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Quantifying the optimal strategy of population control of
quorum sensing network in Escherichia coli
Xiang Li1,2, Jun Jin1,3, Xiaocui Zhang1, Fei Xu1, Jinjin Zhong1, Zhiyong Yin1, Hong Qi4, Zhaoshou Wang 5,6✉ and Jianwei Shuai 1,2,3✉

Biological functions of bacteria can be regulated by monitoring their own population density induced by the quorum sensing
system. However, quantitative insight into the system’s dynamics and regulatory mechanism remain challenging. Here, we
construct a comprehensive mathematical model of the synthetic quorum sensing circuit that controls population density in
Escherichia coli. Simulations agree well with experimental results obtained under different ribosome-binding site (RBS) efficiencies.
We present a quantitative description of the component dynamics and show how the components respond to isopropyl-β-D-1-
thiogalactopyranoside (IPTG) induction. The optimal IPTG-induction range for efficiently controlling population density is
quantified. The controllable area of population density by acyl-homoserine lactone (AHL) permeability is quantified as well,
indicating that high AHL permeability should be treated with a high dose of IPTG, while low AHL permeability should be induced
with low dose for efficiently controlling. Unexpectedly, an oscillatory behavior of the growth curve is observed with proper RBS-
binding strengths and the oscillation is greatly restricted by the bacterial death induced by toxic metabolic by-products. Moreover,
we identify that the mechanism underlying the emergence of oscillation is determined by the negative feedback loop structure
within the signaling. Bifurcation analysis and landscape theory are further employed to study the stochastic dynamic and global
stability of the system, revealing two faces of toxic metabolic by-products in controlling oscillatory behavior. Overall, our study
presents a quantitative basis for understanding and new insights into the control mechanism of quorum sensing system, providing
possible clues to guide the development of more rational control strategy.
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INTRODUCTION
Quorum sensing refers to the phenomenon that bacteria can
sense their population density and regulate gene expression using
chemical signaling molecules, thereby promoting cell-to-cell
communication to synchronize the behaviors of bacteria, such
as bioluminescence, biofilm formation and maturation, virulence-
factor expression, motility, and so on1–3. The signaling molecules
that were secreted by bacteria can regulate their own biological
behavior, and are called autoinducers. Autoinducers will regulate
the expression of target genes once their concentration reaches a
certain threshold. Bacterial quorum sensing system can be
generally divided into two main types: Gram-negative and
Gram-positive of the types of bacteria4,5. Acyl-homoserine
lactones (AHLs) and peptides are included in the major types of
quorum sensing signals. Gram-negative bacteria use fatty acid
derivatives as signaling molecules, which mostly belong to the
class of AHLs in the quorum sensing system6. Acyl-homoserine
lactone (AHL) is the autoinducer that activates the transcription
factor to regulate luminescence in Vibrio fischeri7. Unlike Gram-
negative bacteria, a small peptide (AIP) secreted through ATP-
binding cassette transporters acts as the signaling molecules in
Gram-positive bacteria8. The sensor kinases in the two-component
system can sense AIP and then trigger a series of phosphorylation
events, leading to relative gene expression. Autoinducer-2 (AI-2), a
kind of signaling molecule that can participate in the quorum
sensing system of both Gram-negative and Gram-positive
bacteria, is believed to be a general emissary for facilitating

interspecies communication9. To better understand the quorum
sensing system control mechanisms, an increasing number of
studies have artificially synthesized the quorum sensing system in
marine bacteria and further imported it into E. coli bacteria10,11.
Mathematical modeling is a powerful approach to study the

regulatory mechanisms of biological systems12,13. To explore the
dynamic behaviors of bacterial quorum sensing, a great number of
theoretical models have been established14–16. You et al. imported
two fragments of luxI/luxR genes in E. coli and built a quorum
sensing system model to explore the relation between AHL and
lethal protein17. Li et al. artificially synthesized a bacterial quorum
sensing system of AI-2 signaling and constructed a stochastic
model to study the hierarchical organization of luxS-derived AI-2
circuitry in E. coli, suggesting that the stochastic dynamics can be
linked to cell physiology10. Chen et al. developed a model of
synthetic gene network by using the luxI–luxR quorum sensing
system to analyze the multicellular system dynamics in Vibrio
fischeri18 confirming that noises are essential for inducing the
system cooperative behaviors. Torres-Cerna et al. recently
proposed a model to capture the AI-2 dynamics on E.coli quorum
sensing, highlighting the dependency of the extracellular AI-2
activity and the lsr operon expression on the cell growth19.
Although these models have successfully dissected many

aspects of dynamic behaviors of the quorum sensing system,
development of quantitative mathematical models for precisely
studying the control mechanisms of the system is still a major
challenge20. To subtly control bacterial cell density, Wang et al.
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built a synthetic cell–cell communication system that combined
the cell death BioBricks and quorum sensing mechanism in Vibrio
fischeri21. Even though a simple abstract model has been
employed previously21, systematical analysis of the component
dynamics cannot be performed as well as unraveled new
mechanism insights into the system. Based on the experimental
data by Wang et al., we develop a mathematical signaling network
model that is incorporating the modules of gene transcription,
AHL synthesis processes, extracellular AHLo, tetramer LuxR2:AHL2
formation, and CcdB-induced bacterial population decline. We
explore the dynamic responses of the components and attempt to
quantify the optimal isopropyl-β-D-1-thiogalactopyranoside (IPTG)
induction dose for efficient population control. Moreover, whether
and how the population density can be regulated by AHL
permeability is studied. An oscillatory behavior of the growth
curve is predicted within a proper ribosome-binding site (RBS)
binding-strength range. To capture the underlying oscillatory
mechanism, we further determine that the toxic metabolic
coefficient largely limited the oscillation and quantify the
corresponding controllable ranges. The underlying mechanism
of the emergence of oscillation is identified to be determined by
the negative feedback loop structure in the quorum sensing
system. Ultimately, both the bifurcation analysis and landscape
theory are utilized to quantify the roles of the key reactions and
toxic factors in controlling bacterial density. Taken together, our
study provides a quantitative description of the quorum sensing
system control mechanism and unveils several new insights into
the system.

RESULTS
IPTG-induced dynamic response of the components
determines bacteria-growth curve
The synthetic quorum sensing signaling in E. coli is shown in Fig. 1.
Once the inducer isopropyl β-D-l-thiogalactopyranoside (IPTG) is
added to a culture, it will act on the promoter PlacO-1 to trigger the
expression of luxI and luxR genes, thereby generating proteins
LuxI and LuxR. LuxI protein induces the synthesis of signaling
molecule AHL22. As the left circle presented, LuxI protein uses SAM
and acyl-ACP as substrates to synthesize AHL23. The homoserine
lactone part of AHL is derived from S-adenosyl methionine (SAM)

and the N-acyl side chain of AHL is provided by acyl-ACP or acyl-
CoA. SAM is converted into methyl-thio-adenosine (MTA) and AHL
by LuxI. LuxR binds to AHL to form the LuxR:AHL complex. Then
two LuxR:AHL complexes combine together to form the active
tetramer complex, LuxR2:AHL224,25, which will subsequently bind
to the promoter luxpR and induce the expression of the lethal
gene to produce the protein CcdB26,27. In the quorum sensing
systems, CcdB is completely artificial, which can inactivate DNA
gyrase and kill the host bacteria, thereby regulating bacterial
population density28,29.
The proposed model is developed based on the layout

