input
tissue factor (TF) concentration in the frequency domain. An
impulse input is an input signal with a very high magnitude that is
applied to a system over a very short time66. Theoretically, this
magnitude approaches infinity as time goes to zero. In practice,
this magnitude is taken to be some finite value, commonly 5 pM in
the CAT literature, a value that also has experimental justifica-
tion48. Practically, the CAT is instantiated with 5 pM of TF in the
plasma sample, which then rapidly depletes.
We included the initial PC concentration with the initial

concentrations of factors II, V, VII, VIII, IX, X, and antithrombin
(ATIII), creating new linear regressions for the five parameters via
the same greedy method, the matching pursuit algorithm67, as
previously48. The important role of PC in the coagulation
cascade68 as described by our extensive work 35,57,69 motivated
this modification. We found that our model updates substantially
improved CAT predictions. On a dataset of 60 samples (20
individual healthy donors and 40 trauma patients, datasets 4 and
5 in Supplementary Fig. 1)48, we applied stepwise linear regression
that consists of sequentially and greedily adding the linear effect
of a coagulation factor concentration measurement that most
reduces the error of a least-squares fit to all data for each of
thrombin model (1) parameters. The coagulation factor that
minimizes this least square error has the greatest contribution to
the system dynamics captured by that particular model para-
meter. The stepwise process was repeated until further linear
additions of coagulation factor concentration measurements no
longer improved the fit. The order of these coagulation factors for
each model parameter is presented in Fig. 5a. This figure confirms
the importance of PC and its prime effect on three of the five
model parameters.
Visual comparisons of model improvement are in Fig. 5b, for

four edge cases of minimum peak, maximum peak, minimum
peak-time, and maximum peak-time. For trauma patients, the
mean peak error improved to 15.1% from 22.2%, the mean peak-
time error improved to 13.5% from 20.3%, and the mean thrombin
potential (area under the CAT curve) improved to 17.6% from
21.1%, Fig. 5c. Fig. 5a shows that the model fitness improvement
of Fig. 5b, c is not because of information increase from adding
another coagulation factor to an existing list, but rather because
protein C is the most impactful dynamics contributor.
We validated our model in two ways, first with five-fold cross-

validation, and second on a separate dataset that was not used for
training. Five-fold cross-validation70 bootstraps available data by
subdividing it so that 80% is used for training and the remaining
20% is used for validation. The process is iterated five times for
five unique divisions (folds) of the original dataset. The mean
model output properties of these five iterations for the combined
dataset of 20 normal samples and 40 trauma patient samples
(datasets 4 and 5) are reported in Fig. 5d. This figure confirms
good prediction capability. Obtaining errors of 20% or less is a

rule-of-thumb for mechanical systems, with less than 10% the
ultimate goal through model refinement71; given significant
inherent biological variability compared to mechanical systems
and possible as-yet-undiscovered interactions, a target of 30% or
less error is not unreasonable. We anticipate that model prediction
will improve with more trauma CAT data.
Additional model validation was accomplished with a separate

validation dataset, dataset 8, that was not used for model training.
This validation set started with normal plasma samples that had
coagulation factor concentration and CAT measurements, and into
which were spiked increasing concentrations of factors II, VIII, and
X that were then quantified. Our model trained on the separate
60 samples (datasets 4 and 5) can predict the 20 experimental
validation CATs (dataset 8) almost perfectly, Fig. 5e.

Effects and limitations of coagulation factors as actuators
To examine the dynamic modulation effects of coagulation
factors, we used experimental datasets 4, 5, and 7 in Supplemen-
tary Fig. 1. Dataset 7 started with normal plasma samples that had
coagulation factor concentration and CAT measurements, and into
which were spiked increasing concentrations of factors II, VIII, and
X. New coagulation factor concentration and CAT measurements
were taken after each spike.
We examined the effects of different initial TF concentrations

and coagulation factor concentration spikes on system poles. The
poles of a dynamical system are characteristic parameters that
determine the system’s stability and output response66. These
poles can be obtained from a transfer function model of a system
by determining the values for which the denominator of the
transfer function becomes zero, i.e., we find the poles of a trauma
patient’s coagulation system by setting the denominator of model
(1) to zero and solving the resultant equation for s.
Surprisingly, for 20 normal plasma samples from different

donors, we found that increased initial TF concentration caused
substantial system pole movement away from the origin,
essentially recapturing trauma patient variability, Fig. 6a. That is,
trauma effects are replicable by manipulating TF concentration.
Similarly, as Fig. 6b and c show, increases in the concentration of
factor II in normal plasma samples pushed coagulation system
poles toward the origin, while higher levels of factors VIII and X
caused system poles to move away from the origin. Physical
limitations like saturation are also apparent in some normal
plasma samples, Fig. 6c, with additional increases in coagulation
factor concentrations beyond a certain value not impacting
system behavior. We hypothesize that this observed result is
due to the limiting availability of other coagulation factor
concentrations that form complexes in the system.
The results of spiking isolated coagulation factors into validation

plasma samples, dataset 8 and Fig. 5e, also validate the actuator
effect of each coagulation factor on the human coagulation
system and thrombin generation. The isolated increase of each
coagulation factor concentration results in a unique change in
thrombin profile properties. For example, an increase in factor II
leads to an increased peak and increased curve area, an increase
in factor VIII mostly only affects the peak value, and an increase in
factor X increases peak value and simultaneously reduces peak-
time. These effects can be harnessed by an algorithm that seeks to
make a thrombin profile more normal, next.

Personalized control of trauma patient thrombin dynamics
using coagulation factors
We determined a target goal CAT and an associated region inside
which any CAT trajectories can be considered normal by
calculating the maximum, minimum, and mean of the experi-
mental data at each time point for all normal plasma samples,
dataset 4 (Supplementary Fig. 8) and fitting model (1) to this data.
To evaluate how well the identified region represented normal, we
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validated it using five normal samples, dataset 9, that were
different from dataset 4, which was used for identification. We
contrasted the CAT profile of these five validation samples against
the normal region (Supplementary Fig. 9) using mean relative
error (MRE), the mean of the error at each time point where the

profile was not within normal minimum and maximum bounds.
MREs for dataset 9 are reported in Supplementary Table 1.
We then developed a Goal-oriented Coagulation Management

(GCM) algorithm, Figs. 7 and 8, to recommend a personalized set
of coagulation factor concentration changes to move trauma
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patients onto a recovery path. Our algorithm harnesses CAT
estimates from coagulation factor concentration measurements
via model (1), and identifies a patient-specific mapping, Supple-
mentary Fig. 10, from coagulation factor concentration changes to
thrombin clotting effects according to these CAT estimates rapidly
and in real-time. This mapping is a simple second-order
polynomial, justified by the Akaike Information Criterion72 as
being the smallest-parameter fit that is the most-informative.
We defined algorithm treatment goals to simultaneously (a)

move coagulation factor concentration values toward normal
equilibrium values, and (b) achieve a normal thrombin (clotting)
profile. To attain these treatment goals, the sequence of GCM
algorithm operations was developed by:

(i) Prioritizing reaching a normal range of coagulation factor
concentrations;

(ii) Ordering how four thrombin profile properties mimic
normal clotting; and

(iii) Investigating the isolated effects of coagulation factors on
thrombin profile properties.