displayed in Fig. 1, containing the modules of IPTG-induced gene
transcription of LuxI and LuxR, LuxI-dependent AHL synthesis,
LuxR2:AHL2 induced the production of CcdB, and the dynamics of
bacterial population N. We determine the model parameters by
fitting the experimental bacteria-growth curves of wild-type E. coli
and the engineered bacteria with RBS0.07 E. coli. IPTG is added at
the beginning, which is consistent with the experiment21. As
shown in Fig. 2a, the model can well fit the corresponding growth
curves, including the log phase, stationary phase, and decline
phase of the bacterial population density30,31. During the log
phase, the culture medium is rich in nutrients and there is barely
accumulation of metabolic by-products. The bacteria grow rapidly
and the population density shows a logarithmic increase. Log
phase cannot continue indefinitely due to the consumption of
nutrients. When the bacterial population density is beyond a
certain range, the nutrients are no longer sufficient, and the
accumulation of metabolic by-products has reached a certain
level, which will kill the bacteria. Stationary phase results from a
situation in which the populations of new bacteria and dead
bacteria present a dynamic equilibrium and thus the density is in a
stable period. This could be caused by the lack of nutrients,
environmental temperature above or below the tolerance band
for the species, or other injurious conditions. During the later
period, nutrients become lacking and toxic metabolic by-products
are accumulated massively. The population of dead bacteria far
exceeds new bacteria, leading to the density of bacteria decreases
rapidly and enters the decline phase. However, the engineered
strain-density data of the decline phase are not well fitted (black
line in Fig. 2a). This is because of the simplified consideration of
the effect of toxic metabolic by-products on cell death. Yet the

Fig. 1 Schematic representation of the synthetic quorum sensing signaling that controls bacterial population density. The subscript “x” in
RBSx represents different RBSs, such as RBS0.07, RBS0.3, and RBS1.0.
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stationary phase of the density, which was fitted nicely and
predicted by our model (Fig. 2a, b), is the main focus in our study.
Wang et al. also investigated different efficiency of RBSx to

regulate the expression of lethal protein genes in their study21,
indicating that RBS0.3, RBS0.6, and RBS1.0 can subtly control
bacterial population density at different levels. To test the validity
of our model, we therefore employ the model to simulate the
dynamic behavior of bacterial growth curves with the different
RBS efficiencies. Consistent with the experimental data, our model
well reproduces the result that increasing RBS efficiency decreases
the population density in the stationary phase (Fig. 2b).
To quantitatively reflect the dynamical behaviors of the

synthetic quorum sensing network, we present an overview of
the kinetics of key components in response to IPTG induction (Fig.
2c). The probabilities of the promoters of luxI gene and luxR gene
responding to the inducer have the same change process (Fig. 2c,
gray background). They both reach stability at about 4 h and then
switch to the stationary phase. However, the time for the ccdB
gene promoter responding to the inducer to reach stability is 1 h
later (~5 h) than luxI gene and luxR gene. This is because the
activation of ccdB gene promoter is triggered by the tetramer
complex LuxR2:AHL2 that is mediated by LuxI. Activation of ccdB
gene promoter appears to significantly decrease after 30 h, which
is induced by the decrease of its inducer LuxR2:AHL2 complex
during the decline phase (Fig. 2c, green background).
Dynamic changes of LuxI and LuxR proteins indicated that LuxI

protein level is stabilized at about 5 h, while LuxR keeps rising for a
long time (Fig. 2c, red background). The CcdB protein level that
was determined by the dynamics of ccdB gene promoter is
stabilized at about 12 h and decreases at about 30 h. The complex
LuxI:SAM, LuxI:a_SAM, and the by-product complex LuxI:MTA that
involves AHL production are both logarithmic increase, and then

decrease and stabilize at a certain level (Fig. 2c, blue background).
Simulation results suggest that the behaviors of intracellular and
extracellular signaling molecule AHLs are basically the same (Fig.
3c, green background). Both of them rapidly increase and then
gradually decrease. The intracellular AHL level is invariably a little
higher than the extracellular AHL. The tetramer complex LuxR2:
AHL2 exhibits the similar dynamic behavior as that of AHL, but
with a nearly 3-fold higher level. Thus, our model-based analysis
presents a quantitative description of the component dynamics of
the system after IPTG induction, which can hardly be observed in
experiment.

Optimal induction range of IPTG for controlling bacterial
population density
Studies have suggested that IPTG can exacerbate the substrate
toxicity and cause damage to E.coli32,33. When using IPTG to
induce the expression of foreign proteins, its level should be as
low as possible to achieve the best induction effect34. Therefore,
finding the optimal induced level of IPTG to control bacterial
density is necessary. To further explore the physiological impact of
IPTG inducer on the synthetic quorum sensing system, we first
present the changes of the key components (the responding
probability PB1, CcdB, and population density N) in response to
three typical doses of IPTG induction (10, 100, and 1000 μM). As
the simulation results show in Fig. 3a, the three components
present a dose-dependent kinetics. For a low dose of IPTG (10 μM),
the probability of the ccdB gene promoter responding to LuxR2:
AHL2 complex (PB1) and CcdB level keeps low and the synthetic
system barely shows any response. Thus, the growth curve can
hardly be regulated (blue lines). While a high dose of 100 μM
triggers the transcription of ccdB gene promoter and CcdB
production, thereby decreasing the population density during

Fig. 2 Dynamic responses of the key components in the model upon IPTG induction. a Comparison of population density for experimental
data and simulation results in control and engineered (RBS0.07) E. coli. b Test of model prediction of the effect of increasing RBS efficiency on
population density. Symbols and lines are experimental data and simulation results, respectively. The experimental data are from a previous
publication21. c Time courses of the model’s four major modules, including the promoters responding (gray background), corresponding
protein expression (red background), components relative to AHL synthesis (blue background), and components containing AHL (green
background). The error bars represent the standard deviation of at least three replicates.
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the stationary phase (red lines). With an increase of IPTG dose, the
maximal responding probability (PB1) and CcdB levels show a
continuous increase, leading to the further decrease of population
density (black lines).
To comprehensively quantify the regulatory processes, dyna-

mical behaviors of the key components are studied under a series
of IPTG induction levels during the stationary phase at t= 25 h.
Simulation results suggest that components in modules exhibit
different threshold responses to IPTG level (Fig. 3b). In the module
of gene transcription, the three responding probabilities (PI1, PR1,
and PB1) are low at low IPTG level and the three gene promoters
are activated and start to produce proteins when IPTG level is
greater than 10 μM. Different from the sustained-increase
tendency of the promoters responding probabilities PI1 and PR1,
PB1 almost reaches saturation at 200 μM, suggesting that the

complex LuxR2:AHL2 level is sufficient to maximize the activation
of ccdB gene promoter. However, behaviors of the gene-encoded
proteins are completely different. LuxI level keeps at a quite low
level and rapidly increases when the level of IPTG is greater than
400 μM. While the patterns of LuxR and CcdB proteins are basically
consistent with the corresponding gene-responding probabilities.
As an effector protein in the system, CcdB presents a switch-like
response to IPTG (Fig. 3b), which is required for the optimal
control strategy. The switch-like response might be indirectly
supported by the experimental observations in three different
synthetic E. coli systems35–37. In the module of AHL synthesis,
intracellular and extracellular signaling molecule AHLs show the
same dynamical responses, which gradually increases with IPTG at
the threshold level of 2 μM IPTG. But the formation of the tetramer
complex LuxR2:AHL2 initializes at a higher threshold level of about

Fig. 3 Analysis of the various degrees of IPTG induction on the quorum sensing components activities. a Time courses of ccdB gene
promoter responding probability (PB1), CcdB protein, and population density upon three typical IPTG-dose inductions. b Dynamic responses
of the key components upon a series of doses of IPTG induction during the stationary phase. c Change of bacteria-growth curve with different
doses of IPTG induction. d Dynamic responses of population density upon a series of doses of IPTG induction during the stationary phase.
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20 μM IPTG. Compared with AHL and AHLo, complex AHL2:LuxR2
shows a steeper change curve with IPTG.
Importantly, the role of IPTG level in controlling bacterial

population density is quantified. As the simulation result is shown
in Fig. 3c, increase of IPTG induction level does not affect the log
phase of bacteria-growth curve, but decreases the population
density during the stationary phase when IPTG is above about
10 μM. Besides, the duration of the stationary phase is increased as
the increase of IPTG. The shape of the growth curve is barely
regulated when IPTG level is lower than 10 μM, indicating a
threshold level of IPTG in controlling population density. There-
fore, there exists a response-induction range of IPTG for the
synthetic quorum sensing circuit. We further plot the variation of
bacterial population with IPTG during the stationary phase at t=
25 h. It can be clearly seen from Fig. 3d that the sensitivity range of
population density to IPTG is between 10 and 500 μM. Lower-
(<10 μM) or higher-level (>500 μM) IPTG induction variations can
barely regulate population density. Thus, for efficient control, the
optimal induced concentration of IPTG should be restricted in the
sensitivity range.

AHL-permeability-regulated population density is IPTG
dependent
As the signaling molecule in the synthetic quorum sensing system,
AHL can permeate outside the bacterial cells. A number of models
have been developed to evaluate the complex role of AHL in

various quorum sensing systems17,26,38. However, a quantitative
analysis of whether and how the permeability of AHL can regulate
population density is still lacking. To evaluate their performance,
AHLs inside and outside the cells are considered and the
permeability is represented by k15 in our model.
The effects of AHL permeability on the bacteria-growth curve

are studied for the system upon 1000 μM IPTG induction (Fig. 4a).
The parameter of AHL permeability (k15) is considered to vary in a
wide reasonable range (0.1 min−1 < k15 < 100 min−1) based on the
previous literature39, which extends three orders around its
standard value in the model. As the simulation result suggested,
at low permeability of AHL (~0.1 min−1 < k15 < ~1min−1), varia-
tions of permeability hardly influence the growth curve. While at
the high permeability of AHL (~1min−1 < k15 < ~100min−1), the
increase of permeability raises the maximal amount of cells during
the log phase, but barely affects the stationary phase and decline
phase of the growth curve. Thus, AHL permeability cannot control
population density during the stationary phase at strong IPTG
induction.
We next seek to dissect whether AHL permeability can regulate

population density upon other induction levels of IPTG. Five
typical IPTG induction levels (1, 10, 50, 100, and 1000 μM) are
considered to predict the effects of AHL permeability on the key
component dynamics during the stationary phase (Fig. 4b).
Intracellular AHL shows a gradually increasing response to IPTG
increase at a certain AHL permeability (Fig. 4bI). When IPTG

Fig. 4 Role of AHL permeability in controlling bacteria population density. a Change of bacteria-growth curve under different permeability
of AHL (k15) with 1000 μM IPTG induction. b Dynamic responses of the key components under different permeability of AHL with various IPTG
induction doses during the stationary phase. c Change of population density under different permeability of AHL with a series of IPTG
induction doses during the stationary phase.

X. Li et al.

5

Published in partnership with the Systems Biology Institute npj Systems Biology and Applications (2021)    35 



induction level is very low (1 μM), the production of AHL is also
very low. No matter how high permeability of AHL is, AHL level
inside the bacteria is close to zero (black point and line). With
high-level IPTG induction, LuxI is generated in a large quantity,
and AHL is accumulated inside the bacteria. As AHL permeability
increases, a large amount of AHL will flow out of the bacteria, and
AHL inside the bacteria will be significantly reduced. When AHL
permeability is large enough (k15 > 20min−1), bacterial membrane
is mostly at a fully permeable state. AHL concentrations inside and
outside the bacteria are nearly the same. Since the external
volume of bacteria is much larger than the internal volume, AHL
concentrations both inside and outside are stabilized at a
relatively low level.
The response curves of LuxR and complex LuxR2:AHL2 to AHL

permeability variation during the stationary phase are also
quantified (Fig. 4bII, III). LuxR and complex LuxR2:AHL2 levels are
close to zero with low IPTG induction (1 μM). Increasing IPTG
induction level elevates both the amounts of LuxR and LuxR2:
AHL2. As the results suggested, AHL permeability affects the
concentration distributions of free LuxR and the LuxR in complex
LuxR2:AHL2. A low AHL permeability (~0.1 min−1 < k15 < ~1min−1)
that induces a high level of AHL in bacteria results in a low
concentration of LuxR and a high concentration of LuxR2:AHL2 in
bacteria. While a low level of AHL in bacteria aroused by high AHL
permeability (~1min−1 < k15 < ~100min−1) leads to a high con-
centration of LuxR and a low concentration of LuxR2:AHL2.
The responding probability of ccdB gene promoter to the

inducer LuxR2:AHL2 is barely affected with the change of AHL
permeability upon too low or too high level of IPTG induction (Fig.
4bIV). With low level of IPTG induction (~1 μM), the level of the
inducer complex LuxR2:AHL2 is low and thus the responding
probability of ccdB gene promoter is small. When IPTG level is high
(~1000 μM), the level of the complex LuxR2:AHL2 is high enough
to maximize its responding to the ccdB gene promoter. The
responding probability tends to 1 with different AHL permeability.
When IPTG induction level is at an appropriate value (~10 μM), the
responding probability of the ccdB gene promoter to LuxR2:AHL2
becomes small as the permeability increases. This is because the
concentration of LuxR2:AHL2 becomes low. Besides, the results
also indicate that a quite low level of LuxR2:AHL2 is sufficient to
induce an ~50% responding probability increase of the ccdB gene
promoter.
The change of CcdB protein with AHL permeability is the same

as that of the ccdB promoter responding probability (Fig. 4bV).
Since the lethal CcdB protein will kill the host bacteria, the
dynamic responses of bacterial population density to AHL
permeability are opposite to that of CcdB protein. As the result
shows (Fig. 4bVI), an increase of AHL permeability raises the
bacterial population density. Besides, the results also reveal that
the ranges of AHL permeability for efficiently controlling popula-
tion density are discrepant. For 10 μM IPTG induction, the
controllable range of AHL permeability is corresponding to
~0.2 min−1 < k15 < ~2min−1. While for 50 μM IPTG induction, the
controllable range is ~1min−1 < k15 < ~20min−1. Thus, the con-
trollable range of AHL is dependent on the IPTG induction level.
Taken together, we systematically quantify the controllable area of
population density by AHL permeability upon different IPTG
induction levels. As the controllable area is indicated in Fig. 4c,
variation of AHL permeability that can regulate population density
should be upon the IPTG-induction range from ~2 to ~100 μM.
Upon low-dose IPTG induction, AHL permeability within a low
range can control population density. But for high-dose IPTG
induction, AHL permeability should be high for efficient
controlling.