To satisfy (i), our algorithm first corrects concentrations of
coagulation factors that have minimal impact on thrombin profile.
Thereafter, the estimated CAT is progressively corrected by
modulating a coagulation factor concentration according to our
new modeled dynamic interactions, with the updated concentra-
tion checked to be in the normal range at the end of each
thrombin profile correction step. For (ii), we set the order in which
the algorithm tunes CAT properties as follows: thrombin genera-
tion (peak), response time (peak-time), time delay in system
response (time delay), and thrombin potential (area under the
curve, which is evaluated and compared using the profile tail,
called “sTail”). For (iii), we had investigated the most impactful
individual coagulation factor concentration changes on estimated
CAT properties by performing numerical simulations on datasets 4
and 5 (Supplementary Fig. 10). We determined the coagulation
factors that have primary and secondary impact on each thrombin
profile property, and our algorithm tunes these coagulation
factors to adjust a predicted CAT property in each algorithm step.
Our GCM algorithm first modulates the concentrations of

factors V and VII into their normal range because these
coagulation factors have limited impact on CAT estimates
according to our improved thrombin dynamics model, and
because their small effects can be overcome by changes in the
remaining coagulation factor concentrations as the algorithm
progresses. Next, overcoming a trauma patient’s thrombotic or
hemorrhagic condition is imperative, equivalent to manipulating a
CAT’s peak value. Hence, the algorithm next changes the
concentration of thrombin precursor factor II, thereby changing
the predicted CAT peak as much as possible while maintaining
this coagulation factor’s concentration inside its normal range.
Factor X is corrected thereafter, to supplement the peak correction
effect of factor II that may be saturated at a normal limit, and also
to compensate for changes in peak-time that are caused by factor

II manipulation because factor X’s peak-time effect is opposite that
of factor II. Factor X also affects the CAT time-delay, which can
then be rectified by adjusting the concentration of factor IX with
little effect on CAT peak. Modulating factor VIII follows, because
changing this coagulation factor allows for fine control of peak-
time with minimal effect on CAT peak or time-delay.
The final step of the GCM algorithm ensures that the

recommended CAT estimate is inside the normal region. If not,
then the algorithm chooses to manipulate one of two antic-
oagulant factors, either protein C or ATIII. The choice is made
based on a comparison to the area under the normal CAT curve
(thrombin potential) in its post-peak stage, equivalently, the
differing ways that protein C and ATIII alter the CAT tail. If this
normal area is already surpassed by the patient’s updated CAT
estimate, then protein C is selected, otherwise it is ATIII. For all of
the above modulations, coagulation factors are modulated only to
the extent of their normal limits.
On the requisite four “co-” properties that an algorithm is

typically scrutinized for, our proposed algorithm is convergent,
complete, not complex, and correct. First, the GCM algorithm is
guaranteed to converge to a set of personalized coagulation
factor concentration recommendations, because we systematically
manipulate an ordered list of a finite number of coagulation
factors only once through the list. Next, our program is complete
in the sense that if coagulation factor concentration values exist
for all eight coagulation factors to generate a simulated CAT
trajectory, then the algorithm will output one possible set.
Consider that a set of coagulation factor concentrations always
exists: this is the trivial set, consisting of the initial coagulation
factor concentrations. Indeed, the algorithm presumes these
concentrations at the start, before trying to modulate each
concentration in turn. Earlier, we showed that our improved CAT
prediction model can accurately predict CAT trajectories from
coagulation factor concentrations, those that are measured before
algorithm modulation. Thus, completeness is guaranteed. Third,
our algorithm’s complexity is linear in the number of coagulation
factors n (i.e., it is O(n) in big O notation); there is only one “for”
loop in the pseudocode in Fig. 7, and we systematically examine
each coagulation factor only once.
Finally, our GCM algorithm is correct, and we validated its

outputs against clinical outcomes of CAT profile and normalized
coagulation factor concentrations for eight trauma patients,
dataset 6 in Supplementary Fig. 1 (demographic information in
Supplementary Fig. 5a) who showed methodical recovery toward
our normal goal. This eight-patient validation dataset (dataset 6) is
different from, and is not a subset of, the 40 trauma patients
(dataset 5) used for training the coagulation model (1) and for
algorithm development. We validated the GCM algorithm for the
first 24 h post hospital admission as this time period accounts for
80% of hemorrhage fatalities15. We selected intervention periods
of 0, 6, 12, and 24 h for validation and comparison of our GCM
algorithm to clinical data because trauma patient data in dataset 6
were collected at these time points.