Oscillatory behavior of bacterial growth curve determined by
RBS efficiency and toxic factors
To identify the biochemical reaction processes that have great
effect on the population during the stationary phase, parameter-
sensitivity analysis is performed upon different levels of IPTG
induction. Single-parameter sensitivity is conducted by varying
the key process parameter ±20% from its default value and the
corresponding percentage change of the population density (CFU/
mL) is calculated accordingly. As shown in Fig. 5a, upon weak IPTG
induction (0.1, 1, and 10 μM), population density barely responds
to parameters variations, since the synthetic quorum sensing
circuit is not triggered (Fig. 3a, blue lines). With the increase of
IPTG induction in the range of 50–1000 μM, population density is
gradually influenced by the variations of three parameters kr, k13,
and k16, denoting the RBS-binding strength corresponding to ccdB
gene, the self-synthesis rate of CcdB by the ccdB gene, and the
reproducing rate of the bacteria, respectively. But the rest of the
parameters show little effects on the population density. The
sensitivity analysis further suggests that most of the biochemical
reactions are robust in the system.
RBS is the starting site of the sequence in which mRNA is

translated into protein. The efficiency of RBS may vary, depending
on the binding strength (kr) of different sequences to the
ribosome, which affects the protein yield. Changing the RBS-
binding strength is the most feasible method for the synthetic
circuit to control population density among the three parameters.
Therefore, we quantitatively analyze how the RBS-binding
strength of ccdB gene (kr) controls population density upon
different IPTG induction levels. As indicated in Fig. 5b, the increase
of RBS-binding strength hardly regulates population density upon
low-dose IPTG induction (~0.1 to ~20 μM). However, population
density can be regulated by RBS-binding strength at a wide range
(i.e., 0.1 < kr < 10), but within a narrow IPTG-induction range (i.e.,
~20 to ~90 μM). Moreover, for efficient control, the binding
strength should be restricted in a weak-strength range (i.e., 0.1 <
kr < ~0.3) with high-dose IPTG induction from ~100 to ~1000 μM.
We further systemically study the change of bacteria-growth

curve under different RBS-binding strengths upon 1000 μM IPTG
induction (Fig. 5c). Unexpectedly, we find that the bacterial
growth curve begins to exhibit a double-peak pattern when the
RBS efficiency is at the strength about 0.3. As the RBS efficiency
increases, the double-peak phenomenon on the growth curve
becomes more obvious. The growth curves that correspond to
three typical binding strengths (i.e., kr= 0.4, 0.5, and 0.6) are
shown in the right panel of Fig. 5c. However, the second peak
disappears again with the strength around 0.6.
Based on the above results, we suggest that the emergence of

the only double-peak growth curve is due to the bacterial death
induced by toxic metabolic by-products. We therefore hypothe-
size that an oscillation behavior of the bacterial growth curve
might be occurring under certain conditions. Dynamic behavior
changes of the growth curve with different toxic metabolic
coefficients (i.e., a) are evaluated with the RBS-binding strength at
0.6. As the result suggests in Fig. 5d, oscillatory behavior of the
bacterial growth curve is observed when the coefficient is smaller
than ~0.02 min−1. With the decrease in the toxic metabolic
coefficients, the oscillation behavior becomes stronger, giving
increased oscillation amplitude and frequency. The four typical
growth curves shown in the right panel of Fig. 5d indicate the
behavior of double-peak changes to oscillation when the
coefficient changes from 0.04min−1 (black line) to 0.01 min−1

(red line). The oscillation amplitude and frequency significantly
increase with decreasing the coefficient to 0.001min−1 (blue line).
Further decreasing the coefficient (a= 0.0001min−1) barely
influences the oscillation behavior (green line). Hence, the above
analysis suggested that the toxic metabolic by-products can
largely limit the oscillation behavior of bacteria-growth curve.
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Oscillation mechanism induced by the negative feedback loop
—from the bifurcation viewpoint
Oscillation state of quorum sensing is more important than the
steady state in the process of bacterial delivery of drugs15,40. We
next seek to systemically determine the mechanism underlying of
the emergence of oscillation. As shown in Fig. 1, the quorum
sensing signaling can be roughly divided into two parts: the left
part of the loop circuit-induced AHL synthesis, and the right part
of the AHL-triggered cell death. Actually, a negative feedback loop
structure is included in the right part. As the simplified structure is

shown in Fig. 6a, IPTG induces the expression of AHL and LuxR,
which subsequently bind together to induce the expression of
CcdB. CcdB inactivates DNA and triggers cell death. The
concentration of AHL outside the bacteria is certainly increased
with the increase of population density, positively regulating the
AHL concentration inside the bacteria. Hence, a negative feedback
loop structure between AHL and CcdB appeared. AHL promotes
the expression of CcdB, while CcdB negatively regulates AHL
through triggering cell death. In fact, the negative feedback loop
is a well-identified mechanism to produce oscillatory dynamics41.

Fig. 5 RBS-binding efficiency and toxic metabolic by-products in controlling bacteria population density. a Sensitivity analysis of the
parameters in mediating population density. Parameters are varied ±20% from their defined values reported in Supplementary Table 1. The
corresponding percentage change of the population density is calculated. b Change of population density under different RBS-binding
strengths (kr) with a series of IPTG induction doses during the stationary phase. c Change of bacteria-growth curve under different RBS-
binding strengths (kr) with 1000 μM IPTG induction. The growth curves corresponding to the three typical RBS-binding strengths (0.4, 0.5, and
0.6) are shown in the right panel. d Change of bacteria-growth curve under different toxic metabolic coefficients (a) at the RBS-binding
strength of 0.6 with 1000 μM IPTG induction. The growth curves corresponding to the three typical coefficients (0.01, 0.001, and 0.0001) are
shown in the right panel.

X. Li et al.

7

Published in partnership with the Systems Biology Institute npj Systems Biology and Applications (2021)    35 



We further examine whether the oscillation is indeed induced
by the negative feedback loop. Kinetics of the key components in
the two parts of the quorum sensing signaling are presented in
Fig. 6b. For the bacterial density that exhibits oscillation,
oscillatory behavior occurs in the right part of the AHL-triggered
cell death in Fig. 1 (Fig. 6b, right panel). While the left part of the
loop circuit-induced AHL synthesis reaches stability (Fig. 6b, left
panel). Hence, only the part that includes the negative feedback
loop exhibits oscillatory behavior in the quorum sensing signaling.
Bifurcation analysis is employed to explore the emergence of

the periodic oscillation. Since the toxic factors largely limit the

oscillation behavior (Fig. 5d), the toxic metabolic coefficient
(parameter a) is fixed at 0. Bifurcation diagram of cell density with
kr, which is a key factor involved in the negative feedback
structure, is shown in Fig. 6ci. The solid black lines represent the
stable equilibrium points of the system. The colored lines
represent the maximum and minimum amplitudes of the
oscillations and the colors of the dots indicate the periods. Figure
6ci shows that when kr is small, the steady state of the bacterial
density is decreased with the increase of kr, but when kr is beyond
a value about 0.4, the bacterial density presents oscillatory
behaviors. The oscillation amplitude is first increased and then

Fig. 6 Mechanism analysis of oscillation in the quorum sensing system. a Schematic diagram of the negative feedback loop structure in the
quorum sensing system. b Time courses of the key components in the two major parts shown in Fig. 1. c Bifurcation diagrams of the six
represented parameters in modulating bacterial density. d–e Two-parameter bifurcation diagrams of the amplitude and period as a function
of k13 and k18. Oscillation occurs within the color region and no oscillation occurs in the white region.
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decreased with the increase of kr, while the period keeps
increasing. Besides, bifurcation analysis of other five typical
parameters is studied as well (Fig. 6cii–cvi). The results of the
other three parameters within the negative feedback structure,
i.e., AHL-induced expression of CcdB (k13), CcdB negatively
regulated bacterial density (k18), and AHL flowing out of bacteria
(k15), are shown in Fig. 6cii–civ. Both the parameters of k13 and k18
can induce the occurrence of oscillation and exhibit dynamical
behavior similar to kr (Fig. 6cii, ciii). The oscillation ranges for k13
and k18, respectively, corresponding to the strengths of about
50–140 μM−1 min−1 and 6 × 10−5−1.2 × 10−4 μM−1min−1. While
the steady state of density is increased with the increase of k15
(Fig. 6civ), indicating that high AHL permeability results in high
steady states of bacterial density. The results of the two
parameters (k16 and k17) that directly mediate bacterial density
but are not included in the negative feedback structure suggest
that oscillation cannot be triggered by these two corresponding
reactions (Fig. 6cv, cvi).
A more holistic view on the dynamic behavior of the system can

be characterized by the phase diagram when two reaction
strengths are varied simultaneously. The two-parameter bifurca-
tion diagram based on k13 and k18 suggests that oscillation can be
obtained in a broad parameter range (Fig. 6d). When k13 is small,
oscillations occur with a strong strength of k18. While when k18 is
small, k13 needs to be large for inducing oscillations. For a given
strength of k13, increase of k18 seems to reduce the amplitude (Fig.
6d), and enlarges the period (Fig. 6e). Therefore, the above results
unravel the mechanism underlying the emergence of periodic
oscillation and provide a quantitative overview of how the
corresponding reaction strengths shift the dynamical behaviors
of the quorum sensing system.

Two faces of the toxic metabolic factors in controlling
oscillatory behavior—from the global stability viewpoint
To systematically study the stochastic properties of the quorum
sensing system oscillation, we further employ the recently
developed potential landscape theory42–44 that describes the
global dynamic behavior of the system in phase space. The
dimensionless potential (U) and steady-state probability distribu-
tion (P) of the system is given by the Boltzmann relation, that is, U
=−ln(P). For the control E.coli system, the corresponding
potential landscape that mapped onto the CcdB–LuxR2:AHL2
phase space is shown in Fig. 7a. As a result, the system exhibits a
monostable landscape (a stable steady state corresponding to low
cell density), implying that the system evolves into a unique state
from any initial values. The yellow region represents higher
potential or lower probability, and the blue region represents
lower potential or higher probability.
To investigate the influence of the oscillation-induction reac-

tions on the potential landscape, we show the change of
landscape when the reaction strength is varied. When respectively
fixing the RBS-binding strength (kr) and the toxic metabolic
coefficient (a) at 0.6 and 0.01, the system presents a monostable
basin with a much larger area (Fig. 7b, upper panel). Different from
the landscape shown in Fig. 7a, the trajectory of the initial values
evolves into the unique state like a vortex in the landscape shown
in Fig. 7b. The phase diagram indicates that the system presents a
damped oscillation behavior (Fig. 7b, lower panel). Taking a typical
evolution trajectory as an example, the system eventually evolves
into the vortex-like pattern from any initial states.
The toxic metabolic coefficient, a, is identified to block the

emergence of the periodic oscillation (Fig. 5d). We next set a= 0
to evaluate the change of the landscape topography. The system
goes through a transition from the monostable basin to the
Mexican hat landscape (Fig. 7c, upper panel), indicating that the
system switches to a robust oscillation stage. The characteristics of
the oscillation behavior can be displayed globally by quantifying

the landscape topography. The size of the potential well
quantitatively characterizes the amplitude, while the depth and
breadth of the potential well reflect the stability and attraction
domain of the limit-cycle attractor. As the evolution trajectory is
shown in the phase diagram, the system eventually evolves into a
stable limit cycle from any initial states (Fig. 7c, lower panel).
Besides kr, we further evaluate the parameter of k18, which is also
important for inducing oscillations within the negative feedback
structure (Fig. 6cii). Similar to kr, variation of k18 can also switch the
system to the vortex-like landscape (Fig. 7d), and further increase
of k18 will induce the emergence of Mexican hat landscape with
robust oscillation.
In the previous section, we find that the toxic metabolic

coefficient (a) suppresses the oscillatory behavior of bacteria-
growth curve (Fig. 5d). The conclusion can also be obtained
through comparing the landscapes shown in Fig. 7b, c. However,
unexpected results are observed. The system presents the vortex-
like landscape with damped oscillation behavior when k13= 50
and a= 0 (Fig. 8a). While when we set a= 0.01, the Mexican hat
landscape with robust oscillation behavior emerges (Fig. 8b),
indicating that the introduced effect of toxic metabolic factors
facilitates the occurrence of oscillatory behavior. Therefore, the
toxic metabolic factors have two faces, which can both limit and
promote the induction of oscillation in the quorum sensing
system.
To quantify the dual roles of the toxic metabolic factors for

oscillation induction, the two-parameter bifurcation diagram of
the toxic coefficient (parameter a) and k13 is investigated. As the
phase diagram suggested (Fig. 8c), the toxic factors promote the
induction of oscillation at weak reaction strengths of the CcdB
expression induced by LuxR2:AHL2 (k13 < 50 μM−1 min−1), while
limit oscillation at strong strengths (k13 > 50 μM−1 min−1). Thus,
50 μM−1 min−1 of k13 is an important cut-off strength for
discriminating the roles of toxic factors. The result also indicates
that the amplitude is increased with the increase of toxic
coefficient at a small k13, but is decreased at a large k13. However,
the period is increased with the increase of toxic coefficient only
at the range of approximately 55 μM−1 min−1 < k13 < 75 μM−1

min−1, but is barely influenced at other ranges (Fig. 8d). For the
other two reaction parameters, kr and k18, we have similar
conclusions.
Since the experimental data are not sufficient to fit all the

parameters in our model, the choice of some parameter values is
to some extent arbitrary. Sensitivity analysis of all the model
parameters is therefore performed to evaluate the robustness of
the parameter-dependent bacterial density. Similar to the result
shown in Fig. 5a, the bacterial density is only sensitive to a few
parameters (Fig. 9). More specifically, the density is insensitive to
the upstream signaling parameters, but can be only efficiently
controlled by a few downstream parameters. Despite that the
upstream experimental data are lacking for fitting, Fig. 9 indicates
that the upstream signaling parameters are rather robust to
bacterial density and the parameter selection has a limited
influence on it. Thus, the proposed optimal control strategy and
the identified underlying mechanism for oscillation remain valid.