Fig. 5 Our new validated thrombin concentration time-history model has better predictive performance compared to the previous
model. a Sorted correlation of coagulation factor concentrations to model parameters, from highest to lowest. Activated PC is the main driver
for three of five parameters in the improved model. b Thrombin concentration time-history prediction is much improved compared to an
older model48, shown here for four edge cases of minimum peak, maximum peak, minimum peak-time, and maximum peak-time. c Mean
percent error of three CAT parameters estimated using the old model and the new model for 40 trauma patient samples, dataset 5. Percent
errors are calculated for each sample by comparing each CAT parameter estimated using dynamic models to the actual CAT parameters from
fits of experimental data, and then the mean and standard deviation of all sample relative errors reported. For example,

CAT Peak percent error ¼ j Peakmodel�Peakexperiment

Peakexperiment
j ´ 100. d Five-fold cross-validation bootstraps the data (datasets 4 and 5) and confirms that

model predictions are valid with acceptable mean percent error. e CATs predicted with our improved model using an additional experimental
dataset48, dataset 8, that was not harnessed for learning. Our model is able to accurately capture both trends and magnitudes of actual CATs.
Numbers in the legend indicate coagulation factor concentration reported as percent activity.
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We contrasted CATs over 24 h, Fig. 9a, by estimating CAT
trajectories from the coagulation factor concentrations in Supple-
mentary Fig. 11. We illustrate the dynamic performance of the
proposed GCM algorithm over 24 h for one of these trauma
patients in Fig. 9b. Both panels show how the GCM algorithm

recommendation adapts according to the most recent coagula-
tion factor concentration measurements to guide the CAT toward
the desired normal region. Comparing the recommended goal
CAT to the normal region for three CAT properties of peak, peak-
time, and area under the curve, the GCM algorithm’s
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recommendations show enhanced performance over the clinical
practice that occurred, in mean and standard deviation percent
error, for all properties over the first 24 h, Supplementary Fig. 12a,
b. The program’s recommendations also rarely violate the normal
CAT region. For the second goal to move coagulation factor
concentrations to a normal range, none of the algorithm’s output
coagulation factor concentrations violate the normal coagulation
factor concentration range, in contrast to 38 violations that
occurred during actual treatment of these eight patients at 24 h
(Supplementary Fig. 12c), and numerous other violations that
occurred at each of several intervening time points (Supplemen-
tary Fig. 12d).

DISCUSSION
The pressing need for trauma patient precision medicine
treatments is well-documented, but the coagulopathy problem
is complex, which restricts clinicians to using rules-of-thumb,
generalized treatment protocols, and uncharacterized blood
products. As a result, patient recovery often fluctuates between
hypo-coagulable and hyper-coagulable states, with conditions
that are complicated by the side effects from contemporary non-
tailored approaches. This leads to high mortality and poor
outcomes in even the best trauma centers. Goal-oriented,
frequent, dynamic, and patient-specific interventions are believed
to be the solution, especially if the administration of coagulation
factors (blood proteins) can transfer a patient onto a desirable
healing trajectory. However, no quantitative guidance exists on
how to manipulate coagulation factor concentrations. Hence, to
assist clinicians at the point-of-care, in this article we answer:

1. Is there merit to administering coagulation factors to treat
trauma patients? We show significant evidence that the
answer is yes, because patients who survive the first 24 h
have coagulation factor concentrations that converge to
values within normal ranges, and trauma patients who die in
the first 24 h have coagulation factor concentrations that
converge to values outside normal ranges.