DISCUSSION
Bacteria use quorum sensing to sense changes in concentration
and the surrounding environment, thereby regulating the
expression of related genes and physiological activities for better
adapting to environment variations45–47. In this paper, we use
experimental data to develop a mathematical model of a synthetic
quorum sensing system in E. coli, with the aim of providing a
quantitative picture of the circuit to quantify the optimal strategy
for controlling bacterial population density. Simulation results are
in good agreement with experimental data, particularly for the
case of growth curves with different RBS-binding efficiency during
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the stationary phase. Using the constructed model, dynamical
behaviors of the key proteins, complexes and the promoter
responding probabilities are systemically studied, which are
difficult to be explored in experiments at present. Compared with
previous studies, several new insights are provided by this study
on the system, such as how the components, i.e., IPTG, AHL
permeability, and RBS efficiency, mediate the bacterial density.
The RBS efficiency-induced damping oscillation behavior is
predicted as well. We further uncover that the oscillatory

behaviors are determined by the included negative feedback
loop structure in the downstream signaling of the quorum
sensing. Moreover, based on the bifurcation diagram and land-
scape, the two faces of the toxic metabolic factors in controlling
oscillation are quantified, which provides a physical and
quantitative explanation for the dynamics switching of the
bacterial density.
Although IPTG is widely used and functions as an efficient

inducer in E. coli system, IPTG is not an innocuous inducer, which

Fig. 7 Landscape changes when the oscillation-induction parameters and toxic coefficient are varied. The control E.coli system exhibits a
monostable landscape (a). Variations of kr and the toxic coefficient (a) switch the system to the vortex-like pattern landscape (b), whereas the
system presents the Mexican hat landscape after removing the effect of toxic factors (c). Variations of k18 and a can also switch the system to
the vortex-like pattern landscape (d).
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Fig. 8 Dual roles of toxic metabolic factors in controlling oscillation in the quorum sensing system. a, b Addition of the toxic metabolic
factors switches the system from the vortex-like pattern landscape to the Mexican hat landscape. c, d Two-parameter bifurcation diagrams of
the amplitude and period as a function of k13 and a. Oscillations occur within the color region and no oscillation occurs in the white region.

Fig. 9 Sensitivity analysis of all the model parameters. The two-dimensional heatmap represents the corresponding percentage variation of
the bacterial density to the percentage change (from −20% to 20% of the standard value) for each kinetic parameter.
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is potential toxicity to cause appreciable damage to E. coli with a
high dose. Thus, for safely and efficiently controlling population
density, the induction dose of IPTG should be low but with a
regulatory function. Our model analysis captures the detailed
response processes upon various IPTG-dose inductions and
indicates that the optimal dose range of IPTG induction is about
10–500 μM for efficiently controlling population density of the
synthetic quorum sensing system in E. coli. Thus, induction with
1000 μM IPTG stimulation might have toxic effects in the previous
study. The results can be used to guide the development of more
rational IPTG treatments for E. coli. However, the optimal range of
IPTG is defined as the most sensitive range of population density
to IPTG, which is obtained with the model that does not consider
the IPTG toxicity in this study. A more accurate optimal nontoxic
range would be further determined when considering the
heterologous expression of protein-induced toxicity in our
future work.
As an essential signaling molecule, AHL has been involved in

various synthetic quorum sensing systems. Numbers of modeling
studies that combined with experiments focused on exploring the
complex dynamic processes of AHL48. Nilsson et al. previously
studied the concentration changes of AHL inside the cell and in
the biofilm over time with growth rate, diffusion of AHL, and
autoinduction rate, suggesting that AHL-mediated phenotype can
occur at a relatively low cell density and low concentration of
external AHL38. Besides, You et al. determined that the lethal
protein-production rate is restricted by the synthesis of AHL. The
cell density at a stable steady state is proportional to the
degradation rate of AHL17. In this work, we discuss AHL
permeability and report that the bacteria population density can
be regulated by the AHL permeability during the stationary phase.
We find that the control of population density by AHL
permeability is IPTG-dose dependent, and the controllable area
of AHL upon different IPTG induction levels is systematically
quantified. This analysis helped to refine and resolve the
quantitative issues of elaborating the role of AHL in the efficient
population control, which could be tested by further experiments.
We notice that targeting the membrane and specific transport
qualities of AHL with tailored transport are important issues in the
quorum sensing system. In a very recent paper, Billot et al.
reviewed the current engineering studies that targeted AHL-
interfering enzymes for bacterial control49. The enzymatic
engineering approaches might allow the development of a
specific strategy for controlling AHL permeability experimentally
in the future. Moreover, Lee et al. developed a system that
disrupting quorum sensing signal molecules by using nanobioca-
talysts regulates the physiological state of bacterial cells, resulting
in the alleviation of biofilm formation50. Such a method might also
be effectively employed to mediate AHL permeability. We hope
our predictions can be tested by the future experiments with
these novel techniques. However, our main focus in this study is to
systematically analyze the dynamical behaviors of the compo-
nents in the system. We hope to refine our model and thus to
address these questions with further experimental observations in
our future work.
Emerging evidence has suggested the important role of

quorum sensing oscillatory behavior in drug delivery, which can
present a regular interval of release with proper amplitude and
period15,40. To fully understand the effect of oscillatory behavior
on quorum sensing, an increasing number of theoretical studies
have recently sprung up. Chen et al. found that the time delay in
protein synthesis can induce the stability and oscillation of
quorum sensing51. In addition, Wang and Tang provided a
physical explanation of oscillations in terms of energy-driven
processes in several cellular quorum sensing systems52. Never-
theless, our results show that, for the first time to our knowledge,
the RBS-binding strength determines the oscillatory behavior of
the population density, which is greatly restricted by the bacterial

death induced by the toxic metabolic by-products. We quantify
the RBS-strength range and the toxic metabolic coefficient range
that responds for inducing the oscillation of population density.
Different from the previously proposed time-delay mechanism51,
we show that the negative feedback loop within the quorum
sensing signaling is also an important regulatory mechanism for
oscillation, which can efficiently induce the diverse oscillation
amplitude and period (Fig. 6c, d). Besides the RBS (kr), reactions of
the AHL-induced expression of CcdB (k13) and CcdB negative-
regulated cell density (k18) are also identified to be essential for
oscillation and the efficient controllable strength ranges are
quantified through bifurcation analysis. The amplitude and period
in the bacterial population control are important for the drug
delivery, which can determine the dose and time of the drug
released by the quorum sensing system, respectively. Experi-
mental studies suggested that the oscillatory amplitude and
period of quorum sensing system are essential for treating the
diseases that require periodic dosing of drugs, such as diabetes,
high blood pressure, and cancer15,53. The regulatory mechanism of
oscillation discussed in the paper might provide useful guidance
for the drug delivery. Moreover, the oscillatory amplitude and
period of bacterial population might be also important for
division-site selection, circadian clocks, and wastewater
treatment54,55.
Compared with the previous studies on quorum sensing

modeling that most focused on the deterministic dynamics, our
study from the landscape viewpoint quantitatively provides the
stochastic dynamics, the global nature, and the kinetic transitions
of the quorum sensing system. Although noise can drive many
biological processes56,57, our stochastic dynamics analysis of the
quorum sensing system indicates that the vortex-like landscape or
Mexican hat landscape of the system is barely influenced by the
small stochastic fluctuations. The landscape topography presents
more dynamical properties of the system, such as the damped
oscillation behavior that cannot be observed by the bifurcation
analysis. Using this approach, we further identify the dual roles of
the toxic metabolic factors in regulating oscillation, which have
not been reported so far. Although the toxic effects are not
included in the negative feedback loop structure, the toxic factors
can also trigger oscillation through mediating the bacterial
density. In the quorum sensing system, the toxic factors negatively
regulate cell density. As the quantified range of the toxic factors
for inducing oscillation is shown in Fig. 8c, when the reaction
strength of the AHL-induced expression of CcdB (k13) is strong, a
high density is required for oscillation. Thus, the reaction strength
of the toxic factors (a) tends to be weak to reduce its negative
effect on cell density. While when k13 is small, the toxic coefficient
(a) should be large to decrease the cell density for efficient
oscillation. Overall, these results present new insights into the
control mechanism of quorum sensing system and provide
possible clues for biological implications.
As a fact, the lacking of experimental validations is a limitation

of this modeling study. Nevertheless, our model accurately
integrates the known biochemical reactions and can well
reproduce the observed experimental data. Experimental data-
based modeling approach is widely employed for dynamic
discussion in various quorum sensing systems19,58,59. Motivated
by the roles of AHL permeability and RBS efficiency that are still
unclear, we thus developed the model to systematically evaluate
its functions in the quorum sensing system and hope that our
predictions can be tested by experiment in the future.
Despite lacking experimental validations, several previous

experimental observations qualitatively support our predictions.
We predicted that the optimal IPTG-induction range is between 10
and 500 μM, which is consistent with the experimental observa-
tion that a recombinant E. coli system shows increasing response
with increasing IPTG dose up to 400 μM60. Since changing the AHL
permeability is difficult in experiments, no experimental tests are
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done currently. However, two previous experimental studies have
explored the combination effects of AHL and IPTG concentration
on the dynamical response of the artificial E. coli system35,36. The
two experimental observations show that the system presents
efficient responses for both the AHL and IPTG concentrations at
high levels. Actually, in our model, high AHL permeability will
induce the high level of AHL outside the bacteria, which
essentially has the same effects on the system as the two
experimental studies. Thus, our prediction of the AHL permeability
can be indirectly validated by these two studies. Moreover, a
previous experimental study found that deletion of RBS abolishes
oscillation behavior of E. coli cell density, proving that RBS is
essential for inducing oscillation61. Besides, Elowitz and Leibler
determined that bacterial oscillations are favored by efficient RBS
strengths62. Both of the two experimental researches can
qualitatively support our prediction of the RBS-induced oscillation.
Compared with these studies, our study further quantitatively
explored the relationship between RBS-binding strengths and the
oscillatory behavior.
Despite specific to an exact gene circuit, our conclusion of the

functional roles of components might be generally applicable. This
study not only advances our knowledge of various regulatory
mechanisms of this circuit, but also provides a representative
framework to systematically study the underlying mechanisms in
other synthetic circuits, ultimately providing potential clues for the
development of more rational control strategy for various quorum
sensing systems20,63. With the combination of further experi-
mental observations, we hope to propose a more comprehensive
model to make up the shortages, e.g., the simplification of by-
product-induced bacterial death, specific to an exact gene circuit,
lacking experimental validation and so on, thus providing more
convincing results in our future work.

METHODS
Model construction of the quorum sensing system
Ordinary differential equation (ODE)-based modeling is a well-established
approach and has been widely used to quantitatively study the cellular-
regulatory mechanism64,65. The bacteria state can be described by the
component concentrations (C1, C2,…). Based on the law of mass action, the
reaction rates are dependent on these concentrations and the kinetic
parameters (k1, k2,…). The model is formulated as a set of coupled ODEs to
describe the time evolution of component concentrations in terms of the
following general equation:

dCi
dt

¼
Xn
j¼1

vij � qj ; i ¼ 1; :::;mð Þ (1)

where: dCi/dt is the concentration-changing rate of component i with time;
m represents the number of components with the concentration Ci; n is
the number of reactions with the rate qj; and vij denotes the element of the
stoichiometric matrix66 that links the reaction rates of qi with component
Ci. Complete description of ODEs in a model that describes the dynamics of
the component in different modules is presented below. The ODE model is
developed and simulated with MATLAB and the ode 15s function of
MATLAB is used to solve ODEs67. The zipped source code file can be found
in https://github.com/jianweishuai/QS.

Module of gene transcription
Each promoter of the corresponding genes has two states, i.e., the
promoter that responds to the inducer and the promoter that does not
respond to the inducer. The probabilities of the luxI gene, luxR gene, and
ccdB gene promoter responding to the inducer are represented by PI1, PR1,
and PB1, respectively. Because a promoter has only two states, the sum of
the probability of these two states is 1. Then, 1–PI1, 1–PR1, and 1–PB1
represent the probability of three promoters non-responding to the
inducer, respectively. In our model, the transcription processes of the three
genes are independent to each other. We assume there is not any limited
molecular mechanism during the expression of the three genes. Compared
with the changes in protein levels, the transcription factor activity presents

the dynamics on the fast timescale68. We therefore consider the
transcription processes to be at a steady state without explicitly
modeling69.
Thus, the kinetic equations of the probabilities of IPTG inducing the

transcription of the luxI gene and luxR gene, and the probability of LuxR2:
AHL2 complex inducing the transcription of the ccdB gene, are

dPI1
dt

¼ a1 1� PI1ð Þ IPTG½ � � b1PI1 (2)

dPR1
dt

¼ a2 1� PR1ð Þ IPTG½ � � b2PR1 (3)

dPB1
dt

¼ a3 1� PB1ð Þ LuxR2 : AHL2½ � � b3PB1 (4)

The biochemical reaction of LuxI degradation, LuxI:SAM association/
disassociation, and the reaction of LuxI:MTA complex association/
disassociation are described by the following:

LuxI !δ1 Φ; LuxIþ SAM $k3
k�3

LuxI : SAM; LuxI : MTA $k8
k�8

LuxIþ SAM

Thus, dynamic behavior of LuxI protein can be represented by the
equation

d LuxI½ �
dt ¼ k1PI1 � δ1 LuxI½ � � k3½LuxI�½SAM� � k�3½LuxI : SAM�ð Þ

þ k8 LuxI : MTA½ � � k�8 LuxI½ � MTA½ �
(5)

The biochemical reactions of LuxR degradation and LuxR:AHL complex
association/disassociation are

LuxR !δ11 Φ; LuxRþ AHL $k11
k�11

LuxR : AHL

The kinetic equation of LuxR protein is

d LuxR½ �
dt

¼ k9PR1 � δ11 LuxR½ � � k11 LuxR½ � AHL½ � � k�11 LuxR : AHL½ �ð Þ (6)

Dynamical behavior of the killer protein CcdB, which involves the
processes of LuxR2:AHL2-complex-induced production of CcdB protein, and
the wild-type CcdB protein production and degradation, is described by
the following equation:

d CcdB½ �
dt

¼ krk13PB1 þ k14 � δ15 CcdB½ � (7)

RBS is the starting site of the sequence in which mRNA is translated into
protein. The efficiency of RBS varies depending on the binding strength (kr)
of different sequences to the ribosome, which affects the protein yield. The
parameter k13 represents the intrinsic production rate of CcdB by the
synthesis gene. Since the CcdB production depends on the binding
strength of RBS, we thus multiply the two parameters, kr and k13 together
in the first term.