2. Since there is merit to administering coagulation factors,
how should these be administered to personalize trauma
patient treatment? We provide a method and ordered
sequence of operations for tuning coagulation factor
concentrations, and develop the Goal-oriented Coagulation
Management (GCM) algorithm as a fast, frequent, auto-
mated, and personalized treatment solution, which we have
validated in silico. This algorithm systematically ensures
satisfactory trauma patient coagulation recovery toward a
goal by dynamically adjusting coagulation factors using
patient-specifics indicated by an embedded clotting
dynamics model. We identified a mechanistic progression
of coagulation factor concentration changes to move a
patient’s clotting state toward this goal. Our identified
procedure recommends coagulation factor concentrations
that are only within a predefined normal range.

To develop the GCM algorithm operations, we first needed a
model that accurately captured patient-specific clotting dynamics.

We improved upon a recent black-box model48 that was
developed using system identification techniques, and that could
predict the personalized thrombin dynamics of blood plasma
samples from their quickly-measurable coagulation factor con-
centrations. We updated this model by incorporating an
additional parameter to increase model flexibility without chan-
ging its structure, and we also added the effects of an eighth
coagulation factor, protein C, because of its known coagulation
importance in the literature. These two modifications substantially
improved the model’s thrombin dynamics predictions, which were
validated on data not used for model training.
We also verified in silico that administering coagulation factor

concentrations changed the clotting that was described by this
improved thrombin dynamics model. We noted saturating
behavior for excessive coagulation factor concentration adminis-
tration. This motivated our choice to keep coagulation factor
levels between generally-accepted normal limits when modulated
in a treatment scheme.
We validated GCM algorithm prediction performance in silico on

data not used for training, by contrasting against metrics from
actual trauma patients who recovered and also progressed toward
normal. We showed that our method not only guides clotting
predictions closer to normal, but does so while maintaining all
coagulation factor concentrations within normal ranges, which
was not the case in practice.
Our work offers a personalized control approach to trauma

patient treatment, by updating a model of underlying clotting
system dynamics, characterizing the effects and limitations of
coagulation factor actuators, and then articulating a control
algorithm to systematically achieve coagulation goals. We
envision combining these advances in an automatic physical
treatment device in future work, but our advances are also
individually important. Our updated patient-specific clotting
dynamics model can be leveraged in any personalized and
dynamic treatment algorithm at the point-of-care, which itself can
be repeated and iterated upon. The GCM algorithm is one such
algorithm that facilitates the future automation of frequent,
tailored clinical interventions in near real-time. An iterative
approach permits quicker model updates, greater personalization,
and a responsiveness to uncertainties, all of which will improve
patient outcomes. Thus, the work in this article represents a
considerable step toward frequent, personalized, and precision
trauma patient resuscitation.
The next step is a large-scale in vitro experimental implementa-

tion of the GCM algorithm at shorter time points. Algorithm-
recommended coagulation factor concentration increases in
blood samples will be achieved by accurately adding specific
recombinant coagulation factors, and algorithm-recommended
coagulation factor concentration decreases will be achieved by
accurately diluting samples or by augmenting inhibiting coagula-
tion factors. We anticipate that this experimental implementation
will necessitate a study in how to quantitatively optimize
treatment administration. The results of our work are potentially
relevant as a precision-medicine foundation for other coagulation
disorders as well, such as hemophilia, von Willebrand disease,

Fig. 6 Each coagulation factor has a unique effect on system dynamical behavior as described by the movement of pole locations, and is
often accompanied by nonlinear limitations, for instance, saturation. The dots in each panel show complex plane pole locations for the
transfer function (1) fitted to experimental CATs using the MATLAB Simulink Design Optimization (SDO) toolbox. The three poles of each fit are
shown with the same color. a Pole locations of the fitted transfer functions for 20 normal plasma samples, dataset 4, with inputs of 1 pM TF,
5 pM TF, and 20 pM TF; and 40 trauma patient plasma samples, dataset 5, each with an input 5 pM TF. Higher initial TF concentrations move
poles away from the origin, and higher initial TF concentrations in normal samples replicate the effects of trauma. b Increasing the
concentration of factor II in two normal plasma samples moves system poles toward the origin, while increasing the concentration of factors
VIII and X in normal plasma samples moves poles away from the origin. c Saturation in pole movement is evident for increasing
concentrations of factors VIII and X in normal plasma samples. For b, c numbers in the legend indicate coagulation factor concentration
reported as percent activity.
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Fig. 7 The proposed GCM algorithm enables frequent, dynamic, and personalized TIC treatment. This algorithm systematically
recommends coagulation factor concentrations to move a patient CAT trajectory toward normal, while also maintaining concentration values
within normal activity ranges. This algorithm serves as the controller block in Fig. 1a.
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factor V Leiden, pulmonary embolism, deep vein thrombosis,
stroke, and sickle cell disease.