Module of AHL synthesis
The reaction processes of LuxI protein use SAM and acyl-ACP as substrates
to synthesize AHL mainly containing the processes of LuxI:a_SAM complex
association/disassociation (a_SAM denotes the activated form of SAM in
complex), dimer AHL2 aggregation/disaggregation, degradation of AHL,
and AHL flows out of bacteria. The biochemical reactions are accordingly
presented below:

LuxI : a SAM $k7
k�7

LuxI : MTAþ AHL; AHL $k15 AHLO

Thus, the dynamic change of AHL is described by the following
equations:

d AHL½ �
dt ¼ k7 LuxI : a SAM½ � � k�7 AHL½ � LuxI : MTA½ �

� k11 LuxR½ � AHL½ �
�k�11 LxuR : AHL½ �

� �
� δ9 AHL½ � � k15 AHL½ � � AHLO½ �ð Þ

(8)

Besides the AHL inside the bacteria, AHL outside the bacteria is also an
important factor. The dynamics of the outside AHLo can be described by
the following equation:

d AHLO½ �
dt

¼ k15 AHL½ � � AHLO½ �ð Þ NV1
V � NV1

� δ12 AHLO½ � (9)

In Eq. (9), [AHL] – [AHLo], which represents the concentration difference
of AHL between the inside and outside of the bacteria, is the driving force
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of AHL flowing out of bacteria. N is the population of bacteria. V1 is
individual E. coli volume and V is the volume of the entire culture
environment. The concentration of AHL flowing out of the bacteria is
related to the volumes inside and outside of the bacteria. Thus, the volume
ratio of the bacteria volume to the entire culture environment, NV1

V�NV1
, has to

be considered. The last term in the formula describes the degradation
process of AHLo. The dynamics for other components in the AHL synthesis
processes are described by the ODEs shown in Supplementary Table 1.
Biochemical reaction of the LuxR2:AHL2 tetramer formation by the

combination of two LuxR:AHL complex is

2 � LuxR : AHL½ � $k10
k�10

LuxR2 : AHL2

The dynamics of the LuxR:AHL and LuxR2:AHL2 tetramer are described
by the following equations:

d LuxR2 :AHL2½ �
dt ¼ k10 LuxR : AHL½ �2�k�10 LuxR2 : AHL2½ �

�δ14 LuxR2 : AHL2½ �
� a3 1� PB1ð Þ LuxR2 : AHL2½ � � b3PB1ð Þ

(10)

d LuxR:AHL½ �
dt ¼ k11 LuxR½ � AHL½ � � k�11 LuxR : AHL½ �

� k10 LuxR : AHL½ �2�k�10 LuxR2 : AHL2½ �
� � (11)

Module of the bacteria population
The kinetic equation of bacteria population N is

dN
dt

¼ k16N � k17N
2 � k18 CcdB½ �N � aNtn

tn þ bn
(12)

We employ the logistic model to describe the general dynamics of
bacterial proliferation and death70 represented by the first two terms
shown in Eq. (12). The term k16N represents the natural increase, and k17N

2

represents the decrease of cell population caused by the limited space and
nutritional competition. The third term k18[CcdB]N describes the death
induced by CcdB of the synthetic quorum sensing, which depends on the
death rate k18, CcdB concentration, and cell population N. This formula is a
general and simple treatment in biophysical modeling70,71. Since the
effects of toxic metabolic by-products on cell death are complicated72,73,
the Hill term aNtn/(tn+ bn) is therefore employed for simplification. During
the early phase with a small t, a small amount of toxic metabolic by-
products is produced, making little contribution to death. While during the
later phase with a large t, the toxic metabolic by-products are accumulated
massively, inducing cell death in a large population.

Parameter-value determination
All the parameters are first restricted within the typical biological ranges
according the reaction types39,68. Then we estimate the parameters based
on the earlier literature. The parameters are chosen randomly within the
typical biological ranges to avoid convergence to local minima. Then the
parameters are further determined by a global optimization method that
minimizes the deviation between simulation results and experiments of
the bacteria-growth curves of wild-type E. coli and the engineered bacteria
with RBS0.07 E. coli21, or consulted from previous literature. The deviation is
characterized by using the correlation coefficient, R-square, which is
determined as the following functions:

R2¼1�
Pn

i¼1
yexp tið Þ�ysim tið Þð Þ2Pn

i¼1
yexp tið Þ�yexpð Þ2 (13)

where yexp(ti) and ysim(ti) are the population density of the bacteria-growth
curve data in experiment and simulation at time ti, respectively. Based on
the previous experimental data21, the total volume of the culture is 1 mL in
the model. The volume of an E. coli is about 1.6 μm3. The initial value of the
bacteria population and the concentration of IPTG induction in the model
are 4.47 × 107 CFU/mL and 1000 μM. All the parameter descriptions, values,
and units in the model are listed in Supplementary Table 2. The general
qualitative behavior of the model is robust to small and even intermediate
changes of most parameters, providing confidence that plausible
parameter values are obtained (see details in Figs. 5a and 9).

Parameter-sensitivity analysis
Parameter-sensitivity analysis is conducted to identify whether and how
the parameters have influence on the bacteria population density during
the stationary phase. Based on ref. 74, the local sensitivity coefficient is

Slocal ¼ p
N
ΔN
Δp

(14)

where p is the parameter with Δp the change of p, and N is the output with
ΔN representing the change of population density. Each parameter p is
varied ±20% from its default value and the corresponding percentage
change of population density is calculated in the model accordingly.

Identification of oscillation dynamics
The stable oscillation dynamics of the system is identified based on the
previous study75, in which the oscillation coefficient is defined as follows:

OSC ¼ CMAX � CMINð Þ
CMAX þ CMINð Þ=2 (15)

where CMAX and CMIN represent the peak value and valley value of
component concentration, respectively. The variable is recognized as
oscillatory signaling when the value of the coefficient OSC is greater than
0.1. We investigate the evolutionary dynamics of the component over time
and the peak values satisfy Ct > Ct-1 and Ct > Ct+1. If no less than 5 peaks are
found in a long enough time (t from 100 h to 500 h), it can be identified as
a stable oscillatory signaling. The amplitude of the oscillation is determined
by calculating the difference between CMAX and CMIN within the stable
oscillatory range, and the period is determined by calculating the time
difference between two adjacent peak values.

Potential landscape described by spatial density
approximation
Based on the previous studies42–44, the stochastic dynamics of the
continuous quorum sensing system is described by Langevin equation, i.e.,
dCi(t)/dt= F(Ci)+ η(t), where Ci represents the concentration of the
molecules or gene expression levels. The noise term η(t) adopts the
independent additive white Gaussian noise, 〈η(t)〉= 0 and 〈η(t)η(tʹ)〉= 2Dδ
(t− tʹ). To obtain the potential landscape of high-dimensional complex
systems, it is obviously difficult to use Fokker–Planck equation to solve the
evolution probability of systems in phase space. Starting from enough
random initial conditions, the system will eventually evolve to a steady
state, which may be monostable, multistable, or limit-cycle steady state.
The evolution trajectory density near the attractor in the phase space is the
highest. All evolution trajectories in high-dimensional phase space are
mapped to any two-dimensional phase plane, and then the two-
dimensional phase plane is divided into several small regions, and the
trajectory density in each small region is counted. Using the distribution of
trajectory density instead of the evolution-probability distribution of the
system, the potential landscape of the system is obtained. In our study, the
stochastic mathematical model adding Gaussian white noise (the intensity
was fixed at 0.001) is simulated from random initial values for 10,000 times.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The models are developed and simulated with MATLAB R2020a and Python 3.70. The
zipped source code file of the model to generate the results in this study can be
found in https://github.com/jianweishuai/QS.
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