METHODS
Key resource table
A comprehensive table of all the reagents and resources that we used to
conduct experiments, including for coagulation factor measurements and
Calibrated Automated Thrombograms, are presented in Table 1. We also
include the electronic resources that we used for simulations and analysis.

Coagulation factor concentration measurements
Coagulation factor concentrations were measured using the STA Compact
Max® as percent activity, which is with respect to the normal coagulation
factor concentration in a healthy person. A normal range for coagulation
factor concentrations is typically 60–140% activity64,65. Plasma samples
were removed from −80 °C storage and thawed at room temperature.
Reagents were prepared with DiH2O and left to stabilize for 30–60min, as
specified by the package insert. Owren-Koller diluent was used for patient
samples, STA-Unicalibrator reagent was used to calibrate the system by
measuring/defining ranges of new reagent lots (performed monthly), STA-

System Control N+P and STA-Coag Control N+ABN were control reagents
measured every 4 h and 8 h, respectively, and STA-Deficient reagent was
used to measure the activity of a coagulation factor, e.g., STA-Deficient V
was used for measuring factor V. The test automatically started after
loading sample and reagents into the instrument. Given that quality
control was repeated every 4 h, coagulation factor concentration
measurements were performed once for each sample.

Calibrated automated thrombogram
Plasma sample thrombin expression experimental data was obtained using
the ThermoFisher Fluoroskan Microplate Fluorometer with Calibrated
Automated Thrombogram software58, following the protocol in the
software manual, explained briefly as follows. Plasma samples were
removed from −80 °C storage and thawed at room temperature. Reagents
were added to 96-well plates: thrombin calibrator reagent was used for the
measurement control, and PPP-reagent was used to measure thrombin in
normal or trauma samples. Plasma samples were added to plate wells, with
three biological replicates, and the plate was loaded into a Fluoroskan
Ascent platereader. Following a ten-minute incubation period at 37 °C, the
test started automatically when the machine dispensed the FluCa reagent,
which was pre-loaded. The generated thrombin was measured and

Fig. 8 Flowchart of the proposed GCM algorithm that enables frequent, dynamic, and personalized TIC treatment. This algorithm
systematically recommends coagulation factor concentrations to move a patient CAT trajectory toward normal, while also maintaining
concentration values within normal activity ranges. This algorithm serves as the controller block in Fig. 1a.
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recorded every 20 s. These measurements included three technical
replicates.

Model parameter fitting to experimental data
Model parameters of (1) were fit to experimental data using the MATLAB
Simulink Design Optimization (SDO) toolbox. The input was defined as an
impulse input with the desired magnitude, e.g., 5 pM of TF. The output to
fit was the individual CAT profile experimental data. Solver tolerance was
set to 1e−9. Starting from an initial parameter guess, the MATLAB SDO
toolbox optimized parameter values of a transfer function model by
minimizing the least square error between prediction and actual data
using a trust region reflective algorithm. Following convergence, the
finalized transfer function model parameters for each experimental sample
were recorded and the poles computed.
Poles of a transfer function are the values for which the value of the

denominator of the transfer function becomes zero. Therefore, to obtain
the pole location values, we set the denominator of the fitted model equal
to zero and solve the resultant equation, i.e., solve s3+ K2s

2+ K1s+ K0= 0.

Since this is a third-order system, the solution is a set of three numbers
with real and imaginary parts, which can be plotted in the complex plane
as in Fig. 10.

Statistical analysis and significance test
For statistical analysis, we first performed Welch’s t-test for two unpaired
samples (deceased, x, versus any one of the alive groups described in the
main text, y) using (2).

t ¼ μx � μy
ffiffiffiffiffiffiffiffiffiffiffiffi

S2x
n � S2y

m

q ; (2)

where μx and μy are the deceased and alive sample means,
respectively; Sx and Sy are the sample standard deviations; and n
and m are the sample sizes of x and y, respectively. Next, we
calculated p-values for α= 0.05, i.e., 95% confidence interval,
using MATLAB’s ttest2 function. We report the results by ns: not
significant, p > 0.05; *p ≤ 0.05; **p ≤ 0.01; and ***p ≤ 0.001.

Fig. 9 Our proposed GCM algorithm recommendations drive thrombin generation toward a normal region over time for eight trauma
patient samples, validating the correctness and performance of the algorithm. a Estimated CAT trajectory from coagulation factor
measurements for eight trauma patients over 24 h. The black line shows the GCM algorithm-recommended patient-specific CAT trajectory at
24 h if following the personalized coagulation factor recommendations for each patient. All recommended trajectories are visible inside
normal ranges. Following the GCM algorithm recommendations shows desirable improvements over actual treatment received by eight
trauma patients, in both CAT properties that are quantitatively compared to the normal region criteria (Supplementary Fig. 12a and b), and
coagulation factor concentrations (Supplementary Fig. 12c and d). b Illustrative estimated CAT trajectory [nM] from coagulation factor
measurements for Trauma Patient 3 at different instances over the first 24 h following hospital admission. The black line shows the GCM
algorithm-recommended patient-specific CAT trajectory compared to the red line representing the actual CAT. This shows how the GCM
algorithm dynamically adjusts the recommendations based on the most recent coagulation factor concentration measurements to move the
CAT toward the normal region. In all instances, the recommended CAT is inside the normal region, leading the patient’s thrombin generation
toward normal.
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DATA AVAILABILITY
This study was based on normal and trauma patient data arranged into nine datasets
as shown in Supplementary Fig. 1. Normal data were obtained from a set of plasma
samples from healthy individuals, with their CAT and coagulation factor concentra-
tion measurements characterized according to standard laboratory protocols as
explained in the Methods section. Trauma patient data came from the Activation of
Coagulation and Inflammation in Trauma study (ACIT), a previously described63

single-center prospective cohort study that followed severely-injured trauma patients
from emergency department admission through discharge from hospitalization or
death. Between February 2005 and May 2016, 1671 trauma patients (1367 male
(81.45%), age 41.0 ± 18.6, ISS 17.7 ± 15.6) meeting criteria for highest triage activation
level were enrolled into the study. Subsets of this dataset are used for various parts of
this study, as indicated in the main text and in Supplementary Fig. 1. Patient
demographics are in Supplementary Fig. 5. Exclusion criteria included patient age
less than 15 years, pregnancy, incarceration, and transfer from outside hospital.
Written consent was obtained from enrolled patients or their families or, rarely, in
certain circumstances where these could not be obtained, a waiver of consent was
utilized. The study was carried out with the approval of the University of California
Institutional Review Board (reference number 10-04417). Data were collected at
admission, 6, 12, and 24 h after injury. Upon request, the authors will share aggregate
data that do not allow the identification of individuals, subject to a data sharing
agreement.

CODE AVAILABILITY
The MATLAB controller GCM algorithm and underlying parameterized model is
available at: https://github.com/SYBORGS-Lab/GCM-Algorithm. The algorithm code is
available for personal use. However, this code is subject to the following commercial
copyright: ©Copyright 2021 University of Florida Research Foundation, Inc. All
commercial rights reserved.
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